首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report solid state nuclear magnetic resonance (NMR) measurements that probe the supramolecular organization of beta-sheets in the cross-beta motif of amyloid fibrils formed by residues 11-25 of the beta-amyloid peptide associated with Alzheimer's disease (Abeta(11-25)). Fibrils were prepared at pH 7.4 and pH 2.4. The solid state NMR data indicate that the central hydrophobic segment of Abeta(11-25) (sequence LVFFA) adopts a beta-strand conformation and participates in antiparallel beta-sheets at both pH values, but that the registry of intermolecular hydrogen bonds is pH-dependent. Moreover, both registries determined for Abeta(11-25) fibrils are different from the hydrogen bond registry in the antiparallel beta-sheets of Abeta(16-22) fibrils at pH 7.4 determined in earlier solid state NMR studies. In all three cases, the hydrogen bond registry is highly ordered, with no detectable "registry-shift" defects. These results suggest that the supramolecular organization of beta-sheets in amyloid fibrils is determined by a sensitive balance of multiple side-chain-side-chain interactions. Recent structural models for Abeta(11-25) fibrils based on X-ray fiber diffraction data are inconsistent with the solid state NMR data at both pH values.  相似文献   

2.
Glycopolymers carrying sulfated saccharides with modest sugar contents (11% and 28%) were found to suppress the formation of amyloid fibrils by amyloid beta peptides (Abeta(1-42), Abeta(1-40), and Abeta(25-35)), as evaluated by thioflavin T assays and atomic force microscopy observation. Circular dichroism spectra showed that the conformation of amyloid beta peptides depended on the glycopolymer additives, and that the glycopolymer additives reduced the beta-sheet contents. Neutralization activity was confirmed by in vitro assay with HeLa cells. The sulfate group and the appropriate sugar contents were essential for the inhibitory effect.  相似文献   

3.
Amyloid fibrils are self-associating filamentous structures, the deposition of which is considered to be one of the most important factors in the pathogenesis of Alzheimer's disease and various other disorders. Here we used single molecule manipulation methods to explore the mechanics and structural dynamics of amyloid fibrils. In mechanically manipulated amyloid fibrils, formed from either amyloid beta (Abeta) peptides 1-40 or 25-35, beta-sheets behave as elastic structures that can be "unzipped" from the fibril with constant forces. The unzipping forces were different for Abeta1-40 and Abeta25-35. Unzipping was fully reversible across a wide range of stretch rates provided that coupling, via the beta-sheet, between bound and dissociated states was maintained. The rapid, cooperative zipping together of beta-sheets could be an important mechanism behind the self-assembly of amyloid fibrils. The repetitive force patterns contribute to a mechanical fingerprint that could be utilized in the characterization of different amyloid fibrils.  相似文献   

4.
Egnaczyk GF  Greis KD  Stimson ER  Maggio JE 《Biochemistry》2001,40(39):11706-11714
The assembly of the beta-amyloid peptide (Abeta) into amyloid fibrils is essential to the pathogenesis of Alzheimer's disease. Detailed structural information about fibrillogenesis has remained elusive due to the highly insoluble, noncrystalline nature of the assembled peptide. X-ray fiber diffraction, infrared spectroscopy, and solid-state NMR studies performed on fibrils composed of Abeta peptides have led to conflicting models of the intermolecular alignment of beta-strands. We demonstrate here the use of photoaffinity cross-linking to determine high-resolution structural constraints on Abeta monomers within amyloid fibrils. A photoreactive Abeta(1-40) ligand was synthesized by substituting L-p-benzoylphenylalanine (Bpa) for phenylalanine at position 4 (Abeta(1-40) F4Bpa). This peptide was incorporated into synthetic amyloid fibrils and irradiated with near-UV light. SDS-PAGE of dissolved fibrils revealed the light-dependent formation of a covalent Abeta dimer. Enzymatic cleavage followed by mass spectrometric analysis demonstrated the presence of a dimer-specific ion at MH(+) = 1825.9, the predicted mass of a fragment composed of the N-terminal Abeta(1-5) F4Bpa tryptic peptide covalently attached to the C-terminal Abeta(29-40) tryptic peptide. MS/MS experiments and further chemical modifications of the cross-linked dimer led to the localization of the photo-cross-link between the ketone of the Bpa4 side chain and the delta-methyl group of the Met35 side chain. The Bpa4-Met35 intermolecular cross-link is consistent with an antiparallel alignment of Abeta peptides within amyloid fibrils.  相似文献   

5.
Seeding specificity in amyloid growth induced by heterologous fibrils   总被引:5,自引:0,他引:5  
Over residues 15-36, which comprise the H-bonded core of the amyloid fibrils it forms, the Alzheimer's disease plaque peptide amyloid beta (Abeta) possesses a very similar sequence to that of another short, amyloidogenic peptide, islet amyloid polypeptide (IAPP). Using elongation rates to quantify seeding efficiency, we inquired into the relationship between primary sequence similarity and seeding efficiency between Abeta-(1-40) and amyloid fibrils produced from IAPP as well as other proteins. In both a solution phase and a microtiter plate elongation assay, IAPP fibrils are poor seeds for Abeta-(1-40) elongation, exhibiting weight-normalized efficiencies of only 1-2% compared with Abeta-(1-40) fibrils. Amyloid fibrils of peptides with sequences completely unrelated to Abeta also exhibit poor to negligible seeding ability for Abeta elongation. Fibrils from a number of point mutants of Abeta-(1-40) exhibit intermediate seeding abilities for wild-type Abeta elongation, with differing efficiencies depending on whether or not the mutation is in the amyloid core region. The results suggest that amyloid fibrils from different proteins exhibit structural differences that control seeding efficiencies. Preliminary results also suggest that identical sequences can grow into different conformations of amyloid fibrils as detected by seeding efficiencies. The results have a number of implications for amyloid structure and biology.  相似文献   

6.
Amyloid fibril formation is a phenomenon common to many proteins and peptides, including amyloid beta (Abeta) peptide associated with Alzheimer's disease. To clarify the mechanism of fibril formation and to create inhibitors, real-time monitoring of fibril growth is essential. Here, seed-dependent amyloid fibril growth of Abeta(1-40) was visualized in real-time at the single fibril level using total internal reflection fluorescence microscopy (TIRFM) combined with the binding of thioflavin T, an amyloid-specific fluorescence dye. The clear image and remarkable length of the fibrils enabled an exact analysis of the rate of growth of individual fibrils, indicating that the fibril growth was a highly cooperative process extending the fibril ends at a constant rate. It has been known that Abeta amyloid formation is a stereospecific reaction and the stability is affected by l/d-amino acid replacement. Focusing on these aspects, we designed several analogues of Abeta(25-35), a cytotoxic fragment of Abeta(1-40), consisting of l and d-amino acid residues, and examined their inhibitory effects by TIRFM. Some chimeric Abeta(25-35) peptides inhibited the fibril growth of Abeta(25-35) strongly, although they could not inhibit the growth of Abeta(1-40). The results suggest that a more rational design of stereospecific inhibitors, combined with real-time monitoring of fibril growth, will be useful to invent a potent inhibitor preventing the amyloid fibril growth of Abeta(1-40) and other proteins.  相似文献   

7.
The venerable fluorescent probe of protein hydrophobic regions, 4,4(')-dianilino-1,1(')-binaphthyl-5,5(')-disulfonate (bis-ANS), unexpectedly increases in fluorescence with soluble beta(1-40) in acidic buffer solutions but reacts weakly with amyloid fibrils while other hydrophobic probes react with the fibrils. CD analysis correlates reaction with the probe with random coil/mixed conformations and alpha-helical forms of beta(1-40) in buffer solutions but less so with soluble beta-sheet forms or amyloid fibrils. The kinetics of the fluoroalcohol-induced interconversion of conformers can be followed by changes in bis-ANS fluorescence. Formation of the beta-sheet form in aqueous buffer is limited by a slow component (minutes) while fluoroalcohol-promoted changes between beta-sheet and alpha-helix occur over seconds. Variants of beta(1-40) such as beta(1-42) or the Dutch E22Q mutation of beta(1-40) and fragments beta(1-28), beta(12-28), beta(10-20 amide), and beta(10-35 amide) react with bis-ANS under conditions that do not support fibril formation. Primary amino acid sequence is important as beta(1-11) does not cause bis-ANS fluorescence while beta(1-16) does, but hydrophobicity is not as beta(25-35) and beta(15-20 amide) are unreactive. bis-ANS is a useful biophysical tool for characterizing particular, but not all, soluble Abeta conformations distinct from the fibrillar form of amyloid peptides detected by Thioflavin T.  相似文献   

8.
The self-assembly in films dried from aqueous solutions of a modified amyloid beta peptide fragment is studied. We focus on sequence Abeta(16-20), KLVFF, extended by two alanines at the N-terminus to give AAKLVFF. Self-assembly into twisted ribbon fibrils is observed, as confirmed by transmission electron microscopy (TEM). Dynamic light scattering reveals the semi-flexible nature of the AAKLVFF fibrils, while polarized optical microscopy shows that the peptide fibrils crystallize after an aqueous solution of AAKLVFF is matured over 5 days. The secondary structure of the fibrils is studied by FT-IR, circular dichroism and X-ray diffraction (XRD), which provide evidence for beta-sheet structure in the fibril. From high resolution TEM it is concluded that the average width of an AAKLVFF fibril is (63+/-18) nm, indicating that these fibrils comprise beta-sheets with multiple repeats of the unit cell, determined by XRD to have b and c dimensions 1.9 and 4.4 nm with an a axis 0.96 nm, corresponding to twice the peptide backbone spacing in the antiparallel beta-sheet.  相似文献   

9.
We report investigations of the morphology and molecular structure of amyloid fibrils comprised of residues 10-40 of the Alzheimer's beta-amyloid peptide (Abeta(10-40)), prepared under various solution conditions and degrees of agitation. Omission of residues 1-9 from the full-length Alzheimer's beta-amyloid peptide (Abeta(1-40)) did not prevent the peptide from forming amyloid fibrils or eliminate fibril polymorphism. These results are consistent with residues 1-9 being disordered in Abeta(1-40) fibrils, and show that fibril polymorphism is not a consequence of disorder in residues 1-9. Fibril morphology was analyzed by atomic force and electron microscopy, and secondary structure and inter-side-chain proximity were probed using solid-state NMR. Abeta(1-40) fibrils were found to be structurally compatible with Abeta(10-40): Abeta(1-40) fibril fragments were used to seed the growth of Abeta(10-40) fibrils, with propagation of fibril morphology and molecular structure. In addition, comparison of lyophilized and hydrated fibril samples revealed no effect of hydration on molecular structure, indicating that Abeta(10-40) fibrils are unlikely to contain bulk water.  相似文献   

10.
Visualization and classification of amyloid beta supramolecular assemblies   总被引:1,自引:0,他引:1  
Yagi H  Ban T  Morigaki K  Naiki H  Goto Y 《Biochemistry》2007,46(51):15009-15017
Deposition of amyloid beta (Abeta) fibrils has been suggested to play a central role in Alzheimer's disease. In clarifying the mechanism by which fibrils form and moreover in developing new treatments for amyloidosis, direct observation is important. Focusing on the interactions with surfaces at the early stages, we studied the spontaneous formation of Abeta(1-40) fibrils on quartz slides, monitored by total internal reflection fluorescence microscopy combined with thioflavin T, an amyloid-specific fluorescence dye. Self-assembly of Abeta(1-40), accelerated by a low concentration of sodium dodecyl sulfate, produced various remarkable amyloid assemblies. Densely packed spherulitic structures with radial fibril growth were typically observed. When the packing of fibrils was coarse, extremely long fibrils often protruded from the spherulitic cores. In other cases, a large number of wormlike fibrils were formed. Transmission electron microscopy and atomic force microscopy revealed relatively short and straight fibrillar blocks associated laterally without tight interaction, leading to random-walk-like fibril growth. These results suggest that, during spontaneous fibrillation, the nucleation occurring in contact with surfaces is easily affected by environmental factors, creating various types of nuclei, and hence variations in amyloid morphology. A taxonomy of amyloid supramolecular assemblies will be useful in clarifying the structure-function relationship of amyloid fibrils.  相似文献   

11.
Detailed structural studies of amyloid fibrils can elucidate the way in which their constituent polypeptides are folded and self-assemble, and exert their neurotoxic effects in Alzheimer's disease (AD). We have previously reported that when aqueous solutions of the N-terminal hydrophilic peptides of AD beta-amyloid (A beta) are gradually dried in a 2-Tesla magnetic field, they form highly oriented fibrils that are well suited to x-ray fiber diffraction. The longer, more physiologically relevant sequences such as A beta(1-40) have not been amenable to such analysis, owing to their strong propensity to polymerize and aggregate before orientation is achieved. In seeking an efficient and inexpensive method for rapid screening of conditions that could lead to improved orientation of fibrils assembled from the longer peptides, we report here that the birefringence of a small drop of peptide solution can supply information related to the cooperative packing of amyloid fibers and their capacity for magnetic orientation. The samples were examined by electron microscopy (negative and positive staining) and x-ray diffraction. Negative staining showed a mixture of straight and twisted fibers. The average width of both types was approximately 70 A, and the helical pitch of the latter was approximately 460 A. Cross sections of plastic-embedded samples showed a approximately 60-A-wide tubular structure. X-ray diffraction from these samples indicated a cross-beta fiber pattern, characterized by a strong meridional reflection at 4.74 A and a broad equatorial reflection at 8.9 A. Modeling studies suggested that tilted arrays of beta-strands constitute tubular, 30-A-diameter protofilaments, and that three to five of these protofilaments constitute the A beta fiber. This type of structure--a multimeric array of protofilaments organized as a tubular fibril--resembles that formed by the shorter A beta fragments (e.g., A beta(6-25), A beta(11-25), A beta(1-28)), suggesting a common structural motif in AD amyloid fibril organization.  相似文献   

12.
Although the amyloid fibrils formed from the Alzheimer's disease amyloid peptide Abeta are rich in cross-beta sheet, the peptide likely also exhibits turn and unstructured regions when it becomes incorporated into amyloid. We generated a series of single-proline replacement mutants of Abeta(1-40) and determined the thermodynamic stabilities of amyloid fibrils formed from these mutants to characterize the susceptibility of different residue positions of the Abeta sequence to proline substitution. The results suggest that the Abeta peptide, when engaged in the amyloid fibril, folds into a conformation containing three highly structured segments, consisting of contiguous sequence elements 15-21, 24-28, and 31-36, that are sensitive to proline replacement and likely to include the beta-sheet portions of the fibrils. Residues relatively insensitive to proline replacement fall into two groups: (a) residues 1-14 and 37-40 are likely to exist in relatively unstructured, flexible elements extruded from the beta-sheet-rich amyloid core; (b) residues 22, 23, 29 and 30 are likely to occupy turn positions between these three structured elements. Although destabilized, fibrils formed from Abeta(1-40) proline mutants are very similar in structure to wild-type fibrils, as indicated by hydrogen-deuterium exchange and other analysis. Interestingly, however, some proline mutations destabilize fibrils while at the same time increasing the number of amide protons protected from hydrogen exchange. This suggests that the stability of amyloid fibrils, rather than being driven exclusively by the formation of H-bonded beta-sheet, is achieved, as in globular proteins, through a balance of stabilizing and destabilizing forces. The proline scanning data are most compatible with a model for amyloid protofilament structure loosely resembling the parallel beta-helix folding motif, such that each Abeta(15-36) core region occupies a single layer of a prismatic, H-bonded stack of peptides.  相似文献   

13.
We report here structural differences between Abeta(1-40) protofibrils and mature amyloid fibrils associated with Alzheimer's disease as determined using hydrogen-deuterium exchange-mass spectrometry (HX-MS) coupled with on-line proteolysis. Specifically, we have identified regions of the Abeta(1-40) peptide containing backbone amide hydrogen atoms that are protected from HX or exposed when this peptide is incorporated into protofibrils or amyloid fibrils formed in phosphate-buffered saline without stirring at 37 degrees C. Study of protofibrils was facilitated by use of the protofibril-stabilizing agent calmidazolium chloride. Our data clearly show that both the C-terminal segment 35-40 and the N-terminal segment 1-19 are highly exposed to HX in both fibrils and protofibrils. In contrast, the internal fragment 20-34 is highly protected from exchange in fibrils but much less so in protofibrils. The data suggest that the beta-sheet elements comprising the amyloid fibril are already present in protofibrils, but that they are expanded into some adjacent residues upon the formation of mature amyloid. The N-terminal approximately ten residues appear to be unstructured in both protofibrils and fibrils. The 20-30 segment of Abeta(1-40) is more ordered in fibrils than in protofibrils, suggesting that, if protofibrils are a mechanistic precursor of fibrils, the transition from protofibril to fibril involves substantial ordering of this region of the Abeta peptide.  相似文献   

14.
Alzheimer's disease (AD) is a neurodegenerative disorder whose hallmark is the presence of senile plaques and neurofibrillary tangles. Senile plaques are mainly composed of amyloid beta-peptide (Abeta) fibrils and several proteins including acetylcholinesterase (AChE). AChE has been previously shown to stimulate the aggregation of Abeta1-40 into amyloid fibrils. In the present work, the neurotoxicity of different amyloid aggregates formed in the absence or presence of AChE was evaluated in rat pheochromocytoma PC12 cells. Stable AChE-Abeta complexes were found to be more toxic than those formed without the enzyme, for Abeta1-40 and Abeta1-42, but not for amyloid fibrils formed with AbetaVal18-Ala, a synthetic variant of the Abeta1-40 peptide. Of all the AChE-Abeta complexes tested the one containing the Abeta1-40 peptide was the most toxic. When increasing concentrations of AChE were used to aggregate the Abeta1-40 peptide, the neurotoxicity of the complexes increased as a function of the amount of enzyme bound to each complex. Our results show that AChE-Abeta1-40 aggregates are more toxic than those of AChE-Abeta1-42 and that the neurotoxicity depends on the amount of AChE bound to the complexes, suggesting that AChE may play a key role in the neurodegeneration observed in Alzheimer brain.  相似文献   

15.
Structural characterisation of islet amyloid polypeptide fibrils   总被引:3,自引:0,他引:3  
Islet amyloid is found in many patients suffering from type 2 diabetes. Amyloid fibrils found deposited in the pancreatic islets are composed of a 37-residue peptide, known as islet amyloid polypeptide (IAPP) (also known as amylin) and are similar to those found in other amyloid diseases. Synthetic IAPP peptide readily forms amyloid fibrils in vitro and this has allowed fibril formation kinetics and the overall morphology of IAPP amyloid to be studied. Here, we use X-ray fibre diffraction, electron microscopy and cryo-electron microscopy to examine the molecular structure of IAPP amyloid fibrils. X-ray diffraction from aligned synthetic amyloid fibrils gave a highly oriented diffraction pattern with layer-lines spaced 4.7 A apart. Electron diffraction also revealed the characteristic 4.7 A meridional signal and the position of the reflection could be compared directly to the image of the diffracting unit. Cryo-electron microscopy revealed the strong signal at 4.7 A that has been previously visualised from a single Abeta fibre. Together, these data build up a picture of how the IAPP fibril is held together by hydrogen bonded beta-sheet structure and contribute to the understanding of the generic structure of amyloid fibrils.  相似文献   

16.
AD (Alzheimer's disease) is a neurodegenerative disorder characterized by self-assembly and amyloid formation of the 39-43 residue long Abeta (amyloid-beta)-peptide. The most abundant species, Abeta(1-40) and Abeta(1-42), are both present within senile plaques, but Abeta(1-42) peptides are considerably more prone to self-aggregation and are also essential for the development of AD. To understand the molecular and pathological mechanisms behind AD, a detailed knowledge of the amyloid structures of Abeta-peptides is vital. In the present study we have used quenched hydrogen/deuterium-exchange NMR experiments to probe the structure of Abeta(1-40) fibrils. The fibrils were prepared and analysed identically as in our previous study on Abeta(1-42) fibrils, allowing a direct comparison of the two fibrillar structures. The solvent protection pattern of Abeta(1-40) fibrils revealed two well-protected regions, consistent with a structural arrangement of two beta-strands connected with a bend. This protection pattern partly resembles the pattern found in Abeta(1-42) fibrils, but the Abeta(1-40) fibrils display a significantly increased protection for the N-terminal residues Phe4-His14, suggesting that additional secondary structure is formed in this region. In contrast, the C-terminal residues Gly37-Val40 show a reduced protection that suggests a loss of secondary structure in this region and an altered filament assembly. The differences between the present study and other similar investigations suggest that subtle variations in fibril-preparation conditions may significantly affect the fibrillar architecture.  相似文献   

17.
We describe here details of the hydrogen-deuterium (H/D) exchange behavior of the Alzheimer's peptide Abeta(1)(-)(40), while it is a resident in the amyloid fibril, as determined by high-resolution solution NMR. Kinetics of H/D exchange in Abeta(1)(-)(40) fibrils show that about half the backbone amide protons exchange during the first 25 h, while the other half remain unexchanged because of solvent inaccessibility and/or hydrogen-bonded structure. After such a treatment for 25 h with D(2)O, fibrils of (15)N-enriched Abeta were dissolved in a mixture of 95% dimethyl sulfoxide (DMSO) and 5% dichloroacetic acid (DCA) and successive heteronuclear (1)H-(15)N HSQC spectra were collected to identify the backbone amides that did not exchange in the fibril. These studies showed that the N and C termini of the peptide are accessible to the solvent in the fibril state and the backbone amides of these residues are readily exchanged with bulk deuterium. In contrast, the residues in the middle of the peptide (residues 16-36) are mostly protected, suggesting that that many of the residues in this segment of the peptide are involved in a beta structure in the fibril. Two residues, G25 and S26, exhibit readily exchangeable backbone amide protons and therefore may be located on a turn or a flexible part of the peptide. Overall, the data substantially supports current models for how the Abeta peptide folds when it engages in the amyloid fibril structure, while also addressing some discrepancies between models.  相似文献   

18.
The present study has examined the effect of metals, such as iron and copper on the cytotoxicity of amyloid beta protein 1-40 (Abeta40). First, we showed that monomeric Abeta40 has stronger cytotoxicity than various type of aggregated Abeta40. Next we showed the addition of metals into the monomeric Abeta40 reduced the cytotoxicity of either monomeric Abeta40 or metals (iron and copper) although the addition of metals into monomeric Abeta40 resulted in a marked increase of aggregated form of Abeta40, which composed of beta-sheeted Abeta40 and Abeta40 aggregation not characterized by beta-sheet fibrils (coagrated Abeta40). Taken together, the metals and monomeric Abeta40 affect on each other and cause the reduction of their cell toxicity.  相似文献   

19.
We describe methods for minimization of and correction for artifactual forward and backward exchange occurring during hydrogen exchange-mass spectrometric (HX-MS) studies of amyloid fibrils of the Abeta(1-40) peptide. The quality of the corrected data obtained using published and new correction algorithms is evaluated quantitatively. Using the new correction methods, we have determined that 20.1 +/- 1.4 of the 39 backbone amide hydrogens in Abeta(1-40) exchange with deuteriums in 100 h when amyloid fibrils of this peptide are suspended in D(2)O. These data reinforce our previous conclusions based on uncorrected data that amyloid fibrils contain a rigid protective core structure that involves only about half of the Abeta backbone amides. The methods developed here should be of general value for HX-MS studies of amyloid fibrils and other protein aggregates.  相似文献   

20.
Shivaprasad S  Wetzel R 《Biochemistry》2004,43(49):15310-15317
Most models for the central cross-beta folding unit in amyloid fibrils of the Alzheimer's plaque protein Abeta align the peptides in register in H-bonded, parallel beta-sheet structure. Some models require the Abeta peptide to undergo a chain reversal when folding into the amyloid core, while other models feature very long extended chains, or zigzag chains, traversing the protofilament. In this paper we introduce the use of disulfide bond cross-linking to probe the fold within the core and the packing interactions between beta-sheets. In one approach, amyloid fibrils grown under reducing conditions from each of three double cysteine mutants (17/34, 17/35, and 17/36) of the Abeta(1-40) sequence were subjected to oxidizing conditions. Of these three mutants, only the Leu17Cys/Leu34Cys peptide could be cross-linked efficiently while resident in fibrils. In another approach, double Cys mutants were cross-linked as monomers before aggregation, and the resulting fibrils were assessed for stability, antibody binding, dye binding, and cross-seeding efficiency. Here too, fibrils from the 17/34 double Cys mutant most closely resemble wild-type Abeta(1-40) fibrils. These data support models of the Abeta fibril in which the Leu17 and Leu34 side chains of the same peptide pack against each other at the beta-sheet interface within the amyloid core. Related cross-linking strategies may reveal longer range spatial relationships. The ability of the cross-linked 17/35 double Cys mutant Abeta to also make amyloid fibrils illustrates a remarkable plasticity of the amyloid structure and suggests a structural mechanism for the generation of conformational variants of amyloid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号