共查询到20条相似文献,搜索用时 15 毫秒
1.
Circadian clock genes are remarkably conserved between eucoelomates. Although Drosophila has one copy of each major component, vertebrates have two or (in the case of the Period genes) three paralogs (Per1-3). We investigated the possibility that the vertebrate Per genes arose through two genome duplications during the emergence of vertebrates. Phylogenetic trees have placed zebrafish
and mammalian Per1 and 2 together in a separate branch from Per3. The positions of four coding region splice sites were conserved between Drosophila per and the human paralogs, the fifth one being unique to Drosophila. The human PER genes shared the positions of all coding region splice sites, except the first two in PER1 and PER2 (which PER3 lacks). The phases of all splice sites were conserved between all four genes with two exceptions. Analysis of all genes within
10 Mb of the human PER1-3 genes, which are located 7.8—8.8 Mb from the telomeres on chromosomes 17, 2, and 1, identified several orthologous neighbors
shared by at least two PER genes. Two gene families, HES (hairy and Enhancer of Split) and KIF1 (kinesin-like protein 1), were represented in all three of these paralogons. Although no functional fourth human PER paralog exists, five representatives from the same gene families were found close to the telomer of chromosome 3. We conclude
that the ancestral chordate Per gene underwent two duplication events, giving rise to Per1—3 and a lost fourth paralog.
[Reviewing Editor: Dr. John Onkeshott] 相似文献
2.
Mónica Lopes-Marques Inês L. S. Delgado Raquel Ruivo Yan Torres Sri Bhashyam Sainath Eduardo Rocha Isabel Cunha Miguel M. Santos L. Filipe C. Castro 《PloS one》2015,10(9)
The Carnitine palmitoyltransferase I (Cpt1) gene family plays a crucial role in energy homeostasis since it is required for the occurrence of fatty acid β-oxidation in the mitochondria. The exact gene repertoire in different vertebrate lineages is variable. Presently, four genes are documented: Cpt1a, also known as Cpt1a1, Cpt1a2; Cpt1b and Cpt1c. The later is considered a mammalian innovation resulting from a gene duplication event in the ancestor of mammals, after the divergence of sauropsids. In contrast, Cpt1a2 has been found exclusively in teleosts. Here, we reassess the overall evolutionary relationships of Cpt1 genes using a combination of approaches, including the survey of the gene repertoire in basal gnathostome lineages. Through molecular phylogenetics and synteny studies, we find that Cpt1c is most likely a rapidly evolving orthologue of Cpt1a2. Thus, Cpt1c is present in other lineages such as cartilaginous fish, reptiles, amphibians and the coelacanth. We show that genome duplications (2R) and variable rates of sequence evolution contribute to the history of Cpt1 genes in vertebrates. Finally, we propose that loss of Cpt1b is the likely cause for the unusual energy metabolism of elasmobranch. 相似文献
3.
4.
While globin genes ctt-2β and ctt-9.1 in Chironomus thummi thummi each have a single intron, all of the other insect globin genes reported so far are intronless. We analyzed four globin genes
linked to the two intron-bearing genes in C. th. thummi. Three have a single intron at the same position as ctt-2β and ctt-9.1; the fourth is intronless and lies between intron bearing genes. Finally, in addition to its intron, one gene (ctt-13RT) was recently interrupted by retrotransposition. Phylogenetic analyses show that the six genes in C. th. thummi share common ancestry with five globin genes in the distantly related species C. tentans, and that a 5-gene ancestral cluster predates the divergence of the two species. One gene in the ancestral cluster gave rise
to ctn-ORFB in C. tentans, and duplicated in C. th. thummi to create ctt-11 and ctt-12. From parsimonious calculations of evolutionary distances since speciation, ctt-11, ctt-12, and ctn-ORFB evolved rapidly, while ctn-ORFE in C. tentans evolved slowly compared to other globin genes in the clusters. While these four globins are under selective pressure, we
suggest that most chironomid globin genes were not selected for their unique function. Instead, we propose that high gene
copy number itself was selected because conditions favored organisms that could synthesize more hemoglobin. High gene copy
number selection to produce more of a useful product may be the basis of forming multigene families, all of whose members
initially accumulate neutral substitutions while retaining essential function. Maintenance of a large family of globin genes
not only ensured high levels of hemoglobin production, but may have facilitated the extensive divergence of chironomids into
as many as 5000 species.
Received: 31 December 1996 / Accepted: 16 May 1997 相似文献
5.
使用反转录和实时荧光定量PCR技术,我们对HaSNPV的几个预期的早期基因、早晚期基因、晚期基因、极晚期基因的转录时相进行分析,结果表明:这些基因的起始转录时间与其自身的启动子类型基本是一致的。但是预期的早期基因pkip晚期才开始转录;预期的早晚期基因ha107早期不转录,仅在晚期转录。这些基因的转录水平一般都在病毒感染细胞72h后达到最高,并且极晚期基因polyhedrin的转录水平明显高于其它基因。Iap2的转录水平仅次于polyhedrin,表明它可能是一个功能基因。与AcMNPV的p10不同,在HaSNPV/HzAM1系统中p10的转录水平并不高。 相似文献
6.
使用反转录和实时荧光定量PCR技术,我们对HaSNPv的几个预期的早期基因、早晚期基因、晚期基因、极晚期基因的转录时相进行分析,结果表明这些基因的起始转录时间与其自身的启动子类型基本是一致的.但是预期的早期基因pkip晚期才开始转录;预期的早晚期基因ha107早期不转录,仅在晚期转录.这些基因的转录水平一般都在病毒感染细胞72 h后达到最高,并且极晚期基因polyhedrin的转录水平明显高于其它基因.Iap2的转录水平仅次于polyhedrin,表明它可能是一个功能基因.与AcMNPV的p10不同,在HaSNPV/HzAM1系统中p10的转录水平并不高. 相似文献
7.
8.
Chojnowski JL Franklin J Katsu Y Iguchi T Guillette LJ Kimball RT Braun EL 《Journal of molecular evolution》2007,65(3):259-266
Vertebrate genomes are mosaics of isochores, defined as long (>100 kb) regions with relatively homogeneous within-region base
composition. Birds and mammals have more GC-rich isochores than amphibians and fish, and the GC-rich isochores of birds and
mammals have been suggested to be an adaptation to homeothermy. If this hypothesis is correct, all poikilothermic (cold-blooded)
vertebrates, including the nonavian reptiles, are expected to lack a GC-rich isochore structure. Previous studies using various
methods to examine isochore structure in crocodilians, turtles, and squamates have led to different conclusions. We collected
more than 6000 expressed sequence tags (ESTs) from the American alligator to overcome sample size limitations suggested to
be the fundamental problem in the previous reptilian studies. The alligator ESTs were assembled and aligned with their human,
mouse, chicken, and western clawed frog orthologs, resulting in 366 alignments. Analyses of third-codon-position GC content
provided conclusive evidence that the poikilothermic alligator has GC-rich isochores, like homeothermic birds and mammals.
We placed these results in a theoretical framework able to unify available models of isochore evolution. The data collected
for this study allowed us to reject the models that explain the evolution of GC content using changes in body temperature
associated with the transition from poikilothermy to homeothermy. Falsification of these models places fundamental constraints
upon the plausible pathways for the evolution of isochores.
Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.
Reviewing
Editor: Dr. Nicolas Galtier 相似文献
9.
判定直系同源关系的进化分析方法 总被引:1,自引:0,他引:1
如何正确判定基因之间的直系同源 (ortholog)和旁系同源 (paralog)关系 ,仍是基因组功能诠释和比较基因组学中有待更好解决的关键问题。在以前的工作中 ,曾用进化分析方法解决多基因家族的直系 /旁系同源关系的判定问题 ,现进而完整地展开判定直系同源关系的进化分析方法。从 44个同源蛋白质家族的案例观察表明 ,与流行的COG方法 (直系同源蛋白质的聚类 )比较 ,本方法能一般的判定直系同源关系以及能准确的诠释基因组的分子功能 相似文献
10.
11.
Molecular Evolution of Vertebrate Goose-Type Lysozyme Genes 总被引:11,自引:0,他引:11
We have found that mammalian genomes contain two lysozyme g genes. To better understand the function of the lysozyme g genes we have examined the evolution of this small gene family. The lysozyme g gene structure has been largely conserved during vertebrate evolution, except at the 5' end of the gene, which varies in number of exons. The expression pattern of the lysozyme g gene varies between species. The fish lysozyme g sequences, unlike bird and mammalian lysozyme g sequences, do not predict a signal peptide, suggesting that the encoded proteins are not secreted. The fish sequences also do not conserve cysteine residues that generate disulfide bridges in the secreted bird enzymes, supporting the hypothesis that the fish enzymes have an intracellular function. The signal peptide found in bird and mammalian lysozyme g genes may have been acquired as an exon in the ancestor of birds and mammals, or, alternatively, an exon encoding the signal peptide has been lost in fish. Both explanations account for the change in gene structure between fish and tetrapods. The mammalian lysozyme g sequences were found to have evolved at an accelerated rate, and to have not perfectly conserved the known active site catalytic triad of the bird enzymes. This observation suggests that the mammalian enzymes may have altered their biological function, as well. 相似文献
12.
Evolutionary Diversity of Vertebrate Small Heat Shock Proteins 总被引:8,自引:0,他引:8
Franck E Madsen O van Rheede T Ricard G Huynen MA de Jong WW 《Journal of molecular evolution》2004,59(6):792-805
All vertebrates express multiple small heat shock proteins (sHsps), which are important components of the cellular chaperoning machinery and display a spectacular diversity of functions. This ranges from remodeling the cytoskeleton and inhibiting apoptosis to serving as structural proteins in eye lens and sperm tail. Most information is available for the 10 known mammalian sHsps, formally named HspB1–B10. Only three of them (Hsp27/B1, A-crystallin/B4, B-crystallin/B5) have been reported from nonmammalian vertebrates, while an apparent paralog, Hsp30/B11, is found in frogs and teleost fish. To reconstruct the evolutionary diversification of the sHsps in vertebrates, we searched for additional sHsps in genome, protein, and EST databases and sequenced some avian and amphibian sHsps (HspB2, Hsp30/B11). The urochordate Ciona intestinalis was included in the search, as the outgroup of vertebrates. Orthologs of seven mammalian sHsps were now found in other vertebrate classes. Two novel sHsps, named HspB11 and HspB12, were recognized in birds, and four novel sHsps, named HspB12–B15, in teleost fish. Secondary structure predictions of orthologous sHsps from different vertebrate classes indicate conservation of the -sandwich structure of the functionally important C-terminal -crystallin domain, while the N-terminal domains generally have -helical structures, despite their pronounced sequence variation. The constructed chordate sHsp tree is supported by shared introns, indels, and diagnostic sequences. The tree distinguishes putative orthologous and paralogous relationships, which will facilitate the functional and structural comparison of the various vertebrate sHsps. The 15 recognized paralogous vertebrate sHsps reflect the period of extensive gene duplications early in vertebrate evolution. Eleven of these sHsps are grouped in a clade that might be specific for chordates. It is inferred that at least 13 intron insertions have occurred during the evolution of chordate sHsp genes, while a single ancient intron is maintained in some lineages, in line with the general trend of massive intron gain before or during early vertebrate radiation. Interesting is the occurrence of several head-to-head located pairs of chordate sHsp genes.Reviewing Editor: Dr. John Huelsenbeck(Teun van Rheede) Deceased May 21, 2003 相似文献
13.
The population genetic behavior of mutations in sperm genes is theoretically investigated. We modeled the processes at two levels. One is the standard population genetic process, in which the population allele frequencies change generation by generation, depending on the difference in selective advantages. The other is the sperm competition during each genetic transmission from one generation to the next generation. For the sperm competition process, we formulate the situation where a huge number of sperm with alleles A and B, produced by a single heterozygous male, compete to fertilize a single egg. This “minimal model” demonstrates that a very slight difference in sperm performance amounts to quite a large difference between the alleles’ winning probabilities. By incorporating this effect of paternity-sharing sperm competition into the standard population genetic process, we show that fierce sperm competition can enhance the fixation probability of a mutation with a very small phenotypic effect at the single-sperm level, suggesting a contribution of sperm competition to rapid amino acid substitutions in haploid-expressed sperm genes. Considering recent genome-wide demonstrations that a substantial fraction of the mammalian sperm genes are haploid expressed, our model could provide a potential explanation of rapid evolution of sperm genes with a wide variety of functions (as long as they are expressed in the haploid phase). Another advantage of our model is that it is applicable to a wide range of species, irrespective of whether the species is externally fertilizing, polygamous, or monogamous. The theoretical result was applied to mammalian data to estimate the selection intensity on nonsynonymous mutations in sperm genes. 相似文献
14.
为了分离鼠精子发生时期表达的基因,本文采用mRNA差异显示法,以鼠的粗线期卵母细胞为对照,检测了出生后60天和16天鼠的睾丸。得到12个有差异的片段(Fig.1&Table 1)。克隆测序结果表明,其中5个与已知基因非常吻合,另外6个与一些未知功能的cDNA、ESTs有较高的同源性,只有1个与已知序列没有同源性。Northern杂交分析显示sp1和sp8主要在成年鼠睾丸表达(Fig.4B)。采用5RACE对sp1的cDNA进行了全长分析,该基因编码一个推测是高度磷酸化蛋白的541个氨基酸(Fig.2),其中包括一个核定位信号,无论在核苷酸水平上,还是在氨基酸水平上均没有明显的同源性,仅在2个蛋白区有少量同源氨基酸(Fig.3)。该基因在20-60天龄鼠的睾丸均有表达,并且具有很高的组织特异性只在睾丸里表达(Fig.4A)。因而,这个基因有可能参与减数分裂及其以后的整个过程。可以认为这是一个新基因。我们把它命名为peat (predominantly expressed in adult testis)。 相似文献
15.
16.
Yurikova O. Yu. Aisina D. E. Niyazova R. E. Atambayeva Sh. A. Labeit S. Ivashchenko A. T. 《Molecular Biology》2019,53(4):612-623
Molecular Biology - miRNAs regulate the expression of many genes and are involved in the development of diseases. We studied miRNAs that interact partly or fully complementarily with the 5'UTR,... 相似文献
17.
Simon G. Southerton Heidi Marshall Aidyn Mouradov Robert D. Teasdale 《Plant physiology》1998,118(2):365-372
Three MADS-box genes were identified from a cDNA library derived from young flowers of Eucalyptus grandis W. Hill ex Maiden. The three egm genes are single-copy genes and are expressed almost exclusively in flowers. The egm1 and egm3 genes shared strongest homology with other plant MADS-box genes, which mediate between the floral meristem and the organ-identity genes. The egm3 gene was also expressed strongly in the receptacle or floral tube, which surrounds the carpels in the eucalypt flower and bears the sepals, petals, and numerous stamens. There appeared to be a group of genes in eucalypts with strong homology with the 3′ region of the egm1 gene. The egm2 gene was expressed in eucalypt petals and stamens and was most homologous to MADS-box genes, which belong to the globosa group of genes, which regulate organogenesis of the second and third floral whorls. The possible role of these three genes in eucalypt floral development is discussed. 相似文献
18.
Duda TF 《Journal of molecular evolution》2008,67(3):315-321
Venoms of Conus are remarkably diverse among species and the genes that encode conotoxins show high rates of evolution. Yet no prior studies have specifically explored how conotoxin gene evolution contributes to the differentiation of venoms of closely related Conus species. Previous investigations of four-loop conotoxin expression patterns of six closely related Conus species identified 12 sets of putative orthologous loci from these species, including eight pairs of loci that are coexpressed by two of these six species, C. abbreviatus and C. miliaris. Here I analyze the molecular evolution of orthologous conotoxin loci of these species and specifically examine the divergence of the eight orthologous counterparts of C. abbreviatus and C. miliaris. Tree and maximum likelihood-based analyses of these sequences reveal that positive selection promotes the divergence of orthologous genes among species and that the evolution of orthologues of C. abbreviatus and C. miliaris is asymmetric among species. The asymmetric evolution of conotoxin loci among species may result from lineage-specific dietary shifts or interspecific differences in the impact of selection from predator-prey interactions on conotoxin loci. 相似文献
19.