首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Distribution of apolipoprotein A-IV in human plasma   总被引:9,自引:0,他引:9  
Human apoA-IV was purified from delipidated urinary chylomicrons. Monospecific antibodies were raised in rabbits and used to develop a double antibody radioimmunoassay (RIA). Displacement of 125I-labeled apoA-IV by plasma or purified chylomicron apoA-IV resulted in parallel displacement curves, indicating that apoA-IV from both sources share common antigenic determinants. The apoA-IV level in plasma from normal healthy fasting male subjects (n = 5) was 37.4 +/- 4.0 mg/dl, while fat-feeding increased the level to 49.1 +/- 7.9 mg/dl (P less than 0.05) at 4 hr. The apoA-IV level in plasma from abetalipoproteinemic fasting subjects was 13.7 +/- 3.1 mg/dl (n = 5). Plasma from a single fasting Tangier subject showed a reduced apoA-IV level of 21.1 mg/dl. The distribution of apoA-IV in fasting and postprandial plasma was determined by 6% agarose gel chromatography. Fifteen to 25% of plasma apoA-IV eluted in the region of plasma high density lipoprotein (HDL), with the remainder eluting in subsequent column fractions. In abetalipoproteinemic plasma this HDL fraction is reduced and lacks apoA-IV, suggesting that at least some of the apoA-IV on these particles is normally derived from triglyceride-rich lipoproteins. Lipemic plasma from a fat-fed subject showed a small rise (3%) in chylomicron-associated apoA-IV. Gel-filtered HDL and subsequent apoA-IV-containing fractions were subjected to 4-30% polyacrylamide gradient gel electrophoresis (4/30 GGE), and apoA-IV was identified by immunolocalization following transfer of proteins to nitrocellulose paper. In normal plasma apoA-IV was localized throughout all HDL fractions. In addition, normal plasma contained apoA-IV localized in a small particle (diameter 7.8-8.0 nm). This particle also contained apoA-I and lipid. A markedly elevated saturated to unsaturated cholesteryl ester ratio was present in gel-filtered plasma fractions containing small HDL, suggesting an intracellular origin of these particles. In abetalipoproteinemic plasma apoA-IV was absent from all HDL fractions except for the small HDL particles, suggesting that they are not derived from the surface of triglyceride-rich particles. All plasmas contained free apoA-IV. In contrast to gel-filtered plasma, lipoprotein subfractions of fasted normal plasma prepared in the ultracentrifuge primarily contained apoA-IV in the d greater than 1.26 g/ml fraction, suggesting an artifactual redistribution of the apolipoprotein during centrifugation. Overall, these data suggest that apoA-IV secretion into plasma is increased with fat feeding, and that apoA-IV normally exists as both a free apolipoprotein and in association with HDL particles.  相似文献   

2.
We have investigated the binding of human apolipoprotein A-IV (apo A-IV) to human hepatocellular plasma membranes. Addition of increasing concentrations of radiolabeled apo A-IV to hepatic plasma membranes, in the presence and absence of a 25-fold excess of unlabeled apo A-IV, revealed saturation binding to the membranes with a KD of 154 nM and a binding maximum of 1.6 ng/microgram of membrane protein. The binding was temperature-insensitive, partially calcium-dependent, abolished when apo A-IV was denatured by guanidine hydrochloride or when the membranes were treated with Pronase and decreased when apo A-IV was incorporated into phospholipid/cholesterol proteoliposomes. In displacement studies using purified apolipoproteins and isolated lipoproteins, only unlabeled apo A-IV, apo A-I and high-density lipoproteins effectively competed with radiolabeled apo A-IV for membrane binding sites. We conclude that human apo A-IV exhibits high-affinity binding to isolated human hepatocellular plasma membranes which is saturable, reversible and specific.  相似文献   

3.
4.
We have isolated and characterised A-IV apolipoprotein (apo-A-IV) from human lymph and plasma by immunoabsorbance chromatography and two-dimensional electrophoresis. Two different apo-A-IV-containing lipoproteins were isolated from four different sources, human lymph triglyceride-rich fraction (TRL), lymph lipoprotein-deficient fraction (LDF), plasma high-density lipoprotein (HDL), and plasma lipoprotein-deficient fraction (LDF). The lipoprotein complexes obtained from lymph TRL and plasma HDL were similar and contained apo-A-IV, apo-A-I, and small molecular weight peptides (apo-C or -A-II). The second lipoprotein complex was isolated from lymph LDF and plasma LDF, and contained apo-A-IV, apo-A-I, and a peptide of Mr = 59,000. The lipid composition of the lipoprotein complexes varied according to the source: triglyceride predominating in lymph TRL and phospholipid and cholesteryl ester from the other sources. Free cholesterol was conspicuously present in very small amounts. Using two-dimensional electrophoresis and immunoblotting techniques, eleven isoproteins of apo-A-IV were identified (pI-4.98, 5.06, 5.10, 5.15, 5.20, 5.22, 5.25, 5.30, 5.34, 5.42, and 5.48). The isoprotein pattern of lymph TRL and plasma HDL was similar, but that of lymph and plasma LDF were different patterns. These results suggest that apo-A-IV associated with d less than 1.21 lipoproteins and apo-A-IV present in LDF may be in metabolically separate lipoproteins and may have different physiological roles.  相似文献   

5.
Recently, we determined the apolipoprotein E (apoE) phenotype distribution in 2,000 randomly selected 35-year-old male individuals by slab gel isoelectric focusing of delipidated plasma samples, followed by immunoblotting using anti-apoE antiserum. These blots have been successfully re-used for immunovisualization of apoA-IV isoelectric focusing patterns. In a population sample of 1,393 individuals, four distinct apoA-IV isoforms were detected, encoded by the alleles A-IV*0, A-IV*1, A-IV*2, and A-IV*3 with gene frequencies of 0.002, 0.901, 0.079, and 0.018, respectively. The mean of plasma cholesterol, triglyceride, apoB and E levels did not differ significantly among the different apoA-IV phenotype groups. For these lipoprotein parameters, less than 0.1% of the total phenotypic variance could be accounted for by the APOA-IV gene locus. Our results did not show any effect of apoA-IV polymorphism on plasma apoA-I levels nor could we find any correlation between plasma levels of apoA-I and apoA-IV within the different apoA-IV phenotype groups. The plasma level of apoA-IV in subjects bearing the A-IV*3 allele is significantly lower than in subjects without the A-IV*3 allele (5 mg/dl versus 14 mg/dl). We therefore conclude that, in contrast to the apoE polymorphism, the polymorphism at the APOA-IV locus does not influence any of the levels of the lipoprotein parameters considered except apoA-IV.  相似文献   

6.
Apolipoprotein (apo)A-IV is synthesized in the small intestine during fat absorption and is incorporated onto the surface of nascent chylomicrons. In circulation, apoA-IV is displaced from the chylomicron surface by high density lipoprotein-associated C and E apolipoproteins; this exchange is critical for activation of lipoprotein lipase and chylomicron remnant clearance. The variant allele A-IV-2 encodes a Q360H polymorphism that increases the lipid affinity of the apoA-IV-2 isoprotein. We hypothesized that this would impede the transfer of C and E apolipoproteins to chylomicrons, and thereby delay the clearance of postprandial triglyceride-rich lipoproteins. We therefore measured triglycerides in plasma, S(f) > 400 chylomicrons, and very low density lipoproteins (VLDL) in 14 subjects heterozygous for the A-IV-2 allele (1/2) and 14 subjects homozygous for the common allele (1/1) who were fed a standard meal containing 50 gm fat per m(2) body surface area. All subjects had the apoE-3/3 genotype. Postprandial triglyceride concentrations in the 1/2 subjects were significantly higher between 2;-5 h in plasma, chylomicrons, and VLDL, and peaked at 3 h versus 2 h for the 1/1 subjects. The area under the triglyceride time curves was greater in the 1/2 subjects (plasma, P = 0.045; chylomicrons, P = 0.027; VLDL, P = 0.063). A post-hoc analysis of the frequency of the apoA-IV T347S polymorphism suggested that it had an effect on triglyceride clearance antagonistic to that of the A-IV-2 allele. We conclude that individuals heterozygous for the A-IV-2 allele display delayed postprandial clearance of triglyceride-rich lipoproteins.  相似文献   

7.
8.
Fetal, newborn, and suckling piglets were used to study the intestinal expression of the apoA-IV gene in the immature mammal. Swine apoA-IV (42 kD) was isolated from fat-fed piglet lipoprotein-deficient plasma by adsorption to Intralipid followed by preparative sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and electroelution. Rabbit anti-swine apoA-IV antibodies were raised, and apoA-IV was immunoprecipitated from small intestinal homogenates after in vivo radiolabeling with [3H]leucine. ApoA-IV synthesis was expressed as a percentage of total protein synthesis from trichloroacetic acid-precipitable counts. Fetal (40 day gestation) whole small intestine synthesis was 2.1%. Postnatally, 2-day-old newborn piglets given high triglyceride and low triglyceride duodenal infusions, as well as bile diversion, were studied. Synthesis rates in jejunal mucosa in all groups were comparable to the fetal whole intestinal value except in the jejunum of the high-triglyceride group, where synthesis was increased sevenfold. In 1- to 2-week-old fasting, cream-fed, and bile-diverted piglets synthesis was again unchanged except in the fat-fed jejunum, where synthesis doubled. Ileal synthesis rates in newborn and suckling animals were lower than jejunal rates and did not increase with lipid absorption or decrease with bile diversion. Northern blot hybridization of intestinal RNA samples from the newborn groups with an authentic cross-hybridizing human apoA-IV cDNA probe revealed a 1.8 kb signal which was strongest in the high-triglyceride jejunal samples. Slot blot hybridization showed eightfold increased apoA-IV mRNA levels in high-triglyceride jejunal samples as compared to low-triglyceride and bile-diverted jejunum with no differences in beta actin mRNA abundance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We have detected three unique apolipoprotein A-IV (apoA-IV) charge isoforms in strains of commensal mice. The cDNA sequences for one representative of each isoform (Mus domestesticus strains C57BL/6J and 129/J and Mus castaneus) revealed a polymorphism within a series of four imperfect repeats encoding the sequence Glu-Gln-Ala/Val-Gln. Insertions or deletions of 12 nucleotides within this repetitive region have given rise to three genotypes characterized by three (129), four (C57BL/6), or five (M. castaneus) copies of the repeat unit. To ascertain the extent of this variation among other species of the Mus genus, we sequenced this region of apoA-IV cDNAs from eight additional M. domesticus inbred strains and from five wild-derived Mus species. All eight additional M. domesticus strains examined had four repeat units, as found in C57BL/6. Among wild-derived mice, however, one species (Mus spretus) had three repeats, two species (Mus cookii and Mus cervicolor) had four repeats, and two species (Mus hortulanus and Mus minutoides) had five repeats. A lack of correlation between the number of repeat units and the phylogeny of Mus species indicates that independent mutations may have occurred throughout the evolution of specific mouse lineages. We suggest that the repetitive nature of the polymorphic sequence may predispose this region to slippage errors during DNA replication, resulting in frequent deletion/insertion mutations.  相似文献   

10.
Apolipoprotein A-IV (apo A-IV) functions in conjunction with other apolipoproteins to form lipoprotein particles which are involved in lipid homeostasis. In this report we present the nucleotide sequence of the mouse apo A-IV gene and demonstrate its induction in the liver by chronically high dietary lipid. The apo A-IV gene consists of three exons and two introns. The introns separate evolutionarily conserved and functional polypeptide domains. Intron 1 divides most of the apo A-IV signal peptide from the amino terminus of the mature plasma protein. The second intron separates a highly evolutionarily conserved, variant amphipathic peptide repeat from the remainder of the mature apo A-IV protein. The 5' flanking region has several interesting features. The apo A-IV gene has variant TATA and CAT box sequences, TTTAAA and CCAACG, respectively. There are five G-rich direct repeats of 10 nucleotides and a short inverted repeat in the 5' flanking region. We speculate that these sequence elements in the 5' flanking region may be involved in the regulation of apo A-IV gene expression. We also show that chronically high dietary lipid induces liver apo A-IV levels 10-fold in C57BL/6 mice, a strain susceptible to atherosclerotic lesions, while we observed no induction in nonsusceptible BALB/c and C3H mice.  相似文献   

11.
A method for measuring human apolipoprotein A-IV has been developed using the competitive enzyme-linked immunosorbent assay (ELISA) system. The assay described is relatively easy, rapid, and inexpensive to perform, uses convenient dilutions of plasma (1/8-1/32) but is sensitive enough to quantitate the apoA-IV content of lipoproteins following gel filtration of small (0.3-0.5 ml) volumes of plasma. The working range is 100-600 ng of apoA-IV per 50-microliters sample and the intra- and interassay coefficients of variations are 7.5 and 10.2% (means), respectively. The mean apoA-IV concentration of 100 subjects was found to be 16.4 +/- 5.4 mg/dl. The assay can be performed on untreated plasma samples which may be stored frozen (-20 degrees C) for up to 2 months.  相似文献   

12.
We have identified a hitherto genetic polymorphism of apolipoprotein A-IV (apo-IV). The molecular basis for this polymorphism is an A to G substitution at nucleotide 1687 resulting in an Asn to Ser change of amino acid 127. The frequencies of the two apoA-IV alleles (designated apoA-IV127Asn and apoA-IV127Ser), determined by Hinc II restriction analysis of PCR amplified exon three of the apoA-IV gene, were 0.788 and 0.212, respectively, in a Finnish population sample. Allele frequencies of another polymorphism due to a Thr to Ser substitution at amino acid 347 were determined using Hinf I restriction analysis. The allele frequencies were 0.823 for apoA-IV347Thr and 0.177 for apoA-IV247Ser. None of the apoA-IV polymorphisms (apoA-IV127:Asn→Ser, apoA-IV347:Thr→Ser and apoA-IV360:Gln→His) had any effect of plasma lipid and lipoprotein concentrations in cohorts of dyslipidemic men and in a population sample of normolipidemic controls. There was also no association between the history of previous myocardial infarction and any of the apoA-IV alleles.  相似文献   

13.
We have compared the physical properties and lipid affinity of apolipoprotein A-IV isolated from lymph chylomicrons and from lipoprotein-depleted plasma. Lymph and plasma apolipoprotein A-IV demonstrated distinctly different charge properties as assessed by anion exchange chromatography and isoelectric focusing. These differences were not attributable to disparities of amino acid or sialic acid content. Lymph apolipoprotein A-IV displayed a significantly higher affinity than plasma apolipoprotein A-IV for particles of a phospholipid-triglyceride emulsion. We conclude that the charge properties of human lymph and plasma apolipoprotein A-IV may determine conformational states which alter its ability to bind to the surface of lipid particles.  相似文献   

14.
The primary structure of human apolipoprotein A-IV   总被引:2,自引:0,他引:2  
Human apolipoprotein (apo) A-IV was purified from chylous ascites fluid. Proteolytic peptides produced by trypsin and Staphylococcus aureus V8 proteinase digestions were purified by high-performance liquid chromatography and sequenced. Human apoA-IV contains 376 amino acid residues. The peptide-derived sequence generally matches two previously reported DNA-derived amino acid sequences except for discrepancies in five positions. In order to examine these discrepancies further, one complete apoA-IV cDNA clone and another partial clone were sequenced. Comparison of all the available information indicates that the peptide-derived sequence reported here is accurate. Sequencing errors probably account for some of the discrepancies between the two primary sequences predicted by earlier nucleotide analyses. In certain positions, however, bona fide sequence heterogeneity or cloning artifact cannot be excluded.  相似文献   

15.
Genetic polymorphism of human apolipoprotein A-IV has been detected by means of a simple and rapid one-dimensional isoelectric-focusing technique followed by immunoblotting. In plasma samples of normal U.S. whites and blacks, the specificity and sensitivity of the technique have been demonstrated to elucidate biochemical and genetic variation present in the APO A-IV molecule. Two common alleles, APO A-IV 1 and APO A-IV 2, have been observed with respective frequencies of .909 and .088 in whites and .961 and .035 in blacks. In addition, the products of two rare alleles designated APO A-IV 3 and APO A-IV 4 also have been observed. Family studies show autosomal codominant transmission of four alleles coded by a single structural locus.  相似文献   

16.
Conformational properties of human and rat apolipoprotein A-IV   总被引:1,自引:0,他引:1  
Apolipoprotein A-IV has been isolated from four sources: human and rat lymph and plasma. Conformational properties of the rat and human apoA-IV in solution and denaturation changes induced by guanidine hydrochloride (Gnd X HCl) were studied using circular dichroic and fluorescence spectroscopy, and analytical sedimentation equilibrium ultracentrifugation. We have shown that both rat and human apoA-IV have similar secondary structure with negative maxima in the circular dichroic spectra at 222 nm and 207 nm. Furthermore, we have found no significant difference in the alpha-helical content of the apoA-IV from rat plasma (33%), rat lymph (37%), human plasma (35%), or human lymph (35%). Our denaturation studies with Gnd X HCl demonstrated reversibility and the fact that each apoA-IV had a tendency to self-associate in solution and the self-association could be disrupted by low concentrations of Gnd X HCl (less than or equal to 0.4 M). Unfolding of the secondary structure of each apoA-IV occurred at higher concentrations of Gnd X HCl (midpoint less than or equal to 1.0 M). The apparent free energy of denaturation of the four apoA-IV proteins calculated from changes in the circular dichroic spectra upon addition of increasing concentrations of Gnd X HCl varied in a range from 3.0 to 4.2 kcal/mol. The fluorescence experiments revealed that apoA-IV from all sources had a maximum fluorescence emission at 342.5 nm, which shifted to the red region upon addition of increasing concentrations of Gnd X HCl.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Summary We have investigated whether the size heterogeneity of the human apolipoprotein (a) [apo(a)] is due to differences in the number of plasminogen kringle 4-like repeat units present in the different alleles. Using the Southern blot hybridization technique and a DNA probe for the kringle 4 domain of plasminogen, we have observed that in 31 different individuals a 5.8-kb PvuII restriction fragment band varies widely in intensity relative to other bands. A strong correlation (r=0.76, P<0.001) was found between apo(a) protein size and the variation in intensity of the detected restriction fragment band. We confirmed this correlation in a large family where the parents are heterozygous for the apo(a) protein size isoforms. The specificity of the 5.8-kb band was established by using an apo(a)-specific oligonucleotide. These correlations strongly suggest that the observed size heterogeneity in apo(a) protein is due to different numbers of copies of the kringle 4 sequence in the apo(a) glycoprotein gene.  相似文献   

18.
Effects of phospholipid on the structure of human apolipoprotein A-IV   总被引:1,自引:0,他引:1  
We have used fluorescence and circular dichroism spectroscopy to investigate the effect of phospholipid on the structure and molecular stability of human apolipoprotein A-IV (apo-A-IV). Binding of apo-A-IV to egg phosphatidylcholine vesicles was rapid and did not cause release of encapsulated 6-carboxyfluorescein. Fluorometric titration established that apo-A-IV bound to the vesicles with an association constant of 1.36 x 10(6) liters/mol and a binding maximum of 2 molecules per vesicle. Binding of apo-A-IV to the vesicle surface caused a progressive increase in alpha helicity from 43% at baseline to 83% at saturation; denaturation studies showed that the free energy of stabilization of binding was 6.31 kcal/mol. Fluorescence quenching studies revealed that binding of apo-A-IV to the vesicles was associated with a dramatic decrease in the fractional exposure of tyrosine to iodide, and a decrease in the efficiency of intramolecular tyrosine-tryptophan energy transfer. These findings suggest that the binding of apo-A-IV to the vesicle surface may involve a relaxation of the globular protein conformation in which the tyrosine containing alpha-helical domains surrounding the tryptophan "unfold" and reorient their hydrophobic faces toward the phospholipid monolayer, with a consequent induction of additional alpha-helical structure. However, our data also suggest that apo-A-IV does not penetrate deeply into the region of the phospholipid fatty acyl chains, but rather sits higher in the monolayer, intercalated between the charged phospholipid head groups. This characteristic may determine the labile interaction of apo-A-IV with high density lipoproteins.  相似文献   

19.
Genetic polymorphism of the human ICOS gene   总被引:4,自引:0,他引:4  
Inducible costimulator (ICOS) is a novel receptor belonging to the same family as CD28 and CTLA4, which regulate T-lymphocyte activation in the immune response. The genes for these molecules are located adjacent to each other on Chromosome 2q33. Many autoimmune diseases have been found to be genetically linked to or associated with genetic markers near the CTLA4 gene. However, as all three genes are closely linked and have related functions, it is possible that the findings could be explained by variation in CD28 or ICOS. Few data on genetic variation in the ICOS gene are available. We sequenced the ICOS gene in 13 healthy unrelated individuals and found eight single nucleotide polymorphisms. One was located in the first intron, and the others in the untranslated region of the last exon. The allele frequencies and linkage disequilibrium were determined from a population sample of 63 Finnish individuals. The results show that the ICOS gene is polymorphic, but no variation in the coding sequence was detected, implying that the genetic linkage of this gene region to autoimmune diseases may not result from structural variation in the ICOS molecule. These polymorphisms, however, should be useful in genetic studies of this candidate gene.  相似文献   

20.
Both cDNA and genomic clones encoding human apolipoprotein (apo-) A-IV have been isolated and characterized. Southern blot analyses of apo-A-IV gene-containing cosmids revealed that the apo-A-IV gene is linked to the apo-A-I and apo-C-III genes within a 20-kilobase span of chromosome 11 DNA. The apo-A-IV gene is located about 14 kilobases downstream from the apo-A-I gene in the same orientation, with the apo-C-III gene located between them in the opposite orientation. The nucleotide sequence of the corresponding human apo-A-IV mRNA was determined, and the derived amino acid sequence showed that mature plasma apo-A-IV contained 376 residues. Throughout most of its length, human apo-A-IV was found to contain multiple tandem 22-residue repeated segments having amphipathic, alpha-helical potential. Amino acid substitutions within these homologous segments were generally conservative in nature. A comparison of the sequences of human and rat apo-A-IV revealed a 79% identity of amino acid positions in the amino-terminal 60 residues and a 58% identity in the remainder of the sequences, with the human protein containing 5 extra residues near the carboxyl terminus. An examination of the distribution of apo-A-IV mRNA in different tissues of the rat, marmoset, and man showed that apo-A-IV mRNA was abundant in both the liver and small intestine of the rat, but abundant in both the liver and small intestine of the marmoset and man. It was expressed in only trace amounts in all other tissues that were examined. These findings on the structure and expression of apo-A-IV and the close linkage of its gene to those of apo-A-I and apo-C-III suggest a regulatory relationship between the three genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号