首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In team sports, sensorimotor impairments resulting from previous injuries or muscular fatigue have been suggested to be factors contributing to an increased injury risk. Although it has been widely shown that physical fatigue affects static postural sway, it is still questionable as to what extent these adaptations are relevant for dynamic, sports-related situations. The objective of this study was to determine the effects of whole-body and localized fatigue on postural control in stable and unstable conditions. Nineteen male team handball players were assessed in 2 sessions separated by 1 week. Treadmill running and single-leg step-up exercises were used to induce physical fatigue. The main outcome measures were center of pressure (COP) sway velocity during a single-leg stance on a force plate and maximum reach distances of the star excursion balance test (SEBT). The COP sway velocity increased significantly (p < 0.05) after general (+47%) and localized fatigue (+10%). No fatigue effects were found for the SEBT. There were no significant correlations between COP sway velocity and SEBT mean reach in any condition. The results showed that although fatigue affects static postural control, sensorimotor mechanisms responsible for regaining dynamic balance in healthy athletes seem to remain predominantly intact. Thus, our data indicate that the exclusive use of static postural sway measures might not be sufficient to allow conclusive statements regarding sensorimotor control in the noninjured athlete population.  相似文献   

2.
Models of balance control can aid in understanding the mechanisms by which humans maintain balance. A balance control model of quiet upright stance based on an optimal control strategy is presented here. In this model, the human body was represented by a simple single-segment inverted pendulum during upright stance, and the neural controller was assumed to be an optimal controller that generates ankle control torques according to a certain performance criterion. This performance criterion was defined by several physical quantities relevant to sway. In order to accurately simulate existing experimental data, an optimization procedure was used to specify the set of model parameters to minimize the scalar error between experimental and simulated sway measures. Thirty-two independent simulations were performed for both younger and older adults. The model's capabilities, in terms of reflecting sway behaviors and identifying aging effects, were then analyzed based on the simulation results. The model was able to accurately predict center-of-pressure-based sway measures, and identify potential changes in balance control mechanisms caused by aging. Correlations between sway measures and model parameters are also discussed.  相似文献   

3.
A 3D balance control model of quiet upright stance is presented, based on an optimal control strategy, and evaluated in terms of its ability to simulate postural sway in both the anterior-posterior and medial-lateral directions. The human body was represented as a two-segment inverted pendulum. Several assumptions were made to linearise body dynamics, for example, that there was no transverse rotation during upright stance. The neural controller was presumed to be an optimal controller that generates ankle control torque and hip control torque according to certain performance criteria. An optimisation procedure was used to determine the values of unspecified model parameters including random disturbance gains and sensory delay times. This model was used to simulate postural sway behaviours characterised by centre-of-pressure (COP)-based measures. Confidence intervals for all normalised COP-based measures contained unity, indicating no significant differences between any of the simulated COP-based measures and corresponding experimental references. In addition, mean normalised errors for the traditional measures were 相似文献   

4.
A 3D balance control model of quiet upright stance is presented, based on an optimal control strategy, and evaluated in terms of its ability to simulate postural sway in both the anterior–posterior and medial–lateral directions. The human body was represented as a two-segment inverted pendulum. Several assumptions were made to linearise body dynamics, for example, that there was no transverse rotation during upright stance. The neural controller was presumed to be an optimal controller that generates ankle control torque and hip control torque according to certain performance criteria. An optimisation procedure was used to determine the values of unspecified model parameters including random disturbance gains and sensory delay times. This model was used to simulate postural sway behaviours characterised by centre-of-pressure (COP)-based measures. Confidence intervals for all normalised COP-based measures contained unity, indicating no significant differences between any of the simulated COP-based measures and corresponding experimental references. In addition, mean normalised errors for the traditional measures were < 8%, and those for most statistical mechanics measures were ~3–66%. On the basis these results, the proposed 3D balance control model appears to have the ability to accurately simulate 3D postural sway behaviours.  相似文献   

5.
The aim of study was to investigate static balance control in wrestlers (n = 31) and effects of fatigue on postural regulation in two position: bipedal stance and squat position with open eyes prior to and 2 min after bicycle PWC(170) test. A force platform ("Ritm". Russia) was used to determine static balance control. We found a minimum difference in postural control between wrestlers and controls prior to exercise in bipedal stance. In squat position linear and angular (all p < 0.001) sway velocity of centre of pressure were lower in wrestlers and were negatively correlated to PWC(170) index (r = 0.454 and r = 455, p < 0.001 with linear and angular sway velocities respectively) indicating that 20% dispersion of sway velocities in static strain position may be determined to physical working capacity. After PWC(170) test all parameters of sway were increased in both groups both in bipedal stance (p < 0.01) and squat position (p < 0.001) indicating an important role of muscular fatigue in the decrease of postural stability in both groups. Linear velocity after PWC(170) in bipedal stance increased to an equal extent in both groups but the increases of velocities of sway of centre of pressure in squat position were lower in athletes (ANOVA, p = 0.037 for linear and p = 0.008 for angular sway velocities respectively) and were negatively correlated to an extent of recovery of heart rate after PWC(170) indicating some contribution (6.5-14.2% of dispersion of linear and angular sway velocities) of an recovery rate to maintenance of a high level of postural stability in an static strain position in wrestlers during physical fatigue.  相似文献   

6.
This paper investigated the organization of the postural control system in human upright stance. To this aim the shared variance between joint and 3D total body center of mass (COM) motions was analyzed using multivariate canonical correlation analysis (CCA). The CCA was performed as a function of established models of postural control that varied in their joint degrees of freedom (DOF), namely, an inverted pendulum ankle model (2DOF), ankle-hip model (4DOF), ankle-knee-hip model (5DOF), and ankle-knee-hip-neck model (7DOF). Healthy young adults performed various postural tasks (two-leg and one-leg quiet stances, voluntary AP and ML sway) on a foam and rigid surface of support. Based on CCA model selection procedures, the amount of shared variance between joint and 3D COM motions and the cross-loading patterns we provide direct evidence of the contribution of multi-DOF postural control mechanisms to human balance. The direct model fitting of CCA showed that incrementing the DOFs in the model through to 7DOF was associated with progressively enhanced shared variance with COM motion. In the 7DOF model, the first canonical function revealed more active involvement of all joints during more challenging one leg stances and dynamic posture tasks. Furthermore, the shared variance was enhanced during the dynamic posture conditions, consistent with a reduction of dimension. This set of outcomes shows directly the degeneracy of multivariate joint regulation in postural control that is influenced by stance and surface of support conditions.  相似文献   

7.
Visually-induced illusions of self-motion (vection) can be compelling for some people, but they are subject to large individual variations in strength. Do these variations depend, at least in part, on the extent to which people rely on vision to maintain their postural stability? We investigated by comparing physical posture measures to subjective vection ratings. Using a Bertec balance plate in a brightly-lit room, we measured 13 participants'' excursions of the centre of foot pressure (CoP) over a 60-second period with eyes open and with eyes closed during quiet stance. Subsequently, we collected vection strength ratings for large optic flow displays while seated, using both verbal ratings and online throttle measures. We also collected measures of postural sway (changes in anterior-posterior CoP) in response to the same visual motion stimuli while standing on the plate. The magnitude of standing sway in response to expanding optic flow (in comparison to blank fixation periods) was predictive of both verbal and throttle measures for seated vection. In addition, the ratio between eyes-open and eyes-closed CoP excursions during quiet stance (using the area of postural sway) significantly predicted seated vection for both measures. Interestingly, these relationships were weaker for contracting optic flow displays, though these produced both stronger vection and more sway. Next we used a non-linear analysis (recurrence quantification analysis, RQA) of the fluctuations in anterior-posterior position during quiet stance (both with eyes closed and eyes open); this was a much stronger predictor of seated vection for both expanding and contracting stimuli. Given the complex multisensory integration involved in postural control, our study adds to the growing evidence that non-linear measures drawn from complexity theory may provide a more informative measure of postural sway than the conventional linear measures.  相似文献   

8.
To evaluate postural control and performance in subjects with Down syndrome (SwDS), we measured postural sway (COP) in quiet stance in four 20-second tests: with eyes open or closed and on hard or foam surface. Ten SwDS and eleven healthy subjects participated, aged 29.8 (4.8) and 28.4 (3.9), respectively. The time-series recorded with the sampling rate of 100 Hz were used to evaluate postural performance (COP amplitude and mean velocity) and strategies (COP frequency, fractal dimension and entropy). There were no intergroup differences in the amplitude except the stance on foam pad with eyes open when SwDS had larger sway. The COP velocity and frequency were larger in SwDS than controls in all trials on foam pad. During stances on the foam pad SwDS increased fractal dimension showing higher complexity of their equilibrium system, while controls decreased sample entropy exhibiting more conscious control of posture in comparison to the stances on hard support surface. This indicated that each group used entirely different adjustments of postural strategies to the somatosensory challenge. It is proposed that the inferior postural control of SwDS results mainly from insufficient experience in dealing with unpredictable postural stimuli and deficit in motor learning.  相似文献   

9.
While occupational back-support exoskeletons (BSEs) are considered as potential workplace interventions, BSE use may compromise postural control. Thus, we investigated the effects of passive BSEs on postural balance during quiet upright stance and functional limits of stability. Twenty healthy adults completed trials of quiet upright stance with differing levels of difficulty (bipedal and unipedal stance; each with eyes open and closed), and executed maximal voluntary leans. Trials were done while wearing two different BSEs (SuitX™, Laevo™) and in a control (no-BSE) condition. BSE use significantly increased center-of-pressure (COP) median frequency and mean velocity during bipedal stance. In unipedal stance, using the Laevo™ was associated with a significant improvement in postural balance, especially among males, as indicated by smaller COP displacement and sway area, and a longer time to contact the stability boundary. BSE use may affect postural balance, through translation of the human + BSE center-of-mass, restricted motion, and added supportive torques. Furthermore, larger effects of BSEs on postural balance were evident among males. Future work should further investigate the gender-specificity of BSE effects on postural balance and consider the effects of BSEs on dynamic stability.  相似文献   

10.
A novel approach to quantifying postural stability in single leg stance is assessment of time-to-boundary (TTB) of center of pressure (COP) excursions. TTB measures estimate the time required for the COP to reach the boundary of the base of support if it were to continue on its instantaneous trajectory and velocity, thus quantifying the spatiotemporal characteristics of postural control. Our purposes were to examine: (a) the intrasession reliability of TTB and traditional COP-based measures of postural control, and (b) the correlations between these measures. Twenty-four young women completed three 10-second trials of single-limb quiet standing on each limb. Traditional measures included mean velocity, standard deviation, and range of mediolateral (ML) and anterior-posterior (AP) COP excursions. TTB variables were the absolute minimum, mean of minimum samples, and standard deviation of minimum samples in the ML and AP directions. The intrasession reliability of TTB measures was comparable to traditional COP based measures. Correlations between TTB and traditional COP based measures were weaker than those within each category of measures, indicating that TTB measures capture different aspects of postural control than traditional measures. TTB measures provide a unique method of assessing spatiotemporal characteristics of postural control during single limb stance.  相似文献   

11.
Mechanical properties of the muscle-tendon unit change with aging, but it is not known how these modifications influence the control of lower leg muscles during upright stance. In this study, young and elderly adults stood upright on a force platform with and without vision while muscle architecture and myotendinous junction movements (expressed relative to the change in the moment on the x-axis of the force platform) were recorded by ultrasonography and muscle activity by electromyography. The results show that the maximal amplitude of the sway in the antero-posterior direction was greater in elderly adults (age effect, P < 0.05) and was accompanied by an increase in lower leg muscle activity compared with young adults. Moreover, the data highlight that fascicles shorten during forward sway and lengthen during backward sways but more so for young (-4 ± 3 and -4 ± 3 mm/Nm, respectively) than elderly adults (-0.7 ± 3 and 0.8 ± 3 mm/Nm, respectively; age × sway, P < 0.001). Concurrently, the pennation angle increased and decreased during forward and backward sways, respectively, with greater changes in young than elderly adults (age × sway, P < 0.001). In contrast, no significant differences were observed between age groups for tendon lengthening and shortening during sways. The results indicate that, compared with young, elderly adults increase the stiffness of the muscular portion of the muscle-tendon unit during upright stance that may compensate for the age-related decrease in tendon stiffness. These observations suggest a shift in the control strategy used to maintain balance.  相似文献   

12.
Upright stance on a balance board is a skill requiring complex rearrangement of the postural control. Despite the large use of these boards in training the standing posture, a comprehensive analysis of the learning process underlying the control of these devices is lacking. In this paper learning to maintain a stable stance on a multiaxial oscillating board was studied by analyzing performance changes over short and long periods. Healthy participants were asked to keep the board orientation as horizontal as possible for 20 sec, performing two sessions of 8 trials separated by 15-min pause. Memory consolidation was tested one week later. Amplitude and variability of the oscillations around horizontal plane and area and sway path of the board displacement decreased rapidly over the first session. The performance was stable during the second session, and retained after 1 week. A similar behavior was observed in the anterior-posterior and medial-lateral directions for amplitude and variability parameters, with less stable balance in the anterior-posterior direction. Approximate entropy and mean power frequency, assessing temporal dynamics and frequency content of oscillations, changed only in the anterior-posterior direction during the retention test. Overall, the ability to stand on a balance board is rapidly acquired, and retained for long time. The asymmetric stability between anterior-posterior and medial-lateral directions replicates a structure observed in other standing stances, suggesting a possible transfer from previous postural experiences. Conversely, changes in the temporal dynamics and the frequency content could be associated with new postural strategies developed later during memory consolidation.  相似文献   

13.
Background and aim: Many people use balance training as a rehabilitation or habilitation modality. Although the time course of changes to temporal and spatial aspects of postural sway over the initial weeks of such training is as yet unclear. Particularly, we sought to explore the effects of training on sway during a dynamic task of stance on an ultra-compliant surface. Such a task provides different mechanical, and thus sensorimotor, constraints compared to stance on a solid surface.

Methods: Center of pressure (COP) was measured on an ultra-compliant surface atop a force plate at the start of each of 18?days of a 6-week balance training program. Range and standard deviation quantified amount of sway while velocity and Lyapunov exponent (LyE) quantify speed and rhythmicity of sway, respectively.

Results: Trend analysis indicated quadratic changes in COP range and standard deviation, with initial reductions followed by returns to initial values by the end of training. Linear reduction of movement velocity and LyE continued through the duration of the program. Reduced LyE indicates regular (self-similar) structure of the COP path.

Conclusions: These results provide insight to the developing postural strategy necessary for maintaining upright stance within the dynamics created by interactions with an ultra-compliant surface. Participants showed sensitivity to surface properties, moving both more slowly and with a more regular movement pattern; suggesting that they were able to develop a more feed-forward approach to the maintenance of balance by exploiting task constraints.  相似文献   

14.
Modern methods of assessing standing balance such as wavelet and entropy analysis could provide insight into postural control mechanisms in clinical populations. The aim of this study was to examine what effect anterior cruciate ligament reconstruction (ACLR) has on traditional and modern measures of balance. Ninety subjects, 45 who had undergone ACLR and 45 matched controls, performed single leg static standing balance tests on their surgical or matched limb on a Nintendo Wii Balance Board. Data were analysed in the anterior–posterior axis of movement, which is known to be affected by ACLR. The traditional measures of path velocity, amplitude and standard deviation were calculated in this plane. Additionally, sample entropy and discrete wavelet transform derived assessment of path velocity in four distinct frequency bands related to (1) spinal reflexive loops and muscle activity, (2) cerebellar, (3) vestibular, and (4) visual mechanisms of postural control were derived. The ACLR group had significantly increased values in all traditional measures and all four frequency bands. No significant difference was observed for sample entropy. This indicated that whilst postural sway was amplified in the ACLR group, the overall mechanism used by the patient group to maintain balance was similar to that of the control group. In conclusion, modern methods of signal analysis may provide additional insight into standing balance mechanisms in clinical populations. Future research is required to determine if these results provide important and unique information which is of benefit to clinicians.  相似文献   

15.
Our purpose was to identify the effect of diminished plantar cutaneous sensation on time-to-boundary (TTB) measures of postural control during double and single limb quiet standing. Thirty-two healthy young adults underwent 10 min of ice immersion of the plantar aspect of the feet prior to balance testing. On a different day, the subjects did not receive this intervention prior to testing. A 2 x 2 vision (eyes open, eyes closed) by sensation (control, hypoesthesia) repeated measures design was used to analyze the TTB measures. In double limb stance, there were significant interactions between sensation and vision for the absolute TTB minimum and the mean of TTB minima in the anteroposterior (AP) direction. There was a significant increase in both measures after sensation was diminished with eyes closed compared to the control, but not with eyes open. In single limb stance, the TTB absolute minimum, the mean of TTB minima in the AP direction, and the standard deviation of TTB minima significantly increased with hypoesthesia regardless of vision. No significant differences were found in the medial-lateral (ML) direction for any of the TTB measures in double or single limb stance. Sensory information from the plantar cutaneous receptors appears to be most important in the maintenance of AP postural control.  相似文献   

16.
We investigated changes in postural sway and its fractions associated with manipulations of the dimensions of the support area. Nine healthy adults stood as quietly as possible, with their eyes open, on a force plate as well as on 5 boards with reduced support area. The center of pressure (COP) trajectory was computed and decomposed into rambling (Rm) and trembling (Tr) trajectories. Sway components were quantified using RMS (root mean square) value, average velocity, and sway area. During standing on the force plate, the RMS was larger for the anterior-posterior (AP) sway components than for the mediolateral (ML) components. During standing on boards with reduced support area, sway increased in both directions. The increase was more pronounced when standing on boards with a smaller support area. Changes in the larger dimension of the support area also affected sway, but not as much as changes in the smaller dimension. ML instability had larger effects on indices of sway compared to AP instability. The average velocity of Rm was larger while the average velocity of Tr was smaller in the AP direction vs. the ML direction. The findings can be interpreted within the hypothesis of an active search function of postural sway. During standing on boards with reduced support area, increased sway may by itself lead to loss of balance. The findings also corroborate the hypothesis of Duarte and Zatsiorsky that Rm and Tr reveal different postural control mechanisms.  相似文献   

17.
Our purpose was to identify the effect of diminished plantar cutaneous sensation on time-to-boundary (TTB) measures of postural control during double and single limb quiet standing. Thirty-two healthy young adults underwent 10 min of ice immersion of the plantar aspect of the feet prior to balance testing. On a different day, the subjects did not receive this intervention prior to testing. A 2 × 2 vision (eyes open, eyes closed) by sensation (control, hypoesthesia) repeated measures design was used to analyze the TTB measures. In double limb stance, there were significant interactions between sensation and vision for the absolute TTB minimum and the mean of TTB minima in the anteroposterior (AP) direction. There was a significant increase in both measures after sensation was diminished with eyes closed compared to the control, but not with eyes open. In single limb stance, the TTB absolute minimum, the mean of TTB minima in the AP direction, and the standard deviation of TTB minima significantly increased with hypoesthesia regardless of vision. No significant differences were found in the medial–lateral (ML) direction for any of the TTB measures in double or single limb stance. Sensory information from the plantar cutaneous receptors appears to be most important in the maintenance of AP postural control.  相似文献   

18.
Poor balance in older persons contributes to a rise in fall risk and serious injury, yet no consensus has developed on which measures of postural sway can identify those at greatest risk of falling. Postural sway was measured in 161 elderly individuals (81.8y±7.4), 24 of which had at least one self-reported fall in the prior six months, and compared to sway measured in 37 young adults (34.9y±7.1). Center of pressure (COP) was measured during 4 minutes of quiet stance with eyes opened. In the elderly with fall history, all measures but one were worse than those taken from young adults (e.g., maximal COP velocity was 2.7× greater in fallers than young adults; p<0.05), while three measures of balance were significantly worse in fallers as compared to older persons with no recent fall history (COP Displacement, Short Term Diffusion Coefficient, and Critical Displacement). Variance of elderly subjects'' COP measures from the young adult cohort were weighted to establish a balance score (“B-score”) algorithm designed to distinguish subjects with a fall history from those more sure on their feet. Relative to a young adult B-score of zero, elderly “non-fallers” had a B-score of 0.334, compared to 0.645 for those with a fall history (p<0.001). A weighted amalgam of postural sway elements may identify individuals at greatest risk of falling, allowing interventions to target those with greatest need of attention.  相似文献   

19.
Certain aspects of balance control change with age, resulting in a slight postural instability. We examined healthy subjects between 20-82 years of age during the quiet stance under static conditions: at stance on a firm surface and/or on a compliant surface with eyes either open or closed. Body sway was evaluated from centre of foot pressure (CoP) positions during a 50 sec interval. The seven CoP parameters were evaluated to assess quiet stance and were analyzed in three age groups: juniors, middle-aged and seniors. The regression analysis showed evident increase of body sway over 60 years of age. We found that CoP parameters were significantly different when comparing juniors and seniors in all static conditions. The most sensitive view on postural steadiness during quiet stance was provided by CoP amplitude and velocity in AP direction and root mean square (RMS) of statokinesigram. New physiological ranges of RMS parameter in each condition for each age group of healthy subjects were determined. Our results showed that CoP data from force platform in quiet stance may indicate small balance impairment due to age. The determined physiological ranges of RMS will be useful for better distinguishing between small postural instability due to aging in contrast to pathological processes in the human postural control.  相似文献   

20.
The objective of the study was to examine the relationship between balance and pitching error in college baseball pitchers. Sixteen college baseball pitchers, 9 National Association of Intercollegiate Athletics (NAIA) and 7 National Collegiate Athletic Association (NCAA) Division III, participated in the study. Balance ability, expressed as average sway velocity (deg.s(-1)), during dominant leg unilateral stance with eyes open and eyes closed was quantified for each subject utilizing the Balance Master System 7.04 (long force plate). Additionally, each subject underwent sensory organization testing on the SMART EquiTest System providing information regarding the effective use of the somatosensory, visual, and vestibular inputs. Pitching error was assessed with a high-speed video camera recorder during spring practice. A JUGS radar gun measured pitch velocity. The mean pitching error was 37.50 cm with a mean pitch velocity of 78 miles.h(-1) (35 m.s(-1)). No significant correlation was demonstrated between unilateral stance eyes open and pitching error (r = -0.24; p = 0.36) or unilateral stance eyes closed and pitching error (r = -0.29; p = 0.27). A significant negative correlation was demonstrated between sensory organization test 5 and pitching error (r = -0.50; p = 0.05) and between sensory organization test 5/1 and pitching error (r = -0.50; p = 0.05). Additionally, unilateral stance eyes closed demonstrated a positive correlation with pitch velocity (r = 0.52; p = 0.04). The results reveal that low levels of vestibular input utilization may lead to high levels of pitching error in college baseball pitchers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号