首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jin Y  Penning TM 《Steroids》2006,71(5):380-391
AKR1C1 and AKR1C2 are human cytosolic hydroxysteroid dehydrogenases, which play pivotal roles in the metabolism and action of natural and synthetic steroid hormones. The two enzymes are highly homologous, and have distinct positional and stereochemical preferences with various substrates. We performed molecular docking simulations of three steroid substrates, including an androgen (5alpha-dihydrotestosterone, DHT), a progestin (progesterone, PRO), and a synthetic hormone ([7alpha,17alpha]-17-hydroxy-7-methyl-19-norpregn-5(10)-en-20-yn-3-one or tibolone, TIB), into the active sites of the two enzymes. For each substrate and enzyme pair, the activity inferred by the "productive" docking models (in which the spatial arrangement of the steroid and the cofactor would permit a reaction) matched the experimentally observed positional and stereochemical outcome. These productive conformations were energetically and statistically favored except for TIB and PRO with AKR1C2, where experimentally strong substrate inhibition and low activity were observed, respectively. Results showed that (i) a 3-ketosteroid (DHT) and a 20-ketosteroid (PRO) were reduced by AKR1C1 since the carbonyl groups could occupy the same position by "backwards" binding of steroids; (ii) 3alpha-reduced (DHT) and 3beta-reduced (TIB) products were formed by AKR1C2 since the angular methyl groups of the steroids were inverted by "upside-down" binding of steroids; and (iii) the 3beta- and 3alpha-reduction of DHT by AKR1C1 and AKR1C2, respectively occurred since the steroids employed a "swinging" motion to present opposite faces to the cofactor. Favorable nonproductive modes were observed with all substrates in both enzymes in which the steroid was bound at a "near-entry" position and/or an "in-middle" position, which may influence the reaction coordinate.  相似文献   

2.
Certain androstane steroids (AS) modulate ionotropic receptors, as do the pregnane steroids. Whereas women produce significant amounts of neuroactive progesterone metabolites, the steroid neuromodulators in men originate mainly from the 3-oxo-4-ene C(19)-steroids, which are converted to their 3alpha- and 3beta-hydroxy-5alpha/5beta-reduced metabolites. The neuromodulating effects of AS prompted us to monitor circulating levels of the steroids to estimate metabolic pathways in the periphery that may influence brain concentrations of AS. Hence, the serum levels of 20 steroids and 16 steroid polar conjugates including 17-oxo- and 17beta-hydroxy-derivatives of 5alpha/beta-androstane-3alpha/beta-hydroxy-androstane steroids were quantified in 15 men (16-62 years of age) using GC-MS. The conjugated AS for the most part reached micromolar concentrations, these being two or three orders of magnitude higher than those of the free steroids. The ratios of conjugates to free steroids were one to two orders of magnitude higher than the values for the corresponding pregnane steroids. This data suggested that conjugation may considerably restrain the transport of free AS from the periphery into the central nervous system.  相似文献   

3.
Chen M  Drury JE  Penning TM 《Steroids》2011,76(5):484-490
Human steroid 5β-reductase (aldo-keto reductase 1D1) catalyzes the stereospecific NADPH-dependent reduction of the C4-C5 double bond of Δ4-ketosteroids to yield an A/B cis-ring junction. This cis-configuration is crucial for bile acid biosynthesis and plays important roles in steroid metabolism. The biochemical properties of the enzyme have not been thoroughly studied and conflicting data have been reported, partially due to the lack of highly homogeneous protein. In the present study, we systematically determined the substrate specificity of homogeneous human recombinant AKR1D1 using C18, C19, C21, and C27 Δ4-ketosteroids and assessed the pH-rate dependence of the enzyme. Our results show that AKR1D1 proficiently reduced all the steroids tested at physiological pH, indicating AKR1D1 is the only enzyme necessary for all the 5β-steroid metabolites present in humans. Substrate inhibition was observed with C18 to C21 steroids provided that the C11 position was unsubstituted. This structure activity relationship can be explained by the existence of a small alternative substrate binding pocket revealed by the AKR1D1 crystal structure. Non-steroidal anti-inflammatory drugs which are potent inhibitors of the related AKR1C enzymes do not inhibit AKR1D1. By contrast chenodeoxycholate and ursodeoxycholate were found to be potent non-competitive inhibitors suggesting that bile-acids may regulate their own synthesis at the level of AKR1D1 inhibition.  相似文献   

4.
The steroid synthesis pathway in the ovarian follicles of the red seabream during final oocyte maturation (FOM) was investigated by incubating intact follicles with different radioactively labeled steroid precursors. During FOM, the steroidogenic shift from estradiol-17beta to 20 beta-hydroxylated progestin production occurred mainly due to a combination of inactivation of C 1720-lyase and activation of 20 beta-hydroxysteroid dehydrogenase. Of the steroids produced, 1720 beta-dihydroxy-4-pregnen-3-one (1720 beta-P) and 1720 beta,21-trihydroxy-4-pregnen-3-one (20 beta-S) exhibited the greatest effect on germinal vesicle breakdown (GVBD) in vitro. 1720 beta-P was further converted to its 5 beta-reduced form, 1720 beta-dihydroxy-5 beta-pregnan-3-one (1720 beta-P-5 beta), which had lower GVBD activity, suggesting that 5 beta-reduction plays a role in the inactivation of the maturation-inducing ability of 1720 beta-P. In contrast, no 5 beta-reduced metabolite of 20 beta-S was found. Serum levels of 1720 beta-P and 20 beta-S, measured by ELISA, showed that circulating levels of both progestins increased during FOM, and 20 beta-S levels were approximately twice as high as 1720 beta-P levels. This study clarified the complete steroidogenesis pathway during FOM in red seabream ovarian follicles and showed that two 20 beta-hydroxylated progestins, 1720 beta-P and 20 beta-S, act as maturation-inducing hormones in this species. The catabolites of these two progestins and their physiological roles in reproduction are also discussed.  相似文献   

5.
A human member of the aldo-keto reductase (AKR) superfamily, AKR1B10, was identified as a biomarker of lung cancer, exhibiting high sequence identity with human aldose reductase (AKR1B1). Using recombinant AKR1B10 and AKR1B1, we compared their substrate specificity for biogenic compounds and inhibition by endogenous compounds and found the following unique features of AKR1B10. AKR1B10 efficiently reduced long-chain aliphatic aldehydes including farnesal and geranylgeranial, which are generated from degradation of prenylated proteins and metabolism of farnesol and geranylgeraniol derived from the mevalonate pathway. The enzyme oxidized aliphatic and aromatic alcohols including 20α-hydroxysteroids. In addition, AKR1B10 was inhibited by steroid hormones, bile acids and their metabolites, showing IC50 values of 0.03-25 μM. Kinetic analyses of the alcohol oxidation and inhibition by the steroids and tolrestat, together with the docked model of AKR1B10-inhibitor complex, suggest that the inhibitory steroids and tolrestat bind to overlapping sites within the active site of the enzyme-coenzyme complex. Thus, we propose a novel role of AKR1B10 in controlling isoprenoid homeostasis that is important in cholesterol synthesis and cell proliferation through salvaging isoprenoid alcohols, as well as its metabolic regulation by endogenous steroids.  相似文献   

6.
The induction of adrenocortical special zone (S.Z.) by gonadotrophin administration was studied in male brush tailed possums. Castrated males injected with porcine FSH (NIH-FSH-P2) formed well developed S.Z.s, varying in sizes from 5-20% of the gland's volume. Pregnant mare serum gonadotrophin (PMSG) was ineffective. From adrenal homogenates of FSH treated possums incubated with [3H]-progesterone the major conversion products were 5 beta-reduced steroid metabolites (72%) and cortisol (4%). The conversion products from adrenals of saline and PMSG treated males were cortisol and corticosterone (65%). Of the ten untreated castrates, one had a well developed S.Z. and two had S.Z.s at an early stage of development. Significant 5 beta-reduction of [3H]progesterone was only found in one animal. The plasma FSH concentrations were in intact males 317 +/- 41 ng rat FSH ml-1 (mean +/- SEM) and in castrates 769 +/- 64. The possible reasons for the lack of spontaneous S.Z. formation in intact males are discussed.  相似文献   

7.
Steroid hormone transforming aldo-keto reductases (AKRs) include virtually all mammalian 3alpha-hydroxysteroid dehydrogenases (3alpha-HSDs), 20alpha-HSDs, as well as the 5beta-reductases. To elucidate the molecular determinants of steroid hormone recognition we used rat liver 3alpha-HSD (AKR1C9) as a starting structure to engineer either 5beta-reductase or 20alpha-HSD activity. 5beta-Reductase activity was introduced by a single point mutation in which the conserved catalytic His (H117) was mutated to Glu117. The H117E mutant had a k(cat) comparable to that for homogeneous rat and human liver 5beta-reductases. pH versus k(cat) profiles show that this mutation increases the acidity of the catalytic general acid Tyr55. It is proposed that the increased TyrOH(2)(+) character facilitates enolization of the Delta(4)-3-ketosteroid and subsequent hydride transfer to C5. Since 5beta-reductase precedes 3alpha-HSD in steroid hormone metabolism it is likely that this metabolic pathway arose by gene duplication and point mutation. 3alpha-HSD is positional and stereospecific for 3-ketosteroids and inactivates androgens. The enzyme was converted to a robust 20alpha-HSD, which is positional and stereospecific for 20-ketosteroids and inactivates progesterone, by the generation of loop-chimeras. The shift in log(10)(k(cat)/K(m)) from androgens to progestins was of the order of 10(11). This represents a rare example of how steroid hormone specificity can be changed at the enzyme level. Protein engineering with predicted outcomes demonstrates that the molecular determinants of steroid hormone recognition in AKRs will be ultimately rationalized.  相似文献   

8.
Active sex hormones such as testosterone and progesterone are metabolized to tetrahydrosteroids in the liver to terminate hormone action. One main metabolic pathway, the 5β-pathway, involves 5β-steroid reductase (AKR1D1, where AKR refers to the aldo-keto reductase superfamily), which catalyses the reduction of the 4-ene structure, and ketosteroid reductases (AKR1C1-AKR1C4), which catalyse the subsequent reduction of the 3-oxo group. The activities of the four human AKR1C enzymes on 5β-dihydrotestosterone, 5β-pregnane-3,20-dione and 20α-hydroxy-5β-pregnan-3-one, the intermediate 5β-dihydrosteroids on the 5β-pathway of testosterone and progesterone metabolism, were investigated. Product characterization by liquid chromatography-MS revealed that the reduction of the 3-oxo group of the three steroids predominantly favoured the formation of the corresponding 3α-hydroxy steroids. The stereochemistry was explained by molecular docking. Kinetic properties of the enzymes identified AKR1C4 as the major enzyme responsible for the hepatic formation of 5β-tetrahydrosteroid of testosterone, but indicated differential routes and roles of human AKR1C for the hepatic formation of 5β-tetrahydrosteroids of progesterone. Comparison of the kinetics of the AKR1C1-AKR1C4-catalysed reactions with those of AKR1D1 suggested that the three intermediate 5β-dihydrosteroids derived from testosterone and progesterone are unlikely to accumulate in liver, and that the identities and levels of 5β-reduced metabolites formed in peripheral tissues will be governed by the local expression of AKR1D1 and AKR1C1-AKR1C3.  相似文献   

9.
The relationships between structure and inhibitory potency toward microsomal cytochrome P-450 (P-450)-mediated androst-4-ene-3,17-dione hydroxylase activities were investigated in rat liver with a series of 5 alpha- and 5 beta-androstane derivatives. 5 beta-Reduced steroids (containing a cis-A/B ring junction) were more potent inhibitors than the 5 alpha-reduced epimers (containing a trans-A/B ring junction) except in the case of the 17 beta-hydroxy-substituted derivatives. The most effective inhibitor was 5 beta-androstane-3 beta-ol which exhibited I50 values of 7 and 27 microM against androstenedione 16 alpha- and 6 beta-hydroxylase activities, which are catalysed by P-450 IIC11 and IIIA2, respectively. In general, these two pathways of steroid hydroxylation were more susceptible to inhibition than the 7 alpha- and 16 beta-hydroxylase pathways. The 7 alpha-hydroxylase enzyme (P-450 IIA1) was only inhibited by 5 beta-reduced steroids that contained an oxygenated function at C17. All of the test compounds elicited type I spectral binding interactions with P-450 in oxidised microsomes. The most effective steroid inhibitors generally exhibited the greatest capacity to interact with P-450. Additional studies with one of the more potent compounds, 5 beta-androstane-3 beta-ol-17-one, revealed that the inhibition kinetics were competitive and that preincubation of the inhibitor with NADPH-supplemented microsomes prior to substrate (androstenedione) addition decreased the extent of inhibition observed. These findings are consistent with the assertion that the inhibition of hepatic steroid hydroxylases by 5 beta-androstanes involves an effective competitive interaction with the steroid substrate at the P-450 active site. Since the relative overproduction of 5 beta-reduced metabolites of certain androgens has been reported in clinical conditions, such as androgen insensitivity, it now appears important to investigate the hepatic drug oxidation capacity of patients with hormonal abnormalities.  相似文献   

10.
The stereospecific 5β-reduction of Δ(4)-3-ketosterols is very difficult to achieve chemically and introduces a 90° bend between ring A and B of the planar steroid. In mammals, the reaction is catalyzed by steroid 5β-reductase, a member of the aldo-keto reductase (AKR) family. The human enzyme, AKR1D1, plays an essential role in bile-acid biosynthesis since the 5β-configuration is required for the emulsifying properties of bile. Deficient 5β-reductase activity can lead to cholestasis and neo-natal liver failure and is often lethal if it remains untreated. In five patients with 5β-reductase deficiency, sequencing revealed individual, non-synonymous point mutations in the AKR1D1 gene: L106F, P133R, G223E, P198L and R261C. However, mapping these mutations to the AKR1D1 crystal structure failed to reveal any obvious involvement in substrate or cofactor binding or catalytic mechanism, and it remained unclear whether these mutations could be causal for the observed disease. We analyzed the positions of the reported mutations and found that they reside in highly conserved portions of AKR1D1 and hypothesized that they would likely lead to changes in protein folding, and hence enzyme activity. Attempts to purify the mutant enzymes for further characterization by over-expression in Escherichia coli yielded sufficient amounts of only one mutant (P133R). This enzyme exhibited reduced K(m) and k(cat) values with the bile acid intermediate Δ(4)-cholesten-7α-ol-3-one as substrate reminiscent of uncompetitive inhibition. In addition, P133R displayed no change in cofactor affinity but was more thermolabile as judged by CD-spectroscopy. When all AKR1D1 mutants were expressed in HEK 293 cells, protein expression levels and enzyme activity were dramatically reduced. Furthermore, cycloheximide treatment revealed decreased stability of several of the mutants compared to wild type. Our data show, that all five mutations identified in patients with functional bile acid deficiency strongly affected AKR1D1 enzyme functionality and therefore may be causal for this disease.  相似文献   

11.
A comparison of the structures and kinetic properties of human 20α-hydroxysteroid dehydrogenase (AKR1C1) and its mutant enzymes (Leu308Val and Leu308Ala) indicates that Leu308 is a selectivity determinant for substrate binding. While the Leu308Val mutation improved the catalytic efficiency (kcat/Km) of AKR1C1 towards the two substrates 5α-pregnane-3α,20α-diol (PregA) and 5β-pregnan-3α-ol-20-one (PregB), the Leu308Ala mutation rendered the enzyme inactive. In the docked model of PregA the conformation of the steroid molecule was similar to that of 20α-hydroxyprogesterone in the crystal structure of the AKR1C1 complex where the steroid did not interact with the catalytic residues Tyr55 and His117. In the case of PregB the steroid interacted with the catalytic residue His117 and formed close contacts with Leu308, suggesting that the binding mechanism of 3α-hydroxysteroids in the active site of AKR1C1 is different from that of 20α-hydroxysteroids.  相似文献   

12.
Capillary gas chromatographic 'steroid profiling' has been utilised to separate and quantify the metabolites (derivatized as methyloximes and/or trimethylsilyl ethers) formed from pregnenolone after incubation with rat testicular microsomes. A wide range of steroid metabolites was found, indicating that both the 5-ene and 4-ene pathways of testosterone biosynthesis were operating, as well as 16 alpha-hydroxylation, 20 beta-reduction and the formation of several C19 steroids (the 16-androstenes). At the concentration used, Metyrapone markedly inhibited 16 alpha- and 17-hydroxylation and side-chain cleavage of 17-hydroxylated C21 steroids. 16-Androstene production was also markedly inhibited and the formation of other metabolites was affected to lesser extents. Oxytocin abolished the formation of all C21 and C19 metabolites of pregnenolone.  相似文献   

13.
The widely expressed steroid hydroxylase CYP7B1 is involved in metabolism of a number of steroids reported to influence estrogen and androgen signaling. Several studies by us and other investigators have linked this enzyme to effects on estrogen receptor activation. In a previous report we examined the effect of CYP7B1-mediated hormone metabolism for estrogen-mediated response in kidney-derived HEK293 cells. In the current study we used an androgen response element (ARE) reporter system to examine androgen-dependent response of some CYP7B1 substrates and CYP7B1-formed metabolites in several cell lines derived from different tissues. The results indicate significantly lower androgen receptor activation by CYP7B1-formed steroid metabolites than by the corresponding steroid substrates, suggesting that CYP7B1-mediated catalysis may decrease some androgenic responses. Thus, CYP7B1-dependent metabolism may be of importance not only for estrogenic signaling but also for androgenic. This finding, that CYP7B1 activity may be a regulator of androgenic signaling by converting AR ligands into less active metabolites, is also supported by real-time RT-PCR experiment where a CYP7B1 substrate, but not the corresponding product, was able to stimulate known androgen-sensitive genes. Furthermore, our data indicate that the effects of some steroids on hormone response element reporter systems are cell line-specific. For instance, despite transfection of the same reporter systems, 5-androstene-3β,17β-diol strongly activates an androgen-dependent response element in prostate cancer cells whereas it elicits only ER-dependent responses in kidney HEK293 cells. Potential roles of cell-specific metabolism or comodulator expression for the observed differences are discussed.  相似文献   

14.
The metabolism of 4-androstene-3,6,17-trione (AT), previously described as a suicide substrate for aromatase, and its irreversible binding to aromatase were studied by using human placental microsomes. AT was rapidly converted into 3 beta-reduced metabolite (3-OHAT) with an enzyme other than aromatase in the microsomes in the presence of NADPH under either aerobic or anaerobic conditions. The conversion was efficiently prevented by a steroid 5 alpha-reductase inhibitor. 3-OHAT was characterized as a competitive (Ki = 6.5 microM) and irreversible inhibitor of aromatase. Both 14C-labeled AT and 3-OHAT were demonstrated to be irreversibly bound to aromatase probably through a sulfur atom of the enzyme in time-dependent manners in the presence of NADPH, being accompanied with time-dependent losses of the enzyme activity. It was shown that the process of an apparent time-dependent loss of aromatase activity caused by AT even under conditions allowing its 3 beta-reduction should principally depend on the action of the parent inhibitor AT itself and not on that of the metabolite 3-OHAT.  相似文献   

15.
In this review, we focused on the intersection between steroid metabolomics, obstetrics and steroid neurophysiology to give a comprehensive insight into the role of sex hormones and neuroactive steroids (NAS) in the mechanism controlling pregnancy sustaining. The data in the literature including our studies show that there is a complex mechanism providing synthesis of either pregnancy sustaining or parturition provoking steroids. This mechanism includes the boosting placental synthesis of CRH with approaching parturition inducing the excessive synthesis of 3beta-hydroxy-5-ene steroid sulfates serving primarily as precursors for placental synthesis of progestogens, estrogens and NAS. The distribution and changing activities of placental oxidoreductases are responsible for the activation or inactivation of the aforementioned steroids, which is compartment-specific (maternal and fetal compartments) and dependent on gestational age, with a tendency to shift the production from the pregnancy-sustaining steroids to the parturition provoking ones with an increasing gestational age. The fetal and maternal livers catabolize part of the bioactive steroids and also convert some precursors to bioactive steroids. Besides the progesterone, a variety of its 5alpha/beta-reduced metabolites may significantly influence the maintenance of human pregnancy, provide protection against excitotoxicity following acute hypoxic stress, and might also affect the pain perception in mother and fetus.  相似文献   

16.
Rabbits have been injected with 4-14C-labelled progesterone, deoxycorticosterone and corticosterone and the corresponding 20 beta-3H-reduced steroids (20-dihydro steroids) in order to compare the influence of oxidation at C-20 on the excretion of steroid acids. Both 20 beta-reduced progesterone and deoxycorticosterone were extensively oxidized at C-20 and metabolized to 20-oxo-21-oic acids devoid of tritium. A small proportion of the acidic metabolites of [20 beta-3H]dihydro deoxycorticosterone retained tritium. By contrast the majority of the metabolites of [20 beta-3H]dihydro corticosterone were tritiated and [11 beta,20 beta-3H]-dihydroxy-4-pregnene-3-one-21-oic acid was identified as a major acidic metabolite. These results indicate that the presence of a 11 beta-hydroxyl in 20 beta-dihydro corticosterone inhibits oxidation at C-20 and provides evidence for the direct oxidation of this corticosteroid at C-21 in this species.  相似文献   

17.
Steroid hormone transforming aldo-keto reductases (AKRs) include virtually all mammalian 3α-hydroxysteroid dehydrogenases (3α-HSDs), 20α-HSDs, as well as the 5β-reductases. To elucidate the molecular determinants of steroid hormone recognition we used rat liver 3α-HSD (AKR1C9) as a starting structure to engineer either 5β-reductase or 20α-HSD activity. 5β-Reductase activity was introduced by a single point mutation in which the conserved catalytic His (H117) was mutated to Glu117. The H117E mutant had a kcat comparable to that for homogeneous rat and human liver 5β-reductases. pH versus kcat profiles show that this mutation increases the acidity of the catalytic general acid Tyr55. It is proposed that the increased TyrOH2+ character facilitates enolization of the Δ4-3-ketosteroid and subsequent hydride transfer to C5. Since 5β-reductase precedes 3α-HSD in steroid hormone metabolism it is likely that this metabolic pathway arose by gene duplication and point mutation. 3α-HSD is positional and stereospecific for 3-ketosteroids and inactivates androgens. The enzyme was converted to a robust 20α-HSD, which is positional and stereospecific for 20-ketosteroids and inactivates progesterone, by the generation of loop-chimeras. The shift in log10(kcat/Km) from androgens to progestins was of the order of 1011. This represents a rare example of how steroid hormone specificity can be changed at the enzyme level. Protein engineering with predicted outcomes demonstrates that the molecular determinants of steroid hormone recognition in AKRs will be ultimately rationalized.  相似文献   

18.
Unconjugated, sulpho- and glucurono-conjugated androgen hormone metabolites have been determined in the urine of patients with rheumatoid arthritis. An increase in the excretory rate of unconjugated 5 beta-reduced 17-ketosteroids and a decrease in that of 17-ketosteroid conjugates, especially in dehydroepiandrosterone sulphate and in the sum of dehydroepiandrosterone, etiocholanolone and androsterone glucuronoside were observed. In contrast to unconjugated metabolites, there was less significant change in the 5 beta-metabolite conjugates in urine. Corticosteroid treatment resulted in an additional decrease of metabolite excretion by patients. Further study is necessary to determine the causative factors in the altered steroid pattern observed in this severe, non-endocrine disease.  相似文献   

19.
20.
Human aldo-keto reductase 1D1 (AKR1D1) and AKR1C enzymes are essential for bile acid biosynthesis and steroid hormone metabolism. AKR1D1 catalyzes the 5β-reduction of Δ(4)-3-ketosteroids, whereas AKR1C enzymes are hydroxysteroid dehydrogenases (HSDs). These enzymes share high sequence identity and catalyze 4-pro-(R)-hydride transfer from NADPH to an electrophilic carbon but differ in that one residue in the conserved AKR catalytic tetrad, His(120) (AKR1D1 numbering), is substituted by a glutamate in AKR1D1. We find that the AKR1D1 E120H mutant abolishes 5β-reductase activity and introduces HSD activity. However, the E120H mutant unexpectedly favors dihydrosteroids with the 5α-configuration and, unlike most of the AKR1C enzymes, shows a dominant stereochemical preference to act as a 3β-HSD as opposed to a 3α-HSD. The catalytic efficiency achieved for 3β-HSD activity is higher than that observed for any AKR to date. High resolution crystal structures of the E120H mutant in complex with epiandrosterone, 5β-dihydrotestosterone, and Δ(4)-androstene-3,17-dione elucidated the structural basis for this functional change. The glutamate-histidine substitution prevents a 3-ketosteroid from penetrating the active site so that hydride transfer is directed toward the C3 carbonyl group rather than the Δ(4)-double bond and confers 3β-HSD activity on the 5β-reductase. Structures indicate that stereospecificity of HSD activity is achieved because the steroid flips over to present its α-face to the A-face of NADPH. This is in contrast to the AKR1C enzymes, which can invert stereochemistry when the steroid swings across the binding pocket. These studies show how a single point mutation in AKR1D1 can introduce HSD activity with unexpected configurational and stereochemical preference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号