首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In situ plasma membrane H+-ATPase activity was monitored during pH-regulated dimorphism of Candida albicans using permeabilized cells. ATPase activity was found to increase in both the bud and germ tube forming populations at 135 min which coincides with the time of evagination. Upon reaching the terminal phenotype the mycelial form exhibited higher H+-ATPase activity as compared to the yeast form. At the time of evagination H+-efflux exhibited an increase. K+ depletion resulted in attenuated ATPase activity and glucose induced H+-efflux. The results demonstrate that ATPase may play a regulatory role in dimorphism of C. albicans and K+ acts as a modulator.Abbreviations PM Plasma membrane - pHi intracellular pH - Pi inorganic phosphorus - TET Toluene: Ethanol: Triton X-100  相似文献   

2.
3.
With a homologous gene region we successfully isolated a Na+/H+ antiporter gene from a halophytic plant, Atriplex gmelini, and named it AgNHX1. The isolated cDNA is 2607 bp in length and contains one open reading frame, which comprises 555 amino acid residues with a predicted molecular mass of 61.9 kDa. The amino acid sequence of the AgNHX1 gene showed more than 75% identity with those of the previously isolated NHX1 genes from glycophytes, Arabidopsis thaliana and Oryza sativa. The migration pattern of AgNHX1 was shown to correlate with H+-pyrophosphatase and not with P-type H+-ATPase, suggesting the localization of AgNHX1 in a vacuolar membrane. Induction of the AgNHX1 gene was observed by salt stress at both mRNA and protein levels. The expression of the AgNHX1 gene in the yeast mutant, which lacks the vacuolar-type Na+/H+ antiporter gene (NHX1) and has poor viability under the high-salt conditions, showed partial complementation of the NHX1 functions. These results suggest the important role of the AgNHX1 products for salt tolerance.  相似文献   

4.
5.
The sensitivity of the plasma membrane H+-ATPase in tobacco was investigated in vitro, both at the proton translocation level and the ATPase level, according to plant development and leaf location. Both activities are stimulated by auxin in all leaves, whatever the plant age and the leaf age. However, the sensitivity to auxin was heterogeneous with respect to plant development and leaf location. In parallel experiments using the same plasma membrane samples, polypepides patterns were investigated by two-dimensional gel electrophoresis and image analysis was used to quantify the relative abundance of 110 peptides. Systematic analysis of the two kinds of data identified 8 polypeptides, the abundance of which changed in a consistent way with the sensitivity, whatever the plant developmental state and leaf location. These unknown polypeptides are proposed as potential markers of the membrane response to auxin.  相似文献   

6.
Summary Characteristics of the native and reconstituted H+-ATPase from the plasma membrane of red beet (Beta vulgaris L.) were examined. The partially purified, reconstituted H+-ATPase retained characteristics similar to those of the native plasma membrane H+-ATPase following reconstitution into proteoliposomes. ATPase activity and H+ transport of both enzymes were inhibited by vanadate, DCCD, DES and mersalyl. Slight inhibition of ATPase activity associated with native plasma membranes by oligomycin, azide, molybdate or NO 3 was eliminated during solubilization and reconstitution, indicating the loss of contaminating ATPase activities. Both native and reconstituted ATPase activities and H+ transport showed a pH optimum of 6.5, required a divalent cation (Co2+>Mg2+>Mn2+>Zn2+>Ca2+), and preferred ATP as substrate. The Mg:ATP kinetics of the two ATPase activities were similar, showing simple Michaelis-Menten kinetics. Saturation occurred between 3 and 5mM Mg: ATP, with aK m of 0.33 and 0.46mM Mg: ATP for the native and reconstituted enzymes, respectively. The temperature optimum for the ATPase was shifted from 45 to 35°C following reconstitution. Both native and reconstituted H+-ATPases were stimulated by monovalent ions. Native plasma membrane H+-ATPase showed an order of cation preference of K+>NH 4 + >Rb+>Na+>Cs+>Li+>choline+. This basic order was unchanged following reconstitution, with K+, NH 4 + , Rb+ and Cs+ being the preferred cations. Both enzymes were also stimulated by anions although to a lesser degree. The order of anion preference differed between the two enzymes. Salt stimulation of ATPase activity was enhanced greatly following reconstitution. Stimulation by KCl was 26% for native ATPase activity, increasing to 228% for reconstituted ATPase activity. In terms of H+ transport, both enzymes required a cation such as K+ for maximal transport activity, but were stimulated preferentially by Cl even in the presence of valinomycin. This suggests that the stimulatory effect of anions on enzyme activity is not simply as a permeant anion, dissipating a positive interior membrane potential, but may involve a direct anion activation of the plasma membrane H+-ATPase.  相似文献   

7.
In the present study some properties of an inhibitory extract of synaptosomal membrane Na+,K+-ATPase were investigated. This extract (peak II) was prepared by gel filtration in Sephadex G-50 of a soluble fraction of the rat cerebral cortex. Ultrafiltration of peak II through Amicon membranes indicated that the inhibitor has a low MW (<1000). The inhibitory activity was not modified by heating in neutral pH at 95°C for 20 min but it was destroyed by charring in acid pH at 200°C for 120 min. The inhibitory activity decreased by incubation of peak II with carboxypeptidase A. These findings suggest that the factor responsible for the inhibition of Na+,K+-ATPase activity is probably a polypeptide. On the other hand, the inhibition was reverted by the chelators EDTA and EGTA, indicating the participation of an ionic compound as well. The increase of Mg2+ concentration during the enzyme assay did not increase the inhibition, indicating that the ion involved might not be vanadate. It is suggested that both a polypeptide and an ionic compound coparticipate in the inhibitory effect of peak II on Na+,K+-ATPase activity.  相似文献   

8.
Goat antisera against (Na+ + K+)-ATPase and its isolated subunits and against (K+ + H+)-ATPase have been prepared in order to test for immune cross-reactivity between the two enzymes, whose catalytic subunits show great chemical similarity. None of the (Na+ + K+)-ATPase antisera cross-reacted with (K+ + H+)-ATPase or inhibited its enzyme activity. The same was true for the (K+ + H+)-ATPase antiserum with regard to (Na+ + K+)-ATPase and its subunits and its enzyme activity. So not withstanding the chemical similarity of their subunits, there is no immunological cross-reactivity between these two plasma membrane ATPases.Number LIII in the series Studies on (Na+ + K+)-Activated ATPase.  相似文献   

9.
The structure of the Neurospora crassa plasma membrane H+-ATPase has been investigated using a variety of chemical and physicochemical techniques. The transmembrane topography of the H+-ATPase has been elucidated by a direct, protein chemical approach. Reconstituted proteoliposomes containing purified H+-ATPase molecules oriented predominantly with their cytoplasmic surface facing outward were treated with trypsin, and the numerous peptides released were purified by HPLC and subjected to amino acid sequence analysis. In this way, seventeen released peptides were unequivocally identified as located on the cytoplasmic side of the membrane, and numerous intervening segments could be inferred to be cytoplasmically located by virtue of the fact that they are too short to cross the membrane and return between sequences established to be cytoplasmically located. Additionally, three large membrane-embedded segments of the H+-ATPase were isolated using our recently developed methods for purifying hydrophobic peptides, and identified by amino acid sequence analysis. This information established the topographical location of virtually all of the 919 residues in the H+-ATPase molecule, allowing the formulation of a reasonably detailed model for the transmembrane topography of the H+-ATPase polypeptide chain. Separate studies of the cysteine chemistry of the H+-ATPase have demonstrated the existence of a single disulfide bridge in the molecule, linking the NH2- and COON-terminal membrane-embedded domains. And, analyses of the circular dichroism and infrared spectra of the purified H+-ATPase have elucidated the secondary structure composition of the molecule. A first-generation model for the tertiary structure of the H+-ATPase based on this information and other considerations is presented.  相似文献   

10.
It is reported that CNS hemorrage causes membrane dysfunction and may exacerbate this damage as a result of secondary ischemia or hypoxia. Since hyperbaric oxygenation improves oxygen metabolism, it may reduce this membrane damage. The present study was conducted to reveal whether hyperbaric oxygenation influences membrane alteration after hemorrhage. Thirty minutes after subarachnoid hemorrhage induction, rats were treated with hyperbaric oxygenation 2 ATA for 1 hour. Rats were decapitated 2 hours after subarachnoid hemorrhage induction. Na+, K+-ATPase activity measurement, and spin-label studies were performed on crude synpatosomal membranes. Subarachnoid hemorrhage decreased Na+, K+-ATPase activity. Spin label studies showed that hydrophobic portions of near the membrane surface became more rigid and the mobility of the membrane protein labeled sulfhydryl groups decreased after subarachnoid hemorrhage. Hyperbaric oxygenation significantly ameliorated most of the subarachnoid hemorrhage induced alterations. We conclude that hyperbaric oxygenation may be a beneficial treatment for acute subarachnoid hemorrhage.  相似文献   

11.

Background and Aims

There is a need to evaluate the salt tolerance of plant species that can be cultivated as crops under saline conditions. Crambe maritima is a coastal plant, usually occurring on the driftline, with potential use as a vegetable crop. The aim of this experiment was to determine the growth response of Crambe maritima to various levels of airborne and soil-borne salinity and the ecophysiological mechanisms underlying these responses.

Methods

In the greenhouse, plants were exposed to salt spray (400 mm NaCl) as well as to various levels of root-zone salinity (RZS) of 0, 50, 100, 200 and 300 mm NaCl during 40 d. The salt tolerance of Crambe maritima was assessed by the relative growth rate (RGR) and its components. To study possible salinity effects on the tissue and cellular level, the leaf succulence, tissue Na+ concentrations, Na+ : K+ ratio, net K+/Na+ selectivity, N, P, K+, Ca2+, Mg2+, proline, soluble sugar concentrations, osmotic potential, total phenolics and antioxidant capacity were measured.

Key Results

Salt spray did not affect the RGR of Crambe maritima. However, leaf thickness and leaf succulence increased with salt spray. Root zone salinities up to 100 mm NaCl did not affect growth. However, at 200 mm NaCl RZS the RGR was reduced by 41 % compared with the control and by 56 % at 300 mm NaCl RZS. The reduced RGR with increasing RZS was largely due to the reduced specific leaf area, which was caused by increased leaf succulence as well as by increased leaf dry matter content. No changes in unit leaf rate were observed but increased RZS resulted in increased Na+ and proline concentrations, reduced K+, Ca2+ and Mg2+ concentrations, lower osmotic potential and increased antioxidant capacity. Proline concentrations of the leaves correlated strongly (r = 0·95) with RZS concentrations and not with plant growth.

Conclusions

Based on its growth response, Crambe maritima can be classified as a salt spray tolerant plant that is sensitive to root zone salinities exceeding 100 mm NaCl.  相似文献   

12.
The effects of polyamines (Putrescine— Put; Spermidine—Spd; and Spermine—Spm) on␣salt tolerance of seedlings of two barley (Hordeum vulgare L.) cultivars (J4, salt-tolerant; KP7, salt-sensitive) were investigated. The results showed that, the salt-tolerant cultivar J4 seedlings accumulated much higher levels of Spd and Spm and lower Put than the salt-sensitive cultivar KP7␣under salt stress. At the same time, the dry weight of KP7 decreased significantly than that of␣J4. After methylglyoxal bis(guanylhydrazone) [MGBG, an inhibitor of S-adenosylmethionine decarboxylase (SAMDC)] treatment, Spd and Spm levels together with the dry weight of both cultivars were reduced, but the salt-caused dry weight reduction in two cultivars could be reversed by the concomitant treatment with Spd. MGBG decreased the activities of tonoplast H+-ATPase and H+-PPase too, but the experiments in vitro indicated that MGBG was not able to affect the above two enzyme activities. However, the polyamines, especially Spd, promoted their activities obviously. These results suggested that the conversion of Put to Spd and Spm and maintenance of higher levels of Spd and Spm were necessary for plant salt tolerance.  相似文献   

13.
14.
Phosphorylation is a widely used, reversible means of regulating enzymatic activity. Among the important phosphorylation targets are the Na+,K+- and H+,K+-ATPases that pump ions against their chemical gradients to uphold ionic concentration differences over the plasma membrane. The two pumps are very homologous, and at least one of the phosphorylation sites is conserved, namely a cAMP activated protein kinase (PKA) site, which is important for regulating pumping activity, either by changing the cellular distribution of the ATPases or by directly altering the kinetic properties as supported by electrophysiological results presented here. We further review the other proposed pump phosphorylations.  相似文献   

15.
The effect of a model of depression using female rats on Na+, K+-ATPase activity in hippocampal synaptic plasma membranes was studied. In addition, the effect of further chronic treatment with fluoxetine on this enzyme activity was verified. Sweet food consumption was measured to evaluate the efficacy of this model in inducing a state of reduced response to rewarding stimili. After 40 days of mild stress, a reduction in sweet food ingestion was observed. Reduction of hippocampal Na+, K+-ATPase activity was also observed. Treatment with fluoxetine increased this enzyme activity and reversed the effect of stress. Chronic fluoxetine decreased the ingestion of sweet food in both groups. This result is in agreement with suggestions that reduction of Na+, K+-ATPase activity is a caracteristic of depressive disorders. Fluoxetine reversed this effect. Therefore it is possible that altered Na+, K+-ATPase activity may be involved in the pathophysiology of depression in patients.  相似文献   

16.
In the present study we investigated the effect of acute administration of L-arginine on Na+,K+-ATPase and Mg2+-ATPase activities and on some parameters of oxidative stress (chemiluminescence and total radical-trapping antioxidant parameter-TRAP) in midbrain of adult rats. We also tested the effect of L-NAME on the effects produced by arginine. Sixty-day-old rats were treated with an acute intraperitoneal injection of saline (group I, control), arginine (0.8 g/kg) (group II), L-NAME (2 mg/kg) (group III) or arginine (0.8 g/kg) plus L-NAME (2 mg/kg) (group IV). Na+,K+-ATPase activity was significantly reduced in the arginine-treated rats, but was not affected by other treatments. In contrast, Mg2+-ATPase activity was not altered by any treatment. Furthermore, chemiluminescence was significantly increased and TRAP was significantly decreased in arginine-treated rats, whereas the simultaneous injection of L-NAME prevented these effects. These results demonstrate that in vivo arginine administration reduces Na+,K+-ATPase activity possibly through free radical generation induced by NO formation.  相似文献   

17.

Background and Aims

Uptake of heavy metals by plant root cells depends on electro-physiological parameters of the plasma membrane. In this study, responses of the plasma membrane in root cells were analysed where early reactions to the metal ion-induced stress are localized. Three different Arabidopsis species with diverse strategies of their adaptation to heavy metals were compared: sensitive Arabidopsis thaliana and tolerant A. halleri and A. arenosa.

Methods

Plants of A. thaliana Col-0 ecotype and plants of A. arenosa and A. halleri originating from natural metallicolous populations were exposed to high concentrations of Zn2+. Plants were tested for root growth rate, cellular tolerance, plant morphology and cell death in the root apex. In addition, the membrane potential (EM) of mature cortical root cells and changes in the pH of the liquid culture media were measured.

Key Results

Primary roots of A. halleri and A. arenosa plants grew significantly better at increased Zn2+ concentrations than A. thaliana plants. Elevated Zn2+ concentrations in the culture medium induced rapid changes in EM. The reaction was species-specific and concentration-dependent. Arabidopsis halleri revealed the highest insensitivity of the plasma membrane and the highest survival rate under prolonged treatment with extra-high concentrations. Plants were able to effectively adjust the pH in the control, but much less at Zn2+-induced lower pH.

Conclusions

The results indicate a similar mode of early reaction to Zn2+, but with different extent in tolerant and sensitive species of Arabidopsis. The sensitivity of A. thaliana and a high tolerance of A. halleri and A. arenosa were demonstrated. Plasma membrane depolarization was lowest in the hyperaccumulator A. halleri and highest in A. thaliana. This indicates that rapid membrane voltage changes are an excellent tool to monitor the effects of heavy metals.  相似文献   

18.
Hg2+ binding to ouabain-sensitive Na+-K+-ATPase of rat platelet membrane was specific with a Ka of 1.3×109 moles and Bmax of 3.8 nmoles/mg protein. The binding of mercury to Na+-K+-ATPase also inhibits the enzyme significantly (P<0.001), which is greater than its ouabain sensitivity. Further in the cytosol of washed platelets conjugation of reduced glutathione (GSH) to Hg2+ is correlated dose dependently (25, 50 and 100 pmoles) to enhanced GSH-S-transferase (GST) activity. It may be concluded from the present in vitro experiments that mercury binds specifically to thiol groups present in the platelet membrane Na+-K+-ATPase, inhibits the enzyme and induces changes in platelet function, namely, platelet aggregation by interfering with the sodium pump.  相似文献   

19.
Previous research has shown that the lower sodium pump molecular activity observed in tissues of ectotherms compared to endotherms, is largely related to the lower levels of polyunsaturates and higher levels of monounsaturates found in the cell membranes of ectotherms. Marine-based ectotherms, however, have very polyunsaturated membranes, and in the current study, we measured molecular activity and membrane lipid composition in tissues of two disparate ectothermic species, the octopus (Octopus vulgaris) and the bearded dragon lizard (Pogona vitticeps), to determine whether the high level of membrane polyunsaturation generally observed in marine-based ectotherms is associated with an increased sodium pump molecular activity relative to other ectotherms. Phospholipids from all tissues of the octopus were highly polyunsaturated and contained high concentrations of the omega-3 polyunsaturate, docosahexaenoic acid (22:6 (n–3)). In contrast, phospholipids from bearded dragon tissues contained higher proportions of monounsaturates and lower proportions of polyunsaturates. Sodium pump molecular activity was only moderately elevated in tissues of the octopus compared to the bearded dragon, despite the much greater level of polyunsaturation in octopus membranes. When the current data were combined with data for the ectothermic cane toad, a significant (P=0.003) correlation was observed between sodium pump molecular activity and the content of 22:6 (n–3) in the surrounding membrane. These results are discussed in relation to recent work which shows a similar relationship in endotherms.  相似文献   

20.
Aluminium induced membrane potential (Em) changes and potential changes during repolarization phase of the action potential (AP) in the internodal cells of Nitellopsis obtusa after blocking H+-ATPase activity by DCCD were investigated. Micromolar concentrations of DCCD are sufficient to give complete and irreversible inhibition of proton pumping. The membrane potential was measured by conventional glass-microelectrode technique. We found that the half-amplitude pulse duration differs significantly between standard conditions, after DCCD application, and after H+-ATPase blocking and subsequent Al3+ treatment: 4.9, 7.7 and 17.2 seconds, respectively. We propose that in the short term (2 hours) treatment of Al3+, the decrease in membrane potential was compensated for by H+-ATPase activity. Blocking H+-ATPase activity by DCCD can enhance the influence of Al3+ on the bioelectrical activity of cell membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号