首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The objective of this study was to compare virulence among different Aeromonas species causing bloodstream infections.

Methodology/Principal Findings

Nine of four species of Aeromonas blood isolates, including A. dhakensis, A. hydrophila, A. veronii and A. caviae were randomly selected for analysis. The species was identified by the DNA sequence matching of rpoD. Clinically, the patients with A. dhakensis bacteremia had a higher sepsis-related mortality rate than those with other species (37.5% vs. 0%, P = 0.028). Virulence of different Aeromonas species were tested in C. elegans, mouse fibroblast C2C12 cell line and BALB/c mice models. C. elegans fed with A. dhakensis and A. caviae had the lowest and highest survival rates compared with other species, respectively (all P values <0.0001). A. dhakensis isolates also exhibited more cytotoxicity in C2C12 cell line (all P values <0.0001). Fourteen-day survival rate of mice intramuscularly inoculated with A. dhakensis was lower than that of other species (all P values <0.0001). Hemolytic activity and several virulence factor genes were rarely detected in the A. caviae isolates.

Conclusions/Significance

Clinical data, ex vivo experiments, and animal studies suggest there is virulence variation among clinically important Aeromonas species.  相似文献   

2.
The association of quantum dots (QDs) to carbohydrate-binding proteins – lectins – has revealed novel biotechnological strategies for glycobiology studies. Herein, carboxyl-coated QDs were conjugated by adsorption to Cramoll, a glucose/mannose lectin obtained from Cratylia mollis seeds. Then, the conjugates were optically characterized and used to evaluate the surface carbohydrate profiles of four Aeromonas species isolated from the tambaqui fish (Colossoma macropomum). All the Aeromonas cells were labeled by the conjugate. Inhibition assays with methyl-α-D-mannopyranoside and mannan were performed to confirm the labeling specificity. Cramoll-QDs conjugates presented high brightness and showed similar absorption and emission profiles compared to bare QDs. According to the labeling pattern of Aeromonas spp. by the conjugate, results suggested that A. jandaei and A. dhakensis strains may harbor a higher content of more complex glucose/mannose surface glycans, with more available sites for Cramoll-QDs interaction, than A. hydrophila and A. caviae. Noteworthy, the Cramoll-QDs conjugates demonstrated to be potential tools for bacterial characterization based on superficial carbohydrate detection.  相似文献   

3.
4.
Gram-negative bacilli of the genus Aeromonas are primarily inhabitants of the aquatic environment. Humans acquire this organism from a wide range of food and water sources as well as during aquatic recreational activities. In the present study, the diversity and distribution of Aeromonas species from freshwater lakes in Malaysia was investigated using glycerophospholipid-cholesterol acyltransferase (GCAT) and RNA polymerase sigma-factor (rpoD) genes for speciation. A total of 122 possible Aeromonas strains were isolated and confirmed to genus level using the API20E system. The clonality of the isolates was investigated using ERIC-PCR and 20 duplicate isolates were excluded from the study. The specific GCAT-PCR identified all isolates as belonging to the genus Aeromonas, in agreement with the biochemical identification. A phylogenetic tree was constructed using the rpoD gene sequence and all 102 isolates were identified as: A. veronii 43%, A. jandaei 37%, A. hydrophila 6%, A. caviae 4%, A. salmonicida 2%, A. media 2%, A. allosaccharophila 1%, A. dhakensis 1% and Aeromonas spp. 4%. Twelve virulence genes were present in the following proportions—exu 96%, ser 93%, aer 87%, fla 83%, enolase 70%, ela 62%, act 54%, aexT 33%, lip 16%, dam 16%, alt 8% and ast 4%, and at least 2 of these genes were present in all 102 strains. The ascV, aexU and hlyA genes were not detected among the isolates. A. hydrophila was the main species containing virulence genes alt and ast either present alone or in combination. It is possible that different mechanisms may be used by each genospecies to demonstrate virulence. In summary, with the use of GCAT and rpoD genes, unambiguous identification of Aeromonas species is possible and provides valuable data on the phylogenetic diversity of the organism.  相似文献   

5.
The Aeromonas group 501, also named Aeromonas sp. HG13, is taxonomically close to A. schubertii. Results obtained in previous studies, including DNA–DNA hybridization and DNA fingerprinting, suggest that Aeromonas group 501 could constitute a different Aeromonas species. In this work we have performed a polyphasic study with the two strains comprising the Aeromonas sp. HG13 in order to propose a formal species name. They could be differentiated from A. schubertii by the indole and lysine decarboxylase tests and the utilization of l-lactate. Phenotypically, both strains were also easily separated from the other Aeromonas species. Sequence analysis of the 16S rRNA gene showed high sequence similarities (>97%) between Aeromonas group 501 and all Aeromonas species. Nevertheless, sequence divergences of cpn60, dnaJ, gyrB and rpoD genes were higher than the intraspecific threshold values established for each gene (3.5%, 3.3%, 2.3% and 2.6%, respectively), while sequence divergences between strains CDC 2478-85T and CDC 2555-87 were low (0.6–1.1%). The DNA G+C content of the type strain was 62.2 mol%. Phenotypic and genotypic evidence strongly suggests that the Aeromonas group 501 is a novel species of the genus Aeromonas, for which the name Aeromonas diversa sp. nov. is proposed. The type strain is CDC 2478-85T (=CECT 4254T=ATCC 43946T=LMG 17321T).  相似文献   

6.
The pigmentation of many Aeromonas species has been thought to be due to the production of a L-DOPA (L-3,4-dihydroxyphenylalanine) based melanin. However, in this study we found that although L-DOPA synthesis occurs in the high-melanin-yielding Aeromonas media strain WS, it plays a minor, if any, role in pigmentation. Instead, the pigmentation of A. media strain WS is due to the production of pyomelanin through HGA (homogentisate). Gene products of phhA (encodes phenylalanine hydroxylase), tyrB and aspC (both encode aromatic amino acid aminotransferase), and hppD (encodes 4-hydroxyphenylpyruvate dioxygenase) constitute a linear pathway of converting phenylalanine to HGA and disruption of any one of these genes impairs or blocks pigmentation of A. media strain WS. This HGA biosynthesis pathway is widely distributed in Aeromonas, but HGA is only detectable in the cultures of pigmented Aeromonas species. Heterologous expression of HppD from both pigmented and non-pigmented Aeromonas species in E. coli leads to the production of pyomelanin and thus pigmentation, suggesting that most Aeromonas species have the critical enzymes to produce pyomelanin through HGA. Taken together, we have identified a widely conserved biosynthesis pathway of HGA based pyomelanin in Aeromonas that may be responsible for pigmentation of many Aeromonas species.  相似文献   

7.
Previous studies indicate that Aeromonas aquariorum and Aeromonas hydrophila subsp. dhakensis are the same taxon and suggest that they should be synonymized. Using a polyphasic approach, the phenotypic and phylogenetic relationship of A. aquariorum with the 3 defined A. hydrophila subspecies (i.e. dhakensis, hydrophila, ranae) was investigated. Phylogenetic trees derived from the 16S rRNA, rpoD or gyrB genes and a multilocus phylogenetic analysis (with the concatenated sequences of gyrB, rpoD, recA, dnaJ and gyrA) confirmed that both A. aquariorum and A. hydrophila subsp. dhakensis are a unique taxon, different from the other A. hydrophila subspecies, corroborating the phenotypic and DNA–DNA hybridization (DDH) results. A formal synonymization of A. aquariorum and A. hydrophila subsp. dhakensis and a reclassification of both as Aeromonas dhakensis sp. nov. comb nov. is therefore proposed.  相似文献   

8.
Members of the genus Aeromonas are ubiquitous in nature and have increasingly been implicated in numerous diseases of humans and other animal taxa. Although some species of aeromonads are human pathogens, their presence, density, and relative abundance are rarely considered in assessing water quality. The objectives of this study were to identify Aeromonas species within Lake Erie, determine their antibiotic resistance patterns, and assess their potential pathogenicity. Aeromonas strains were isolated from Lake Erie water by use of Aeromonas selective agar with and without tetracycline and ciprofloxacin. All isolates were analyzed for hemolytic ability and cytotoxicity against human epithelial cells and were identified to the species level by using 16S rRNA gene restriction fragment length polymorphisms and phylogenetic analysis based on gyrB gene sequences. A molecular virulence profile was identified for each isolate, using multiplex PCR analysis of six virulence genes. We demonstrated that Aeromonas comprised 16% of all culturable bacteria from Lake Erie. Among 119 Aeromonas isolates, six species were identified, though only two species (Aeromonas hydrophila and A. veronii) predominated among tetracycline- and ciprofloxacin-resistant isolates. Additionally, both of these species demonstrated pathogenic phenotypes in vitro. Virulence gene profiles demonstrated a high prevalence of aerolysin and serine protease genes among A. hydrophila and A. veronii isolates, a genetic profile which corresponded with pathogenic phenotypes. Together, our findings demonstrate increased antibiotic resistance among potentially pathogenic strains of aeromonads, illustrating an emerging potential health concern.  相似文献   

9.
The genomes of 10 Aeromonas isolates identified and designated Aeromonas hydrophila WI, Riv3, and NF1 to NF4; A. dhakensis SSU; A. jandaei Riv2; and A. caviae NM22 and NM33 were sequenced and annotated. Isolates NF1 to NF4 were from a patient with necrotizing fasciitis (NF). Two environmental isolates (Riv2 and -3) were from the river water from which the NF patient acquired the infection. While isolates NF2 to NF4 were clonal, NF1 was genetically distinct. Outside the conserved core genomes of these 10 isolates, several unique genomic features were identified. The most virulent strains possessed one of the following four virulence factors or a combination of them: cytotoxic enterotoxin, exotoxin A, and type 3 and 6 secretion system effectors AexU and Hcp. In a septicemic-mouse model, SSU, NF1, and Riv2 were the most virulent, while NF2 was moderately virulent. These data correlated with high motility and biofilm formation by the former three isolates. Conversely, in a mouse model of intramuscular infection, NF2 was much more virulent than NF1. Isolates NF2, SSU, and Riv2 disseminated in high numbers from the muscular tissue to the visceral organs of mice, while NF1 reached the liver and spleen in relatively lower numbers on the basis of colony counting and tracking of bioluminescent strains in real time by in vivo imaging. Histopathologically, degeneration of myofibers with significant infiltration of polymorphonuclear cells due to the highly virulent strains was noted. Functional genomic analysis provided data that allowed us to correlate the highly infectious nature of Aeromonas pathotypes belonging to several different species with virulence signatures and their potential ability to cause NF.  相似文献   

10.
Aeromonas are responsible for causing gastroenteritis and extra-intestinal infections in humans. Twenty-two Aeromonas strains isolated from different food sources were re-identified up to species level using rpoD gene sequence analysis. Biochemical tests and 16S rRNA gene sequencing were insufficient to identify Aeromonas till species level. However, incorporation of additional biochemical tests lead to correct identification of 95.5 % strains up to species level. The 16S rRNA gene sequencing was useful to identify Aeromonas isolates at the genus level only. Sequences of the rpoD gene showed greater discriminatory power than 16S rRNA gene and provided conclusive discrimination of the strains for which the phenotypic species identification was uncertain. All these 22 strains were accurately identified up to species level by rpoD gene as A. salmonicida (6), A. veronii bv. veronii (4), A. caviae (3), A. hydrophila (2), A. veronii bv. sobria (2), A. jandaei (1), A. trota (1), A. sobria (1), A. allosaccharophila (1) and A. bivalvium (1). All these strains were also characterized using whole cell protein (WCP) analysis by gradient SDS-PAGE and showed different whole cell protein (WCP) profile [22–28 polypeptide bands (~10 to >97 kDa)], indicating high genetic diversity. The present work emphasizes the use of molecular methods such as rpoD gene sequencing along with comprehensive biochemical tests for the rapid and accurate identification of Aeromonas isolates till species level. The WCP profile can be subsequently used to characterize Aeromonas isolates below species level.  相似文献   

11.
A broad multilocus phylogenetic analysis (MLPA) of the representative diversity of a genus offers the opportunity to incorporate concatenated inter-species phylogenies into bacterial systematics. Recent analyses based on single housekeeping genes have provided coherent phylogenies of Aeromonas. However, to date, a multi-gene phylogenetic analysis has never been tackled. In the present study, the intra- and inter-species phylogenetic relationships of 115 strains representing all Aeromonas species described to date were investigated by MLPA. The study included the independent analysis of seven single gene fragments (gyrB, rpoD, recA, dnaJ, gyrA, dnaX, and atpD), and the tree resulting from the concatenated 4705 bp sequence. The phylogenies obtained were consistent with each other, and clustering agreed with the Aeromonas taxonomy recognized to date. The highest clustering robustness was found for the concatenated tree (i.e. all Aeromonas species split into 100% bootstrap clusters). Both possible chronometric distortions and poor resolution encountered when using single-gene analysis were buffered in the concatenated MLPA tree. However, reliable phylogenetic species delineation required an MLPA including several “bona fide” strains representing all described species.  相似文献   

12.

Background

Species of the genus Aeromonas are native inhabitants of aquatic environments and have recently been considered emerging human pathogens. Although the gastrointestinal tract is by far the most common anatomic site from which aeromonads are recovered, their role as etiologic agents of bacterial diarrhea is still disputed. Aeromonas-associated diarrhea is a phenomenon occurring worldwide; however, the exact prevalence of Aeromonas infections on a global scale is unknown.

Methodology/Principal Findings

The prevalence and virulence potential of Aeromonas in patients suffering from diarrhea in Israel was studied using molecular methods. 1,033 diarrheal stools were sampled between April and September 2010 and Aeromonas species were identified in 17 (∼2%) patients by sequencing the rpoD gene. Aeromonas species identity and abundance was: A. caviae (65%), A. veronii (29%) and Aeromonas taiwanensis (6%). This is the first clinical record of A. taiwanensis as a diarrheal causative since its recent discovery from a wound infection in a patient in Taiwan. Most of the patients (77%) from which Aeromonas species were isolated were negative for any other pathogens. The patients ranged from 1 to 92 years in age. Aeromonas isolates were found to possess different virulence-associated genes: ahpB (88%), pla/lip/lipH3/apl-1 (71%), act/hlyA/aerA (35%), alt (18%), ast (6%), fla (65%), lafA (41%), TTSS ascV (12%), TTSS ascF-ascG (12%), TTSS-dependent ADP-ribosylating toxins aexU (41%) and aexT (6%) in various combinations. Most of the identified strains were resistant to beta-lactam antibiotics but susceptible to third-generation cephalosporin antibiotics.

Conclusions

Aeromonas may be a causative agent of diarrhea in patients in Israel and therefore should be included in routine bacteriological screenings.  相似文献   

13.
The genus Aeromonas includes some species that have now been identified as human pathogens of significant medical importance. We investigated the ability of 13 selected Aeromonas strains belonging to nine species isolated from clinical cases (n = 5), environmental waters (n = 5), and fish (n = 3) to adhere to and translocate Caco-2 cells in the absence and presence of two lactic acid bacteria (LAB), i.e., Lactobacillus acidophilus and Bifidobacterium breve. Aeromonas isolates were also assessed for their cytotoxicity, the presence of virulence genes, and hemolysin production. Among the clinical isolates, one strain of Aeromonas veronii biovar veronii and two strains of Aeromonas hydrophila carried cytotoxin (act), heat-labile toxin (alt), hemolysin (hlyA), and aerolysin (aerA) genes, were cytotoxic to Vero cells, produced hemolysin, and showed higher adherence to Caco-2 cells. In contrast, this was seen in only one environmental strain, a strain of A. veronii biovar sobria. When Aeromonas strains were coinoculated with LAB onto Caco-2 cells, their level of adhesion was reduced. However, their rate of translocation in the presence of LAB increased and was significantly (P < 0.05) higher among fish strains. We suggest that either the interaction between Aeromonas and LAB strains could have a detrimental effect on the Caco-2 cells, allowing the Aeromonas to translocate more readily, or the presence of the LAB stimulated the Aeromonas strains to produce more toxins and/or increase their translocation rate.  相似文献   

14.
Bacterial virulence can only be assessed by confronting bacteria with a host. Here, we present a new simple assay to evaluate Aeromonas virulence, making use of Dictyostelium amoebae as an alternative host model. This assay can be modulated to assess virulence of very different Aeromonas species.  相似文献   

15.
16.
17.
AimTo calculate the incremental cost of nosocomial bacteremia caused by the most common organisms, classified by their antimicrobial susceptibility.MethodsWe selected patients who developed nosocomial bacteremia caused by Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, or Pseudomonas aeruginosa. These microorganisms were analyzed because of their high prevalence and they frequently present multidrug resistance. A control group consisted of patients classified within the same all-patient refined-diagnosis related group without bacteremia. Our hospital has an established cost accounting system (full-costing) that uses activity-based criteria to analyze cost distribution. A logistic regression model was fitted to estimate the probability of developing bacteremia for each admission (propensity score) and was used for propensity score matching adjustment. Subsequently, the propensity score was included in an econometric model to adjust the incremental cost of patients who developed bacteremia, as well as differences in this cost, depending on whether the microorganism was multidrug-resistant or multidrug-sensitive.ResultsA total of 571 admissions with bacteremia matched the inclusion criteria and 82,022 were included in the control group. The mean cost was € 25,891 for admissions with bacteremia and € 6,750 for those without bacteremia. The mean incremental cost was estimated at € 15,151 (CI, € 11,570 to € 18,733). Multidrug-resistant P. aeruginosa bacteremia had the highest mean incremental cost, € 44,709 (CI, € 34,559 to € 54,859). Antimicrobial-susceptible E. coli nosocomial bacteremia had the lowest mean incremental cost, € 10,481 (CI, € 8,752 to € 12,210). Despite their lower cost, episodes of antimicrobial-susceptible E. coli nosocomial bacteremia had a major impact due to their high frequency.ConclusionsAdjustment of hospital cost according to the organism causing bacteremia and antibiotic sensitivity could improve prevention strategies and allow their prioritization according to their overall impact and costs. Infection reduction is a strategy to reduce resistance.  相似文献   

18.
The global rise in antimicrobial resistance (AMR) among bacteria causing infectious diseases is well documented, and the associated risks for human health are well known. There is much less research on AMR with regard to environmental strains, both opportunistic and pathogenic ones. The genus Aeromonas is widely distributed in the environment and causes many variable diseases in fish and humans. Infections in humans are predominantly caused by Aeromonas veronii, A. hydrophila and A. caviae (A. punctata) in a form of bacteremia, gastroenteritis or even septicaemia in immunocompetent and immunocompromised individuals. Different groups of antibiotics are used in the treatment, but studies indicate that fluoroquinolones and cefotaxime are the most efficient. A disturbing consequence of antibiotic overuse is an increasing number of detection of various antibiotic resistance genes (ARG) within this genus. The water environment is one of the major modes of transmission of resistant bacteria from animals to humans, and, thus, the dissemination of antibiotic resistance genes, particularly those located in mobile genetic elements (MGE) occurs in such as plasmids and transposons. This review summarizes recently published information on the type, distribution, and transmission of ARG by MGE, widespread in Aeromonas strains living in various aquatic environments, including wastewater, natural water, aquaculture and urban drinking water. The data available indicate that the opportunistic pathogens like Aeromonas spp. might serve as important vectors of ARG for clinically relevant pathogens present in such bodies of water .  相似文献   

19.
Phenotypicaly identified Aeromonas strains (n=119) recovered mainly from diseased fish were genetically re-identified and the concordance between the results was analysed. Molecular characterization based on the GCAT genus specific gene showed that only 90 (75.6%) strains belonged to the genus Aeromonas. The 16S rDNA-RFLP method identified correctly most of the strains with the exception of a few that belonged to A. bestiarum, A. salmonicida or A. piscicola. Separation of these 3 species was correctly assessed with the rpoD gene sequences, which revealed that 5 strains with the RFLP pattern of A. salmonicida belonged to A. piscicola, as did 1 strain with the pattern of A. bestiarum. Correct phenotypic identification occurred in only 32 (35.5%) of the 90 strains. Only 14 (21.8%) of the 64 phenotypically identified A. hydrophila strains belonged to this species. However, coincident results were obtained in 88% (15/17) of the genetically identified A. salmonicida strains. Phenotypic tests were re-evaluated on the 90 genetically characterized Aeromonas strains and there were contradictions in the species A. sobria for a number of previously published species-specific traits. After genetic identification, the prevailing species were A. sobria, A. salmonicida, A. bestiarum, A. hydrophila, A. piscicola and A. media but we could also identify a new isolate of the recently described species A. tecta. This work emphasizes the need to rely on the 16S rDNA-RFLP method and sequencing of housekeeping genes such as rpoD for the correct identification of Aeromonas strains.  相似文献   

20.
An easier assessment model would be helpful for high-throughput screening of Aeromonas virulence. The previous study indicated the potential of Tetrahymena as a permissive model to examine virulence of Aeromonas hydrophila. Here our aim was to assess virulence of Aeromonas spp. using two model hosts, a zebrafish assay and Tetrahymena-Aeromonas co-culture, and to examine whether data from the Tetrahymena thermophila model reflects infections in the well-established animal model. First, virulence of 39 Aeromonas strains was assessed by determining the 50% lethal dose (LD50) in zebrafish. LD50 values ranging from 1.3×102 to 3.0×107 indicated that these strains represent a high to moderate degree of virulence and could be useful to assess virulence in the Tetrahymena model. In Tetrahymena-Aeromonas co-culture, we evaluated the virulence of Aeromonas by detecting relative survival of Aeromonas and Tetrahymena. An Aeromonas isolate was considered virulent when its relative survival was greater than 60%, while the Aeromonas isolate was considered avirulent if its relative survival was below 40%. When relative survival of T. thermophila was lower than 40% after co-culture with an Aeromonas isolate, the bacterial strain was regarded as virulent. In contrast, the strain was classified as avirulent if relative survival of T. thermophila was greater than 50%. Encouragingly, data from the 39 Aeromonas strains showed good correlation in zebrafish and Tetrahymena-Aeromonas co-culture models. The results provide sufficient data to demonstrate that Tetrahymena can be a comparable alternative to zebrafish for determining the virulence of Aeromonas isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号