共查询到20条相似文献,搜索用时 0 毫秒
1.
The goal of the present study is to explore whether Ca2+ and Mg2+-binding properties of isomeric Kv channel-interacting proteins (KChIPs) have different effects on their molecular structure and the binding with Kv channel. 8-Anilinonaphthalene- 1-sulfonate fluorescence measurement showed that KChIP4.1 and KChIP2.2 possessed one and two types of Ca2+-binding sites, respectively, and only one type of Mg2+-binding site was noted in the two KChIP proteins. Removal of EF-hand 4 (EF-4) caused a marked drop in their high affinities for Ca2+, but the binding affinity for Mg2+ remained mostly the same. Unlike KChIP4.1, the intact EF-4 was essential for the Kv channel-binding ability of KChIP2.2 in a metal-free buffer. Nevertheless, the interaction of wild-type KChIPs and EF-4-truncated mutants with Kv channel was enhanced by the addition of Mg2+ and Ca2+. In contrast to KChIP4.1, the thermal stability of KChIP2.2 was decreased by the binding of Mg2+ and Ca2+. These results suggest that the conformational change with metal-bound KChIP4.1 is crucial for its interaction with Kv channel but not for KChIP2.2, and that the Mg2+- and Ca2+-binding properties of KChIP2.2 and KChIP4.1 have different effects on their molecular structure. 相似文献
2.
《Journal of molecular biology》2019,431(3):542-556
The fast inactivation and clustering functions of voltage-dependent potassium channels play fundamental roles in electrical signaling. Recent evidence suggests that both these distinct channel functions rely on intrinsically disordered N- and C-terminal cytoplasmic segments that function as entropic clocks to time channel inactivation or scaffold protein-mediated clustering, both relying on what can be described as a “ball and chain” binding mechanism. Although the mechanisms employed in each case are seemingly analogous, both were put forward based on bulky chain deletions and further exhibit differences in reaction order. These considerations raised the question of whether the molecular mechanisms underlying Kv channel fast inactivation and clustering are indeed analogous. By taking a “chain”-level chimeric channel approach involving long and short spliced inactivation or clustering “chain” variants of the Shaker Kv channel, we demonstrate the ability of native inactivation and clustering “chains” to substitute for each other in a length-dependent manner, as predicted by the “ball and chain” mechanism. Our results thus provide direct evidence arguing that the two completely unrelated Shaker Kv channel processes of fast inactivation and clustering indeed occur according to a similar molecular mechanism. 相似文献
3.
Pirenzepine, a compound with selective antimuscarinic activity, was used to distinguish muscarinic acetylcholine receptor subtypes in normal human brain. Hill coefficients and IC50 values derived from the inhibition of specific [3H]L-quinuclidinyl benzilate receptor binding suggest the presence of two muscarinic binding sites, differing both in affinity for pirenzepine and in tissue distribution. 相似文献
4.
To study the lipid-protein interaction in a reductionistic fashion, it is necessary to incorporate the membrane proteins into membranes of well-defined lipid composition. We are studying the lipid-dependent gating effects in a prototype voltage-gated potassium (Kv) channel, and have worked out detailed procedures to reconstitute the channels into different membrane systems. Our reconstitution procedures take consideration of both detergent-induced fusion of vesicles and the fusion of protein/detergent micelles with the lipid/detergent mixed micelles as well as the importance of reaching an equilibrium distribution of lipids among the protein/detergent/lipid and the detergent/lipid mixed micelles. Our data suggested that the insertion of the channels in the lipid vesicles is relatively random in orientations, and the reconstitution efficiency is so high that no detectable protein aggregates were seen in fractionation experiments. We have utilized the reconstituted channels to determine the conformational states of the channels in different lipids, record electrical activities of a small number of channels incorporated in planar lipid bilayers, screen for conformation-specific ligands from a phage-displayed peptide library, and support the growth of 2D crystals of the channels in membranes. The reconstitution procedures described here may be adapted for studying other membrane proteins in lipid bilayers, especially for the investigation of the lipid effects on the eukaryotic voltage-gated ion channels. 相似文献
5.
6.
Molecular Template for a Voltage Sensor in a Novel K+ Channel. III. Functional Reconstitution of a Sensorless Pore Module from a Prokaryotic Kv Channel 下载免费PDF全文
Jose S. Santos Sergey M. Grigoriev Mauricio Montal 《The Journal of general physiology》2008,132(6):651-666
KvLm is a prokaryotic voltage-gated K+ (Kv) channel from Listeria monocytogenes. The sequence of the voltage-sensing module (transmembrane segments S1-S4) of KvLm is atypical in that it contains only three of the eight conserved charged residues known to be deterministic for voltage sensing in eukaryotic Kv's. In contrast, the pore module (PM), including the S4-S5 linker and cytoplasmic tail (linker-S5-P-S6-C-terminus) of KvLm, is highly conserved. Here, the full-length (FL)-KvLm and the KvLm-PM only proteins were expressed, purified, and reconstituted into giant liposomes. The properties of the reconstituted FL-KvLm mirror well the characteristics of the heterologously expressed channel in Escherichia coli spheroplasts: a right-shifted voltage of activation, micromolar tetrabutylammonium-blocking affinity, and a single-channel conductance comparable to that of eukaryotic Kv's. Conversely, ionic currents through the PM recapitulate both the conductance and blocking properties of the FL-KvLm, yet the KvLm-PM exhibits only rudimentary voltage dependence. Given that the KvLm-PM displays many of the conduction properties of FL-KvLm and of other eukaryotic Kv's, including strict ion selectivity, we conclude that self-assembly of the PM subunits in lipid bilayers, in the absence of the voltage-sensing module, generates a conductive oligomer akin to that of the native KvLm, and that the structural independence of voltage sensing and PMs observed in eukaryotic Kv channels was initially implemented by nature in the design of prokaryotic Kv channels. Collectively, the results indicate that this robust functional module will prove valuable as a molecular template for coupling new sensors and to elucidate PM residue–specific contributions to Kv conduction properties. 相似文献
7.
Zhaobing Gao Tangzhi Zhang Meng Wu Qiaojie Xiong Haiyan Sun Yinan Zhang Liansuo Zu Wei Wang Min Li 《The Journal of biological chemistry》2010,285(36):28322-28332
Kv7 channels, especially Kv7.2 (KCNQ2) and Kv7.3 (KCNQ3), are key determinants for membrane excitability in the brain. Some chemical modulators of KCNQ channels are in development for use as anti-epileptic drugs, such as retigabine (D-23129, N-(2-amino-4-(4-fluorobenzylamino)-phenyl)), which was recently approved for clinical use. In addition, several other compounds were also reported to potentiate activity of the Kv7 channels. It is therefore of interest to investigate compound-channel interactions, so that more insights may be gained to aid future development of therapeutics. We have conducted a screen of 20,000 compounds for KCNQ2 potentiators using rubidium flux combined with atomic absorption spectrometry. Here, we report the characterization of a series of new structures that display isoform specificity and induce a marked reduction of deactivation distinct from that of retigabine. Furthermore, KCNQ2(W236L), a previously reported mutation that abolishes sensitivity to retigabine, remains fully sensitive to these compounds. This result, together with mutagenesis and other studies, suggests that the reported compounds confer a unique mode of action and involve new molecular determinants on the channel protein, consistent with the idea of recognizing a new site on channel protein. 相似文献
8.
Many studies have demonstrated that the pathophysiology and clinical symptoms of Parkinson''s disease (PD) are inhomogeneous. However, the symptom-specific intrinsic neural activities underlying the PD subtypes are still not well understood. Here, 15 tremor-dominant PD patients, 10 non-tremor-dominant PD patients, and 20 matched normal controls (NCs) were recruited and underwent resting-state functional magnetic resonance imaging (fMRI). Functional brain networks were constructed based on randomly generated anatomical templates with and without the cerebellum. The regional network efficiencies (i.e., the local and global efficiencies) were further measured and used to distinguish subgroups of PD patients (i.e., with tremor-dominant PD and non-tremor-dominant PD) from the NCs using linear discriminant analysis. The results demonstrate that the subtype-specific functional networks were small-world-organized and that the network regional efficiency could discriminate among the individual PD subgroups and the NCs. Brain regions involved in distinguishing between the study groups included the basal ganglia (i.e., the caudate and putamen), limbic regions (i.e., the hippocampus and thalamus), the cerebellum, and other cerebral regions (e.g., the insula, cingulum, and calcarine sulcus). In particular, the performances of the regional local efficiency in the functional network were better than those of the global efficiency, and the performances of global efficiency were dependent on the inclusion of the cerebellum in the analysis. These findings provide new evidence for the neurological basis of differences between PD subtypes and suggest that the cerebellum may play different roles in the pathologies of different PD subtypes. The present study demonstrated the power of the combination of graph-based network analysis and discrimination analysis in elucidating the neural basis of different PD subtypes. 相似文献
9.
目的:建立一种稳定的适合膜片钳技术的逼尿肌细胞急性酶分离方法,为排尿相关障碍性疾病的研究提供必要的技术平台.方法:采用H型胶原酶和木瓜蛋白酶相混合的鸡尾酒酶液对新鲜离体的大鼠膀胱逼尿肌条在37℃条件下振荡消化,α-actin免疫荧光染色对分离并培养的原代细胞进行鉴定,在膜片钳工作台上分别对其进行L型钙电流和BKca钾电流的全细胞记录.结果:可获得大量的单个逼尿肌细胞.经过免疫荧光染色证实为平滑肌细胞.分离细胞活性良好,在膜片钳实验系统上可记录到多种通道电流.结论:建立了一种操作简单、成功率高、活性好的逼尿肌细胞急性酶分离方法并成功应用于膜片钳技术. 相似文献
10.
Molecular Evidence for Nosocomial Transmission of Human Immunodeficiency Virus from a Surgeon to One of His Patients 总被引:4,自引:0,他引:4
Alain Blanchard Stphane Ferris Sophie Chamaret Denise Gutard Luc Montagnier 《Journal of virology》1998,72(5):4537-4540
We have investigated the molecular evidence in favor of the transmission of human immunodeficiency virus (HIV) from an HIV-infected surgeon to one of his patients. After PCR amplification, the env and gag sequences from the viral genome were cloned and sequenced. Phylogenetic analysis revealed that the viral sequences derived from the surgeon and his patient are closely related, which strongly suggests that nosocomial transmission occurred. In addition, these viral sequences belong to group M of HIV type 1 but are divergent from the reference sequences of the known subtypes. 相似文献
11.
Abstract In this study, structural model of the pore loop region of the voltage-gated potassium channel Kv1.1 from human Homo sapiens was constructed based on the crystallographic structure of KcsA by structural homology. The pore loop region of Kv1.1 exhibits similar folds as that of KcsA. The structural feature of the selectivity filter of Kv1.1 is nearly identical to that of KcsA, whereas most of the structural variations occur in the turret as well as in the inner and outer helices. Molecular docking experiments of the scorpion toxin Tc1 from Tityus cambridgei to the outer vestibule of KcsA as well as Kv1.1 were subsequently performed with various initial Tc1 orientations. Tc1 was found to form the most stable complexes with these two K+ channels when the side chain of Lys14 occupies the pore of the selectivity filter through electrostatic interaction. Tc1 binds preferentially towards Kv1.1 than KcsA due to stronger hydrophobic and electrostatic interactions formed between the toxin and the selectivity filter and outer vestibule of Kv1.1. Furthermore, surface complementarity of the outer vestibules of the channels to the Tc1 spatial conformations also plays an important role in stabilizing both the Tc1/KcsA and Tc1/Kv1.1 complexes. 相似文献
12.
Brock MW Lebaric ZN Neumeister H DeTomaso A Gilly WF 《The Journal of membrane biology》2001,180(2):147-161
SqKv1A is a cDNA that encodes a Kv1 (Shaker-type) α-subunit expressed only in the giant axon and the parental giant fiber lobe (GFL) neurons of the squid stellate ganglion.
We incorporated SqKv1A into a recombinant baculovirus for expression in the insect Sf9 cell line. Whole-cell patch-clamp recordings
reveal that very few cells display functional potassium current (I
K) if cultured at the standard postinfection temperature of 27°C. At 18°C, less SqKv1A protein is produced than at 27°C, but
cells with I
K currents are much more numerous and can survive for at least 20 days postinfection (vs. ∼5 days at 27°C). Activation and
deactivation kinetics of SqKv1A in Sf9 cells are slower (∼3- and 10-fold, respectively) than those of native channels in GFL
neurons, but have similar voltage dependencies. The two cell types show only subtle differences in steady-state voltage-dependence
of conductance and inactivation. Rates of I
K inactivation in 20 mm external K are identical in the two cell types, but the sensitivity of inactivation to external tetraethylammonium (TEA)
and K ions differ: inactivation of SqKv1A in Sf9 cells is slowed by external TEA and K ions, whereas inactivation of GFL I
K is largely insensitive. Functional differences are discussed in terms of factors that may be specific to cell-type, including
the presence of presently unidentified Kv1 subunits in GFL neurons that might form heteromultimers with SqKv1A. 相似文献
13.
The tumor suppressor p53 is mutated in ~50% of all human cancer cases worldwide. It is commonly assumed that the phylogenetic history of this important tumor suppressor has been thoroughly studied; however, few detailed studies of the entire extended p53 protein family have been reported, and none comprehensively and simultaneously consider functional, molecular, and phylogenetic data. Herein we examine a diverse collection of reported p53-like protein sequences, including representatives from the arthropods, nematodes, and protists, with the goal of answering several important questions. First, what evidence supports these highly divergent proteins being true homologues to the p53 family? Second, is the inferred overall family phylogeny concordant with known structures and functions? Third, does the extended p53 family possess recognizable conserved sites outside of the within-chordate, highly-conserved DNA-binding domain? Our study shows that the biochemical and functional evidence of p53 homology for nematodes, arthropods, and protists is inconsistent with their implied phylogenetic relationship within the overall family. Although these divergent sequences are always reported as functionally similar to human p53, our results confirm and extend the hypothesis that p63 is a far more appropriate protein for comparison. Within these divergent sequences, we find minimal conservation within the DNA-binding domain, and no conservation elsewhere. Taken together, our findings suggest that these sequences are not bona fide homologues of the extended p53 family and provide baseline criteria for the future identification and characterization of distant p53-family homologues. 相似文献
14.
Jayabalan Nirmal Pradeep Tyagi Yao-Chi Chuang Wei-Chia Lee Naoki Yoshimura Chao-Cheng Huang Bharathi Rajaganapathy Michael B. Chancellor 《PloS one》2014,9(7)
Background
The functional and molecular alterations of nerve growth factor (NGF) and Prostaglandin E2 (PGE2) and its receptors were studied in bladder and urine in streptozotocin (STZ)-induced diabetic rats.Methodology/Principal Findings
Diabetes mellitus was induced with a single dose of 45 mg/kg STZ Intraperitoneally (i.p) in female Sprague-Dawley rats. Continuous cystometrogram were performed on control rats and STZ treated rats at week 4 or 12 under urethane anesthesia. Bladder was then harvested for histology, expression of EP receptors and NGF by western blotting, PGE2 levels by ELISA, and detection of apoptosis by TUNEL staining. In addition, 4-hr urine was collected from all groups for urine levels of PGE2, and NGF assay. DM induced progressive increase of bladder weight, urine production, intercontraction interval (ICI) and residual urine in a time dependent fashion. Upregulation of Prostaglandin E receptor (EP)1 and EP3 receptors and downregulation of NGF expression, increase in urine NGF and decrease levels of urine PGE2 at week 12 was observed. The decrease in ICI by intravesical instillation of PGE2 was by 51% in control rats and 31.4% in DM group at week 12.Conclusions/Significance
DM induced hyposensitive underactive bladder which is characterized by increased inflammatory reaction, apoptosis, urine NGF levels, upregulation of EP1 and EP3 receptors and decreased bladder NGF and urine PGE2. The data suggest that EP3 receptor are potential targets in the treatment of diabetes induced underactive bladder. 相似文献15.
16.
17.
Elevated intraocular pressure (IOP) is the primary risk factor for glaucoma, and lowering IOP remains the only effective treatment for glaucoma. The trabecular meshwork (TM) in the anterior chamber of the eye regulates IOP by generating resistance to aqueous humor outflow. Aqueous humor outflow is segmental, but molecular differences between high and low outflow regions of the TM are poorly understood. In this study, flow regions of the TM were characterized using fluorescent tracers and PCR arrays. Anterior segments from human donor eyes were perfused at physiological pressure in an ex vivo organ culture system. Fluorescently-labeled microspheres of various sizes were perfused into anterior segments to label flow regions. Actively perfused microspheres were segmentally distributed, whereas microspheres soaked passively into anterior segments uniformly labeled the TM and surrounding tissues with no apparent segmentation. Cell-tracker quantum dots (20 nm) were localized to the outer uveal and corneoscleral TM, whereas larger, modified microspheres (200 nm) localized throughout the TM layers and Schlemm’s canal. Distribution of fluorescent tracers demonstrated a variable labeling pattern on both a macro- and micro-scale. Quantitative PCR arrays allowed identification of a variety of extracellular matrix genes differentially expressed in high and low flow regions of the TM. Several collagen genes (COL16A1, COL4A2, COL6A1 and 2) and MMPs (1, 2, 3) were enriched in high, whereas COL15A1, and MMP16 were enriched in low flow regions. Matrix metalloproteinase activity was similar in high and low regions using a quantitative FRET peptide assay, whereas protein levels in tissues showed modest regional differences. These gene and protein differences across regions of the TM provide further evidence for a molecular basis of segmental flow routes within the aqueous outflow pathway. New insight into the molecular mechanisms of segmental aqueous outflow may aid in the design and delivery of improved treatments for glaucoma patients. 相似文献
18.
Deepika Dhawan Melissa Paoloni Shweta Shukradas Dipanwita Roy Choudhury Bruce A. Craig José A. Ramos-Vara Noah Hahn Patty L. Bonney Chand Khanna Deborah W. Knapp 《PloS one》2015,10(9)
More than 160,000 people are expected to die from invasive urothelial carcinoma (iUC) this year worldwide. Research in relevant animal models is essential to improving iUC management. Naturally-occurring canine iUC closely resembles human iUC in histopathology, metastatic behavior, and treatment response, and could provide a relevant model for human iUC. The molecular characterization of canine iUC, however, has been limited. Work was conducted to compare gene expression array results between tissue samples from iUC and normal bladder in dogs, with comparison to similar expression array data from human iUC and normal bladder in the literature. Considerable similarities between enrichment patterns of genes in canine and human iUC were observed. These included patterns mirroring basal and luminal subtypes initially observed in human breast cancer and more recently noted in human iUC. Canine iUC samples also exhibited enrichment for genes involved in P53 pathways, as has been reported in human iUC. This is particularly relevant as drugs targeting these genes/pathways in other cancers could be repurposed to treat iUC, with dogs providing a model to optimize therapy. As part of the validation of the results and proof of principal for evaluating individualized targeted therapy, the overexpression of EGFR in canine bladder iUC was confirmed. The similarities in gene expression patterns between dogs and humans add considerably to the value of naturally-occurring canine iUC as a relevant and much needed animal model for human iUC. Furthermore, the finding of expression patterns that cross different pathologically-defined cancers could allow studies of dogs with iUC to help optimize cancer management across multiple cancer types. The work is also expected to lead to a better understanding of the biological importance of the gene expression patterns, and the potential application of the cross-species comparisons approach to other cancer types as well. 相似文献
19.
Claudia Filippone Rauli Franssila Arun Kumar Leena Saikko Panu E. Kovanen Maria S?derlund-Venermo Klaus Hedman 《PloS one》2010,5(3)
Background
Continued development of in-vitro procedures for expansion and differentiation of erythroid progenitor cells (EPC) is essential not only in hematology and stem cell research but also virology, in light of the strict erythrotropism of the clinically important human parvovirus B19.Methodology/Principal Findings
We cultured EPC directly from ordinary blood samples, without ex vivo stem cell mobilization or CD34+ cell in vitro preselection. Profound increase in the absolute cell number and clustering activity were observed during culture. The cells obtained expressed the EPC marker combination CD36, CD71 and glycophorin, but none of the lymphocyte, monocyte or NK markers. The functionality of the generated EPC was examined by an in vitro infection assay with human parvovirus B19, tropic for BFU-E and CFU-E cells. Following infection (i) viral DNA replication and mRNA production were confirmed by quantitative PCR, and (ii) structural and nonstructural proteins were expressed in >50% of the cells. As the overall cell number increased 100–200 fold, and the proportion of competent EPC (CD34+ to CD36+) rose from <0.5% to >50%, the in vitro culture procedure generated the EPC at an efficiency of >10 000-fold. Comparative culturing of unselected PBMC and ex vivo-preselected CD34+ cells produced qualitatively and quantitatively similar yields of EPC.Conclusions/Significance
This approach yielding EPC directly from unmanipulated peripheral blood is gratifyingly robust and will facilitate the study of myeloid infectious agents such as the B19 virus, as well as the examination of erythropoiesis and its cellular and molecular mechanisms. 相似文献20.
The transient receptor potential vanilloid subtype 1 (TRPV1) is a member of the TRP family gated by vanilloids, heat, and
protons. Structurally, TRPV1 subunits have a modular architecture underlying different functionalities, namely stimuli recognition,
channel gating, ion selectivity, subunit oligomerization, and regulation by intracellular signaling molecules. Considering
modular organization and recent structural information in the ion channel field, we have modeled a full-length TRPV1 by assembly
of its major modules: the cytosolic N-terminal, C-terminal, and membrane-spanning region. For N-terminal, we used the ankyrin
repeat structure fused with the N-end segment. The membrane domain was modeled with the structure of the eukaryotic, voltage-gated
Kv1.2 K+ channel. The C-terminus was cast using the coordinates of HCN channels. The extensive structure–function data available for
TRPV1 was used to validate the models in terms of the location of molecular determinants of function in the structure. Additionally,
the current information allowed the modeling of the vanilloid receptor in the closed and desensitized states. The closed state
shows the N-terminal module highly exposed and accessible to adenosine triphosphate and the C-terminal accessible to phosphoinositides.
In contrast, the desensitized state depicts the N-terminal and C-terminal modules close together, compatible with an interaction
mediated by Ca2+–calmodulin complex. These models identify potential previously unrecognized intra- and interdomain interactions that may
play an important functional role. Although the molecular models should be taken with caution, they provide a helpful tool
that yields testable hypothesis that further our understanding on ion channels work in terms of underlying protein structure. 相似文献