首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bromus tectorum can transform ecosystems causing negative impacts on the ecological and economic values of sagebrush steppe of the western USA. Although our knowledge of the drivers of the regional distribution of B. tectorum has improved, we have yet to determine the relative importance of climate and local factors causing B. tectorum abundance and impact. To address this, we sampled 555 sites distributed geographically and ecologically throughout the sagebrush steppe. We recorded the canopy cover of B. tectorum, as well as local substrate and vegetation characteristics. Boosted regression tree modeling revealed that climate strongly limits the transformative ability of B. tectorum to a portion of the sagebrush steppe with dry summers (that is, July precipitation <10 mm and the driest annual quarter associated with a mean temperature >15°C) and low native grass canopy cover. This portion includes the Bonneville, Columbia, Lahontan, and lower Snake River basins. These areas are likely to require extreme efforts to reverse B. tectorum transformation. Our predictions, using future climate conditions, suggest that the transformative ability of B. tectorum may not expand geographically and could remain within the same climatically suitable basins. We found B. tectorum in locally disturbed areas within or adjacent to all of our sample sites, but not necessarily within sagebrush steppe vegetation. Conversion of the sagebrush steppe by B. tectorum, therefore, is more likely to occur outside the confines of its current climatically optimal region because of site-specific disturbances, including invasive species control efforts and sagebrush steppe mismanagement, rather than climate change.  相似文献   

2.
Liu X  Guo Z  Ke Z  Wang S  Li Y 《PloS one》2011,6(3):e18429

Background

Anthropogenically-induced climate change can alter the current climatic habitat of non-native species and can have complex effects on potentially invasive species. Predictions of the potential distributions of invasive species under climate change will provide critical information for future conservation and management strategies. Aquatic ecosystems are particularly vulnerable to invasive species and climate change, but the effect of climate change on invasive species distributions has been rather neglected, especially for notorious global invaders.

Methodology/Principal Findings

We used ecological niche models (ENMs) to assess the risks and opportunities that climate change presents for the red swamp crayfish (Procambarus clarkii), which is a worldwide aquatic invasive species. Linking the factors of climate, topography, habitat and human influence, we developed predictive models incorporating both native and non-native distribution data of the crayfish to identify present areas of potential distribution and project the effects of future climate change based on a consensus-forecast approach combining the CCCMA and HADCM3 climate models under two emission scenarios (A2a and B2a) by 2050. The minimum temperature from the coldest month, the human footprint and precipitation of the driest quarter contributed most to the species distribution models. Under both the A2a and B2a scenarios, P. clarkii shifted to higher latitudes in continents of both the northern and southern hemispheres. However, the effect of climate change varied considerately among continents with an expanding potential in Europe and contracting changes in others.

Conclusions/Significance

Our findings are the first to predict the impact of climate change on the future distribution of a globally invasive aquatic species. We confirmed the complexities of the likely effects of climate change on the potential distribution of globally invasive species, and it is extremely important to develop wide-ranging and effective control measures according to predicted geographical shifts and changes.  相似文献   

3.
The invasive annual grass Bromus tectorum (cheatgrass) forms a positive feedback with fire in some areas of western North America’s sagebrush biome by increasing fire frequency and size, which then increases B. tectorum abundance post-fire and dramatically alters ecosystem structure and processes. However, this positive response to fire is not consistent across the sagebrush steppe. Here, we ask whether different climate conditions across the sagebrush biome can explain B. tectorums variable response to fire. We found that climate variables differed significantly between 18 sites where B. tectorum does and does not respond positively to fire. A positive response was most likely in areas with higher annual temperatures and lower summer precipitation. We then chose a climatically intermediate site, with intact sagebrush vegetation, to evaluate whether a positive feedback had formed between B. tectorum and fire. A chronosequence of recent fires (1–15 years) at the site created a natural replicated experiment to assess abundance of B. tectorum and native plants. B. tectorum cover did not differ between burned and unburned plots but native grass cover was higher in recently burned plots. Therefore, we found no evidence for a positive feedback between B. tectorum and fire at the study site. Our results suggest that formation of a positive B. tectorum-fire feedback depends on climate; however, other drivers such as disturbance and native plant cover are likely to further influence local responses of B. tectorum. The dependence of B. tectorum’s response to fire on climate suggests that climate change may expand B. tectorums role as a transformative invasive species within the sagebrush biome.  相似文献   

4.
Bromus tectorum L. is an invasive winter annual grass naturalized across the United States. Numerous studies have investigated B. tectorum population structure and genetics in the context of B. tectorum as an ecological invader of natural areas and rangeland. Despite the wealth of information regarding B. tectorum, previous studies have not focused on, or made comparisons to, B. tectorum as it persists in individual agroecosystems. The objectives of this study were to assess the genetic diversity and structure, the occurrence of generalist and specialist genotypes, and the influence of climate on distribution of B. tectorum sourced exclusively from within small grain production regions of the Pacific Northwest. Genetic diversity of B. tectorum sourced from agronomic fields was found to be similar to what has been observed from other land use histories. Six distinct genetic clusters of B. tectorum were identified, with no evidence to indicate that any of the genetic clusters were better adapted to a particular geographical area or climate within the region. Given the apparent random spatial distribution of B. tectorum genetic clusters at the spatial scale of this analysis, unique genotypes may be well mixed within region, similar to what was reported for other inbreeding weedy grass species.  相似文献   

5.
Climate change and invasive species pose important conservation issues separately, and should be examined together. We used existing long term climate datasets for the US to project potential climate change into the future at a finer spatial and temporal resolution than the climate change scenarios generally available. These fine scale projections, along with new species distribution modeling techniques to forecast the potential extent of invasive species, can provide useful information to aide conservation and invasive species management efforts. We created habitat suitability maps for Pueraria montana (kudzu) under current climatic conditions and potential average conditions up to 30 years in the future. We examined how the potential distribution of this species will be affected by changing climate, and the management implications associated with these changes. Our models indicated that P. montana may increase its distribution particularly in the Northeast with climate change and may decrease in other areas.  相似文献   

6.
Future climate change has been predicted to affect the potential distribution of plant species. However, only few studies have addressed how invasive species may respond to future climate change despite the known effects of plant species invasion on nutrient cycles, ecosystem functions, and agricultural yields. In this study, we predicted the potential distributions of two invasive species, Rumex crispus and Typha latifolia, under current and future (2050) climatic conditions. Future climate scenarios considered in our study include A1B, A2, A2A, B1, and B2A. We found that these two species will lose their habitat under the A1B, A2, A2A, and B1 scenarios. Their distributions will be maintained under future climatic conditions related to B2A scenarios, but the total area will be less than 10% of that under the current climatic condition. We also investigated variations of the most influential climatic variables that are likely to cause habitat loss of the two species. Our results demonstrate that rising mean annual temperature, variations of the coldest quarter, and precipitation of the coldest quarter are the main factors contributing to habitat loss of R. crispus. For T. latifolia, the main factors are rising mean annual temperature, variations in temperature of the coldest quarter, mean annual precipitation, and precipitation of the coldest quarter. These results demonstrate that the warmer and wetter climatic conditions of the coldest season (or month) will be mainly responsible for habitat loss of R. crispus and T. latifolia in the future. We also discuss uncertainties related to our study (and similar studies) and suggest that particular attention should be directed toward the manner in which invasive species cope with rapid climate changes because evolutionary change can be rapid for species that invade new areas.  相似文献   

7.
Theories and models attempt to explain how and why particular plant species grow together at particular sites or why invasive exotic species dominate plant communities. As local climates change and human‐use degrades and disturbs ecosystems, a better understanding of how plant communities assemble is pertinent, particularly when restoring grassland ecosystems that are frequently disturbed. One such community assembly theory is priority effects, which suggests that arrival order of species into a community alters plant–plant interactions and community assembly. Theoretically, priority effects can have lasting effects on ecosystems and will likely be altered as the risk of invasion by exotic species increases. It is difficult to predict how and when priority effects occur, as experimental reconstruction of arrival order is often difficult in adequate detail. As a result, limited experimental studies have explored priority effects on plant community assembly and plant invasions. To determine if and how priority effects affect the success of invasive species, we conducted a greenhouse study exploring how the arrival order of an invasive grass, Bromus tectorum, affects productivity and community composition when grown with native grasses. We found evidence for priority effects, as productivity was positively related to dominance of B. tectorum and was greater the earlier B. tectorum arrived. This suggests that priority effects could be important for plant communities as the early arrival of an invasive species drastically impacted the productivity and biodiversity of our system at the early establishment stages of plant community development.  相似文献   

8.
Climate has an important influence on the distribution and abundance of invasive species. Habitat suitability for invasive plants could shift with a changing climate and management practices may need to shift in response. Anecdotal evidence suggests that groundsel bush (Baccharis halimifolia) has declined in abundance over the past 50 years in Australia, co-incident with the introduction of a suite of biological control agents. While biological control may be responsible for this decline, here we investigate an alternative hypothesis—that long-term change in the favourability of the climate may have changed growth conditions for groundsel bush throughout its Australian range. We also predict what may happen to the future distribution of this species, using a bioclimatic modelling technique (CLIMEX). We found a significant reduction in the favourability for growth of B. halimifolia over the past 50 years at 29 sites in Australia. Under a likely IPCC future climate scenario prediction (decrease in rainfall and increase in temperature), the favourability for growth of B. halimifolia will continue to decrease in Queensland and its distribution may move further south into New South Wales and Victoria. We conclude that climate alone may have had a significant effect on the distribution and abundance of B. halimifolia and future priorities for management of B. halimifolia should focus on its southern distribution. Determining the success of the biological control programme in isolation from the observed climate effects will be difficult. Given the likelihood of future climate change worldwide evaluation of biological control programmes in general will need to also account for climate effects.  相似文献   

9.
How plant populations, communities, and ecosystems respond to climate change is a critical focus in ecology today. The responses of introduced species may be especially rapid. Current models that incorporate temperature and precipitation suggest that future Bromus tectorum invasion risk is low for the Colorado Plateau. With a field warming experiment at two sites in southeastern Utah, we tested this prediction over 4 years, measuring B. tectorum phenology, biomass, and reproduction. In a complimentary greenhouse study, we assessed whether changes in field B. tectorum biomass and reproductive output influence offspring performance. We found that following a wet winter and early spring, the timing of spring growth initiation, flowering, and summer senescence all advanced in warmed plots at both field sites and the shift in phenology was progressively larger with greater warming. Earlier green‐up and development was associated with increases in B. tectorum biomass and reproductive output, likely due early spring growth, when soil moisture was not limiting, and a lengthened growing season. Seeds collected from plants grown in warmed plots had higher biomass and germination rates and lower mortality than seeds from ambient plots. However, in the following two dry years, we observed no differences in phenology between warmed and ambient plots. In addition, warming had a generally negative effect on B. tectorum biomass and reproduction in dry years and this negative effect was significant in the plots that received the highest warming treatment. In contrast to models that predict negative responses of B. tectorum to warmer climate on the Colorado Plateau, the effects of warming were more nuanced, relied on background climate, and differed between the two field sites. Our results highlight the importance of considering the interacting effects of temperature, precipitation, and site‐specific characteristics such as soil texture, on plant demography and have direct implications for B. tectorum invasion dynamics on the Colorado Plateau.  相似文献   

10.
The mangrove distribution in South Africa is fragmented and restricted to small forest patches occupying only 16 % of the estuaries within the current range. In this study we used species distribution models to test (1) whether the absence of mangrove forest and its species (Avicennia marina, Bruguiera gymnorrhiza and Rhizophora mucronata) within their current range is driven by climate or by climate combined with human or geomorphic perturbation and (2) how climate change may potentially affect the latitudinal limit of the mangrove forests and its species in South Africa. We used three modelling techniques (generalized linear models, generalized additive models and gradient boosting machines) and a set of three climate-based predictive variables (minimum air temperature of the coldest month, waterbalance and growing-degree days) combined separately with an index of human or geomorphic perturbation. Climate variables for the future projections were derived from two general circulation models driven by two socio-economic scenarios (A2a and B2a). Within the range of the mangrove forest, the fragmented distribution of the mangroves in South Africa was not explained by our set of climate variables alone. The index of human perturbations slightly improved the predictions but the index of geomorphic perturbation did not. Climate change will create climatically suitable sites for the mangrove forest and the two species A. marina and B. gymnorrhiza beyond their current limits, but model outcomes did not agree on the future potential distribution of R. mucronata. We were able to successfully predict range limits and to detect future climatically suitable sites beyond the current limits. Factors controlling mangrove distribution within its range are still to be identified although absences were partly explained by human perturbations.  相似文献   

11.
Species distribution modelling is an easy, persuasive and useful tool for anticipating species distribution shifts under global change. Numerous studies have used only climate variables to predict future potential species range shifts and have omitted environmental factors important for determining species distribution. Here, we assessed the importance of the edaphic dimension in the niche‐space definition of Quercus pubescens and in future spatial projections under global change over the metropolitan French forest territory. We fitted two species distribution models (SDM) based on presence/absence data (111 013 plots), one calibrated from climate variables only (mean temperature of January and climatic water balance of July) and the other one from both climate and edaphic (soil pH inferred from plants) variables. Future predictions were conducted under two climate scenarios (PCM B2 and HadCM3 A2) and based on 100 simulations using a cellular automaton that accounted for seed dispersal distance, landscape barriers preventing migration and unsuitable land cover. Adding the edaphic dimension to the climate‐only SDM substantially improved the niche‐space definition of Q. pubescens, highlighting an increase in species tolerance in confronting climate constraints as the soil pH increased. Future predictions over the 21st century showed that disregarding the edaphic dimension in SDM led to an overestimation of the potential distribution area, an underestimation of the spatial fragmentation of this area, and prevented the identification of local refugia, leading to an underestimation of the northward shift capacity of Q. pubescens and its persistence in its current distribution area. Spatial discrepancies between climate‐only and climate‐plus‐edaphic models are strengthened when seed dispersal and forest fragmentation are accounted for in predicting a future species distribution area. These discrepancies highlight some imprecision in spatial predictions of potential distribution area of species under climate change scenarios and possibly wrong conclusions for conservation and management perspectives when climate‐only models are used.  相似文献   

12.
Predictive studies play a crucial role in the study of biological invasions of terrestrial plants under possible climate change scenarios. Invasive species are recognized for their ability to modify soil microbial communities and influence ecosystem dynamics. Here, we focused on six species of allelopathic flowering plants—Ailanthus altissima, Casuarina equisetifolia, Centaurea stoebe ssp. micranthos, Dioscorea bulbifera, Lantana camara, and Schinus terebinthifolia—that are invasive in North America and examined their potential to spread further during projected climate change. We used Species Distribution Models (SDMs) to predict future suitable areas for these species in North America under several proposed future climate models. ENMEval and Maxent were used to develop SDMs, estimate current distributions, and predict future areas of suitable climate for each species. Areas with the greatest predicted suitable climate in the future include the northeastern and the coastal northwestern regions of North America. Range size estimations demonstrate the possibility of extreme range loss for these invasives in the southeastern United States, while new areas may become suitable in the northeastern United States and southeastern Canada. These findings show an overall northward shift of suitable climate during the next few decades, given projected changes in temperature and precipitation. Our results can be utilized to analyze potential shifts in the distribution of these invasive species and may aid in the development of conservation and management plans to target and control dissemination in areas at higher risk for potential future invasion by these allelopathic species.  相似文献   

13.

Aim

The impact of climate change on forest biodiversity and ecosystem services will be partly determined by the relative fortunes of invasive and native forest trees under future conditions. Aotearoa New Zealand has high conservation value native forests and one of the world's worst invasive tree problems. We assess the relative effects of habitat redistribution on native Nothofagus and invasive conifer (Pinaceae) species in New Zealand as a case study on the compounding impacts of climate change and tree invasions.

Location

Aotearoa New Zealand.

Methods

We use species distribution models (SDMs) to predict the current and future distribution of habitat for five native Nothofagus species and 13 invasive conifer species under two 2070 climate scenarios. We calculate habitat loss/gain for all species and examine overlap between the invasive and native species now and in future.

Results

Most species will lose habitat overall. The native species saw large changes in the distribution of habitat with extensive losses in North Island and gains mostly in South Island. Concerningly, we found that most new habitat for Nothofagus was also suitable for at least one invasive species. However, there were refugia for the native species in the wetter parts of the climate space.

Main Conclusion

If the predicted changes in habitat distribution translate to shifts in forest distribution, it would cause widespread ecological disruption. We discuss how acclimation, adaptation and biotic interactions may prevent/delay some changes. But we also highlight that the poor establishment capacity of Nothofagus, and the contrasting ability of the conifers to invade, will present persistent conservation challenges in areas of both new habitat and forest retreat. Pinaceae are problematic invaders globally, and our results highlight that control of invasions and active native forest restoration will likely be key to managing forest biodiversity under future climates.  相似文献   

14.
Assessments of climate change impacts on species are needed for anticipating potential biodiversity losses. Climate change impacts on species are often simulated with climate envelope models, but most climate envelope models do not account for dispersal limitations. Most studies only consider two extreme (and unrealistic) dispersal options: no dispersal versus full dispersal. This study attempts to include dispersal limitation into the calculation of climate change sensitivity scores for a range of vertebrate and plant species. We calculate climate change sensitivity scores -expressed as an index- by using the 'spatial turnover' of a species under climate change, defined as the projected difference between current and future area occupied by a species within a region, and include a dispersal factor to account for dispersal limitations. We calculate climate sensitivity scores with three dispersal factors: d0 (no dispersal), d1 (full dispersal) and with an estimated value of d calculated directly from species specific dispersal data and literature estimates (de). We compared climate sensitivity scores across species groups and European bio-geographical regions in order to determine whether explicitly accounting for dispersal limitations causes significant differences in sensitivity for climate change. Our results show that the climate sensitivity scores calculated with de differ slightly from d0 (no dispersal), but differ significantly from d1 (full dispersal) for the less mobile species groups (amphibian, reptiles, plants). This indicates that assuming full dispersal significantly overestimates the future distribution in Europe under climate change for these species, whereas assuming no dispersal may slightly underestimates this. However, this conclusion could not be drawn for the more mobile birds and mammas: climate sensitivity scores calculated with de are approximately intermediate of those calculated with d0 (no dispersal) and d1 (full dispersal). This indicates that assuming either no or full dispersal results in poor estimates of the future distribution of these species in Europe under climate change, and that dispersal capacity should therefore always be considered when assessing climate change impacts on these species. Disaggregating climate sensitivity scores per European bio-geographical regions reveals that regional climate sensitivity scores are similar to the European level.  相似文献   

15.
Interspecific facilitation contributes to the assembly of desert plant communities. However, we know little of how desert communities invaded by exotic species respond to facilitation along regional-scale aridity gradients. These measures are essential for predicting how desert plant communities might respond to concomitant plant invasion and environmental change. Here, we evaluated the potential for Bromus tectorum (a dominant invasive plant species) and the broader herbaceous plant community to form positive associations with native shrubs along a substantial aridity gradient across the Great Basin, Mojave, and San Joaquin Deserts in North America. Along this gradient, we sampled metrics of abundance and performance for B. tectorum, all native herbaceous species combined, all exotic herbaceous species combined, and the total herbaceous community using 180 pairs of shrub and open microsites. Across the gradient, B. tectorum formed strong positive associations with native shrubs, achieving 1.6–2.2 times greater abundance, biomass, and reproductive output under native shrubs than away from shrubs, regardless of relative aridity. In contrast, the broader herbaceous community was not positively associated with native shrubs. Interestingly, increasing B. tectorum abundance corresponded to decreasing native abundance, native species richness, exotic species richness, and total species richness under but not away from shrubs. Taken together, these findings suggest that native shrubs have considerable potential to directly (by increasing abundance and performance) and indirectly (by increasing competitive effects on neighbors) facilitate B. tectorum invasion across a large portion of the non-native range.  相似文献   

16.
Differences in resource acquisition between native and exotic plants is one hypothesis to explain invasive plant success. Mechanisms include greater resource acquisition rates and greater plasticity in resource acquisition by invasive exotic species compared to non-invasive natives. We assess the support for these mechanisms by comparing nitrate acquisition and growth of invasive annual and perennial grass seedlings in western North America. Two invasive exotic grasses (Bromus tectorum and Taeniatherum caput-medusae) and three perennial native and exotic grasses (Pseudoroegneria spicata, Elymus elymoides, and Agropyron cristatum) were grown at various temperatures typical of autumn and springtime when resource are abundant and dominance is determined by rapid growth and acquisition of resources. Bromus tectorum and perennial grasses had similar rates of nitrate acquisition at low temperature, but acquisition by B. tectorum significantly exceeded perennial grasses at higher temperature. Consequently, B. tectorum had the highest acquisition plasticity, showcasing its ability to take advantage of transient warm periods in autumn and spring. Nitrate acquisition by perennial grasses was limited either by root production or rate of acquisition per unit root mass, suggesting a trade-off between nutrient acquisition and allocation of growth to structural tissues. Our results indicate the importance of plasticity in resource acquisition when temperatures are warm such as following autumn emergence by B. tectorum. Highly flexible and opportunistic nitrate acquisition appears to be a mechanism whereby invasive annual grasses exploit soil nitrogen that perennials cannot use.  相似文献   

17.
Bromus tectorum, an inbreeding annual grass, is a dominant invader in sagebrush steppe habitat in North America. It is also common in warm and salt deserts, displaying a larger environmental tolerance than most native species. We tested the hypothesis that a suite of habitat-specific B. tectorum lineages dominates warm desert habitats. We sampled 30 B. tectorum Mojave Desert and desert fringe populations and genotyped 10–26 individuals per population using 69 single nucleotide polymorphic (SNP) markers. We compared these populations to 11 Great Basin steppe and salt desert populations. Populations from warm desert habitats were dominated by members of two haplogroups (87 % of individuals) that were distinct from haplogroups common in Great Basin habitats. We conducted common garden studies comparing adaptive traits and field performance among haplogroups typically found in different habitats. In contrast to the haplogroup abundant in sagebrush steppe, warm desert haplogroups generally lacked a vernalization requirement for flowering. The most widespread warm desert haplogroup (Warm Desert 1) also had larger seeds and a higher root:shoot ratio than other haplogroups. In the field, performance of warm desert haplogroups was dramatically lower than the sagebrush steppe haplogroup at one steppe site, but one warm desert haplogroup performed as well as the steppe haplogroup under drought conditions at the other site. Our results suggest that B. tectorum succeeds in widely disparate environments through ecotypic variation displayed by distinct lineages of plants. Accounting for this ecotypic variation is essential in modeling its future distribution in response to climate change.  相似文献   

18.

Background and aims

Biocrusts are communities of cyanobacteria, mosses, and/or lichens found in drylands worldwide. Biocrusts are proposed to enhance soil fertility and productivity, but simultaneously act as a barrier to the invasive grass, Bromus tectorum, in western North America. Both biocrusts and B. tectorum are sensitive to climate change drivers, yet how their responses might interact to affect dryland ecosystems is unclear.

Methods

Using mesocosms with bare soil versus biocrust cover, we germinated B. tectorum seeds collected from warmed, warmed + watered, and ambient temperature plots within a long-term climate change experiment on the Colorado Plateau, USA. We characterized biocrust influences on soil fertility and grass germination, morphology, and chemistry.

Results

Biocrusts increased soil fertility and B. tectorum biomass, specific leaf area (SLA), and root:shoot ratios. Germination rates were unaffected by mesocosm cover-type. Biocrusts delayed germination timing while also interacting with the warmed treatment to advance, and with the warmed + watered treatment to delay germination.

Conclusions

Biocrusts promoted B. tectorum growth, likely through positive influence on soil fertility which was elevated in biocrust mesocosms, and interacted with seed treatment-provenance to affect germination. Understanding how anticipated losses of biocrusts will affect invasion dynamics will require further investigation of how plant plasticity/adaptation to specific climate drivers interact with soil and biocrust properties.
  相似文献   

19.

Mapping the distribution of invasive species under current and future climate conditions is crucial to implement sustainable and effective conservation strategies. Several studies showed how invasive species may benefit from climate change fostering their invasion rate and, consequently, affecting the native species community. In the Canary Islands and on Tenerife in particular, previous research mostly focused on climate change impacts on the native communities, whereas less attention has been paid on alien species distribution under climate change scenarios. In this study, we modelled the habitat distribution of Pennisetum setaceum, one of the most invasive alien species on Tenerife. In addition, we described the species’ potential distribution shift in the light of two climate change scenarios (RCP2.6, RCP8.5), highlighting the areas that should be prioritized during management and eradication programs. P. setaceum’s suitable areas are located in the coastal area, with higher habitat suitability near cities and below 800 m asl. In both future climate change scenarios, the geographic distribution of P. setaceum suitable areas is characterized by an elevational shift, which is more pronounced in the RCP8.5 scenario. Despite being drought resistant, water supply is crucial for the species’ seed germination, thus supporting future species’ shift to higher elevation and in the north–north–west part of the island, where it could benefit from the combined effect of orographic precipitations and humidity carried by trade winds.

  相似文献   

20.
Aim (1) To calculate annual potential evapotranspiration (PET), actual evapotranspiration (AET) and climatic water deficit (Deficit) with high spatial resolution; (2) to describe distributions for 17 tree species over a 2300‐m elevation gradient in a 3000‐km2 landscape relative to AET and Deficit; (3) to examine changes in AET and Deficit between past (c. 1700), present (1971–2000) and future (2020–49) climatological means derived from proxies, observations and projections; and (4) to infer how the magnitude of changing Deficit may contribute to changes in forest structure and composition. Location Yosemite National Park, California, USA. Methods We calculated the water balance within Yosemite National Park using a modified Thornthwaite‐type method and correlated AET and Deficit with tree species distribution. We used input data sets with different spatial resolutions parameterized for variation in latitude, precipitation, temperature, soil water‐holding capacity, slope and aspect. We used climate proxies and climate projections to model AET and Deficit for past and future climate. We compared the modelled future water balance in Yosemite with current species water‐balance ranges in North America. Results We calculated species climatic envelopes over broad ranges of environmental gradients – a range of 310 mm for soil water‐holding capacity, 48.3°C for mean monthly temperature (January minima to July maxima), and 918 mm yr?1 for annual precipitation. Tree species means were differentiated by AET and Deficit, and at higher levels of Deficit, species means were increasingly differentiated. Modelled Deficit for all species increased by a mean of 5% between past (c. 1700) and present (1971–2000). Projected increases in Deficit between present and future (2020–49) were 23% across all plots. Main conclusions Modelled changes in Deficit between past, present and future climate scenarios suggest that recent past changes in forest structure and composition may accelerate in the future, with species responding individualistically to further declines in water availability. Declining water availability may disproportionately affect Pinus monticola and Tsuga mertensiana. Fine‐scale heterogeneity in soil water‐holding capacity, aspect and slope implies that plant water balance may vary considerably within the grid cells of kilometre‐scale climate models. Sub‐grid‐cell soil and topographical data can partially compensate for the lack of spatial heterogeneity in gridded climate data, potentially improving vegetation‐change projections in mountainous landscapes with heterogeneous topography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号