首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FAT/CD36 is a multifunctional glycoprotein that facilitates long-chain fatty acid (FA) uptake by cardiomyocytes and adipocytes and uptake of oxidized low density lipoproteins (oxLDL) by macrophages. CD36 also mediates FA-induced signaling to increase intracellular calcium in various cell types. The membrane-impermeable sulfo-N-hydroxysuccinimidyl (NHS) ester of oleate (SSO) irreversibly binds CD36 and has been widely used to inhibit CD36-dependent FA uptake and signaling to calcium. The inhibition mechanism and whether SSO modification of CD36 involves the FA-binding site remain unexplored. CHO cells expressing human CD36 were SSO-treated, and the protein was pulled down, deglycosylated, and resolved by electrophoresis. The CD36 band was extracted from the gel and digested for analysis by mass spectrometry. NHS derivatives react with primary or secondary amines on proteins to yield stable amide or imide bonds. Two oleoylated peptides, found only in SSO-treated samples, were identified with high contribution and confidence scores as carrying oleate modification of Lys-164. Lysine 164 lies within a predicted CD36 binding domain for FA and oxLDL. CHO cells expressing CD36 with mutated Lys-164 had impaired CD36 function in FA uptake and FA-induced calcium release from the endoplasmic reticulum, supporting the importance of Lys-164 for both FA effects. Furthermore, consistent with the importance of Lys-164 for oxLDL binding, SSO inhibited oxLDL uptake by macrophages. In conclusion, SSO accesses Lys-164 in the FA-binding site on CD36, and initial modeling of this site is presented. The data suggest competition between FA and oxLDL for access to the CD36 binding pocket.  相似文献   

2.
The glutathione (GSH)-dependent antioxidant system has been demonstrated to inhibit atherosclerosis. Macrophage CD36 uptakes oxidized low density lipoprotein (oxLDL) thereby facilitating foam cell formation and development of atherosclerosis. It remains unknown if GSH can influence macrophage CD36 expression and cellular oxLDL uptake directly. Herein we report that treatment of macrophages with l-buthionine-S,R-sulfoximine (BSO) decreased cellular GSH production and ratios of GSH to glutathione disulfide (GSH/GSSG) while increasing production of reactive oxygen species. Associated with decreased GSH levels, macrophage CD36 expression was increased, which resulted in enhanced cellular oxLDL uptake. In contrast, N-acetyl cysteine and antioxidant enzyme (catalase or superoxide dismutase) blocked BSO-induced CD36 expression as well as oxLDL uptake. In vivo, administration of mice with BSO increased CD36 expression in peritoneal macrophages and kidneys. BSO had no effect on CD36 mRNA expression and promoter activity but still induced CD36 protein expression in macrophages lacking peroxisome proliferator-activated receptor γ expression, suggesting it induced CD36 expression at the translational level. Indeed, we determined that BSO enhanced CD36 translational efficiency. Taken together, our study demonstrates that cellular GSH levels and GSH/GSSG status can regulate macrophage CD36 expression and cellular oxLDL uptake and demonstrate an important anti-atherogenic function of the GSH-dependent antioxidant system by providing a novel molecular mechanism.  相似文献   

3.
CD36 signal transduction modulates the uptake of oxidized low-density lipoprotein (oxLDL) and foam cell formation. We previously observed that 7-ketocholesteryl-9-carboxynonanoate (oxLig-1), the lipid moiety of oxLDL, activates the CD36-Src-JNK/ERK1/2 signalling pathway. In this study, we assessed the role of the ω-carboxyl group in the binding of oxLig-1 to CD36 and investigated whether the binding of the ω-carboxyl group to CD36 triggers CD36-mediated signalling, thereby resulting in the upregulation of caveolin-1 expression. Our results showed that oxLig-1 bound to CD36 and that the ω-carboxyl group was critical for this binding. Furthermore, immunoprecipitation and Western blot analyses showed that interaction between the ω-carboxyl group of oxLig-1 and CD36 triggered intracellular Src-JNK/ERK1/2 signal transduction. Moreover, the binding of the ω-carboxyl group to CD36 induced caveolin-1 expression and translocation to the membrane in macrophages. Additionally, inhibitors of Src, JNK and ERK and siRNA targeting CD36 and NF-κB significantly suppressed the enhanced caveolin-1 expression induced by oxLig-1. In conclusion, these observations suggest that oxLig-1 is a critical epitope of oxLDL that mediates the binding of oxLDL to CD36 and activates downstream Src-JNK/ERK1/2-NF-κB signal transduction, resulting in upregulation of caveolin-1 expression in macrophages.  相似文献   

4.
5.
Recent studies have identified a novel family of oxidized phosphatidylcholines (oxPC(CD36)) that serve as highly specific ligands for scavenger receptor CD36. oxPC(CD36) accumulate in vivo and mediate macrophage foam cell formation as well as promote platelet hyper-reactivity in hyperlipidemia via CD36. The structural basis of oxPC(CD36) binding to CD36 has not been elucidated. We used liquid-phase binding to glutathione S-transferase fusion proteins containing various regions of CD36 to initially identify the region spanning CD36 amino acids 157-171 to contain a major binding site for oxPC(CD36). A bell-shaped pH profile and salt concentration dependence suggest an electrostatic mechanism of the binding. Two conserved, positively charged amino acids in the region 157-171 (lysines at positions 164 and 166) were identified as critical for oxPC(CD36) and oxidized low density lipoprotein (oxLDL) binding to CD36. Lysine neutralization with chemical modifier or site-directed mutagenesis of lysine 164/166 to alanine or glutamate, but not to arginine, abolished binding. Cells expressing full-length CD36 with mutated lysines (164 and 166) failed to recognize oxPC(CD36) and oxLDL. Synthetic peptides mimicking the CD36 binding site, but not mutated or scrambled peptides, effectively prevented: (i) oxLDL binding to CD36, (ii) macrophage foam cell formation induced by oxLDL, and (iii) platelet activation by oxPC(CD36). These data indicate that CD36 (160-168) represents the core of the oxPC(CD36) binding site with lysines 164/166 being indispensable for the binding.  相似文献   

6.
Elevated plasma free fatty acids (FAs) are associated with increased risk of cardiovascular disease. This study investigates the effects of the saturated FA palmitate and unsaturated FA oleate on monocyte phenotype and function. Incubation of human U937 and THP-1 monocytes with palmitate for 24h increased cell surface expression of integrin CD11b and scavenger receptor CD36 in a concentration-dependent manner with some decrease in mitochondrial reducing capacity at high concentration (300μM). Monocytes incubated with palmitate, but not oleate, showed increased uptake of oxidized LDL and increased adhesion to rat aortic endothelium, particularly at bifurcations. The palmitate-induced increase in CD11b and CD36 expression was associated with increased cellular C16 ceramide and sphingomyelin, loss of reduced glutathione, and increased reactive oxygen species (ROS). Increased monocyte surface CD11b and CD36 was inhibited by fumonisin B1, an inhibitor of de novo ceramide synthesis, but not by the superoxide dismutase mimetic MnTBap. In contrast, MnTBap prevented the mitochondrial ROS increase and metabolic inhibition due to 300μM palmitate. This study demonstrates that in viable monocytes, palmitate but not oleate increases expression of surface CD11b and CD36. Palmitate increases monocyte adhesion to the aortic wall and promotes uptake of oxidized LDL and this involves de novo ceramide synthesis.  相似文献   

7.
Vitamin E deficiency increases expression of the CD36 scavenger receptor, suggesting specific molecular mechanisms and signaling pathways modulated by alpha-tocopherol. We show here that alpha-tocopherol down-regulated CD36 expression (mRNA and protein) in oxidized low density lipoprotein (oxLDL)-stimulated THP-1 monocytes, but not in unstimulated cells. Furthermore, alpha-tocopherol treatment of monocytes led to reduction of fluorescent oxLDL-3,3'-dioctadecyloxacarbocyanine perchlorate binding and uptake. Protein kinase C (PKC) appears not to be involved because neither activation of PKC by phorbol 12-myristate 13-acetate nor inhibition by PKC412 was affected by alpha-tocopherol. However, alpha-tocopherol could partially prevent CD36 induction after stimulation with a specific agonist of peroxisome proliferator-activated receptor-gamma (PPARgamma; troglitazone), indicating that this pathway is susceptible to alpha-tocopherol action. Phosphorylation of protein kinase B (PKB) at Ser473 was increased by oxLDL, and alpha-tocopherol could prevent this event. Expression of PKB stimulated the CD36 promoter as well as a PPARgamma element-driven reporter gene, whereas an inactive PKB mutant had no effect. Moreover, coexpression of PPARgamma and PKB led to additive induction of CD36 expression. Altogether, our results support the existence of PKB/PPARgamma signaling pathways that mediate CD36 expression in response to oxLDL. The activation of CD36 expression by PKB suggests that both lipid biosynthesis and fatty acid uptake are stimulated by PKB.  相似文献   

8.
CD36 is a multifunctional immuno-metabolic receptor with many ligands. One of its physiological functions in the heart is the high-affinity uptake of long-chain fatty acids (FAs) from albumin and triglyceride rich lipoproteins. CD36 deletion markedly reduces myocardial FA uptake in rodents and humans. The protein is expressed on endothelial cells and cardiomyocytes and at both sites is likely to contribute to FA uptake by the myocardium. CD36 also transduces intracellular signaling events that influence how the FA is utilized and mediate metabolic effects of FA in the heart. CD36 transduced signaling regulates AMPK activation in a way that adjusts oxidation to FA uptake. It also impacts remodeling of myocardial phospholipids and eicosanoid production, effects exerted via influencing intracellular calcium (iCa2 +) and the activation of phospholipases. Under excessive FA supply CD36 contributes to lipid accumulation, inflammation and dysfunction. However, it is also important for myocardial repair after injury via its contribution to immune cell clearance of apoptotic cells. This review describes recent progress regarding the multiple actions of CD36 in the heart and highlights those areas requiring future investigation. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.  相似文献   

9.
10.
The oxidative process of LDL particles generates molecules which are structurally similar to platelet-activating factor (PAF), and some effects of oxidized LDL (oxLDL) have been shown to be dependent on PAF receptor (PAFR) activation. In a previous study, we showed that PAFR is required for upregulation of CD36 and oxLDL uptake. In the present study we analyzed the molecular mechanisms activated by oxLDL in human macrophages and the contribution of PAFR to this response. Human adherent monocytes/macrophages were stimulated with oxLDL. Uptake of oxLDL and CD36 expression were determined by flow cytometry; MAP kinases and Akt phosphorylation by Western blot; IL-8 and MCP-1 concentration by ELISA and mRNA expression by real-time PCR. To investigate the participation of the PI3K/Akt pathway, Gαi-coupled protein or PAFR, macrophages were treated with LY294002, pertussis toxin or with the PAFR antagonists WEB2170 and CV3988, respectively before addition of oxLDL. It was found that the addition of oxLDL to human monocytes/macrophages activates the PI3K/Akt pathway which in turn activates the MAPK (p38 and JNK). Phosphorylation of Akt requires the engagement of PAFR and a Gαi-coupled protein. The upregulation of CD36 protein and the uptake of oxLDL as well as the IL-8 production are dependent on PI3K/Akt pathway activation. The increased CD36 protein expression is dependent on PAFR and Gαi-coupled protein. Transfection studies using HEK 293t cells showed that oxLDL uptake occurs with either PAFR or CD36, but IL-8 production requires the co-transfection of both PAFR and CD36. These findings show that PAFR has a pivotal role in macrophages response to oxLDL and suggest that pharmacological intervention at the level of PAFR activation might be beneficial in atherosclerosis.  相似文献   

11.
Scavenger receptors (SRs) like cluster determinant 36 (CD36) and SR class B type I (SR-BI) play a debated role in lipid transport across the intestinal brush border membrane. We used surface plasmon resonance to analyze real-time interactions between the extracellular protein loops and various ligands ranging from single lipid molecules to mixed micelles. Micelles mimicking physiological structures were necessary for optimal binding to both the extracellular loop of CD36 (lCD36) and the extracellular loop of SR-BI (lSR-BI). Cholesterol, phospholipid, and fatty acid micellar content significantly modulated micelle binding to and dissociation from the transporters. In particular, high phospholipid micellar concentrations inhibited micelle binding to both receptors (−53.8 and −74.4% binding at 0.32 mM compared with 0.04 mM for lCD36 and lSR-BI, respectively, P < 0.05). The presence of fatty acids was crucial for micelle interactions with both proteins (94.4 and 81.3% binding with oleic acid for lCD36 and lSR-BI, respectively, P < 0.05) and fatty acid type substitution within the micelles was the component that most impacted micelle binding to the transporters. These effects were partly due to subsequent modifications in micellar size and surface electric charge, and could be correlated to micellar vitamin D uptake by Caco-2 cells. Our findings show for the first time that micellar lipid composition and micellar properties are key factors governing micelle interactions with SRs.  相似文献   

12.
The intestine has an extraordinary capacity for fatty acid (FA) absorption. Numerous candidates for a protein-mediated mechanism of dietary FA absorption have been proposed, but firm evidence for this process has remained elusive. Here we show that the scavenger receptor CD36 is required both for the uptake of very long chain FAs (VLCFAs) in cultured cells and the absorption of dietary VLCFAs in mice. We found that the fraction of CD36-dependent saturated fatty acid association/absorption in these model systems is proportional to the FA chain length and specific for fatty acids and fatty alcohols containing very long saturated acyl chains. Moreover, intestinal VLCFA absorption is completely abolished in CD36-null mice fed a high fat diet, illustrating that the predominant mechanism for VLCFA absorption is CD36-dependent. Together, these findings represent the first direct evidence for protein-facilitated FA absorption in the intestine and identify a novel therapeutic target for the treatment of diseases characterized by elevated VLCFA levels.  相似文献   

13.
Atherosclerosis, a chronic inflammatory disease, results in part from the accumulation of modified lipoproteins in the arterial wall and formation of lipid-laden macrophages, known as "foam cells." Recently, we reported that CD36, a scavenger receptor, contributes to activation of Vav-family guanine nucleotide exchange factors by oxidatively modified LDL in macrophages. We also discovered that CD36-dependent uptake of oxidized LDL (oxLDL) in vitro and foam cell formation in vitro and in vivo was significantly reduced in macrophages deficient of Vav proteins. The goal of the present study was to identify the mechanisms by which Vav proteins regulate CD36-dependent foam cell formation. We now show that a Vav-dynamin signaling axis plays a critical role in generating calcium signals in mouse macrophages exposed to CD36-specific oxidized phospholipid ligands. Chelation of intracellular Ca(2+) or inhibition of phospholipase C-γ (PLC-γ) inhibited Vav activation (85 and 70%, respectively, compared with vehicle control) and reduced foam cell formation (approximately 75%). Knockdown of expression by siRNA or inhibition of GTPase activity of dynamin 2, a Vav-interacting protein involved in endocytic vesicle fission, significantly blocked oxLDL uptake and inhibited foam cell formation. Immunofluorescence microscopy studies showed that Vav1 and dynamin 2 colocalized with internalized oxLDL in macrophages and that activation and mobilization of dynamin 2 by oxLDL was impaired in vav null cells. These studies identified previously unknown components of the CD36 signaling pathway, demonstrating that Vav proteins regulate oxLDL uptake and foam cell formation via calcium- and dynamin 2-dependent processes and thus represent novel therapeutic targets for atherosclerosis.  相似文献   

14.
CD36 and scavenger receptor class B, type I (SR-BI) are both class B scavenger receptors that recognize a broad variety of ligands, including oxidized low density lipoprotein (oxLDL), HDL, anionic phospholipids, and apoptotic cells. In this study we investigated the role of mouse CD36 (mCD36) as a physiological lipoprotein receptor. We compared the association of various lipoprotein particles with mCD36 and mSR-BI expressed in COS cells by adenovirus-mediated gene transfer. mCD36 bound human oxLDL and mouse HDL with high affinity. Human LDL bound poorly to mCD36, indicating that mCD36 is unlikely to play a significant role in LDL metabolism. The ability of mCD36 to mediate the selective uptake of cholesteryl esters (CE) from receptor-bound HDL was assessed. In comparison with mSR-BI, mCD36 inefficiently mediated the selective uptake of CE. Hepatic overexpression of mCD36 in C57BL/6 mice by adenovirus-mediated gene transfer did not result in significant alterations in plasma LDL and HDL levels. We conclude that mCD36, while able to bind HDL with high affinity, does not contribute significantly to HDL or LDL metabolism.  相似文献   

15.
Dietary flavonoid intake has been reported to be inversely associated with the incidence of coronary artery disease. To clarify the possible role of flavonoids in the prevention of atherosclerosis, we investigated the effects of some of these compounds, including fisetin, morin and myricetin, on the susceptibility of low-density lipoprotein (LDL) to oxidative modification and on oxLDL uptake in macrophages. The results demonstrated that fisetin had stronger inhibitory activity than the other two on inhibiting Cu(2+)-mediated LDL oxidation measured by thiobarbituric acid-reactive substances assay (TBARS), conjugated diene formation and electrophoretic mobility. The class B scavenger receptor, CD36, to which oxLDL binds, is present in atherosclerotic lesions. Treatment of U937-derived macrophages with myricetin (20 microM) significantly inhibited CD36 cell surface protein and mRNA expression (p<0.01). Fisetin, morin and myricetin (20 microM) also reduced the feed-forward induction of CD36 mRNA and surface protein expression by PPARgamma. The inhibition of CD36 by flavonols was mediated by interference with PPARgamma activation thus counteracting the deleterious autoamplification loop of CD36 expression stimulated by PPARgamma ligand. All three flavonols (10 and 20 microM) markedly decreased the uptake of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanide perchlorate (DiI)-labeled oxLDL uptake in U937-derived macrophages dose-dependently. Current evidences indicate that fisetin, morin and myricetin not only prevent LDL from oxidation but also block oxLDL uptake by macrophages at least in part through reducing CD36 gene expression on macrophages. In conclusion, flavonols may play a role in ameliorating atherosclerosis.  相似文献   

16.
Oxidation of low density lipoproteins (LDL) induced by incubation with Cu(2+) ions results in the formation of a heterogeneous group of aldehydic adducts on lysyl residues (Lys) of apolipoprotein B (apoB) that are thought to be responsible for the uptake of oxidized LDL (oxLDL) by macrophages. To define the structural and chemical criteria governing such cell recognition, we induced two modifications of lysines in LDL that mimic prototypic adducts present in oxLDL; namely, epsilon-amino charge-neutralizing pyrrolation by treatment with 2,5-hexanedione (hdLDL), and epsilon-amino charge-retaining pyridinium formation via treatment with 2,4,6-trimethylpyrylium (tmpLDL). Both modifications led to recognition by receptors on mouse peritoneal macrophages (MPM). To assess whether the murine scavenger receptor class A-I (mSR-A) was responsible for recognition of hdLDL or tmpLDL in MPM, we measured binding at 4 degrees C and degradation at 37 degrees C of these modified forms of (125)I-labeled LDL by mSR-A-transfected CHO cells. Although uptake and degradation of hdLDL by mSR-A-transfected CHO cells was quantitatively similar to that of the positive control, acLDL, tmpLDL was not recognized by these cells. However, both tmpLDL and hdLDL were recognized by 293 cells that had been transfected with CD36. In the human monocytic cell line THP-1 that had been activated with PMA, uptake of tmpLDL was significantly inhibited by blocking monoclonal antibodies to CD36, further suggesting recognition of tmpLDL by this receptor. Macrophage uptake and degradation of LDL oxidized by brief exposure to Cu(2+) was inhibited more effectively by excess tmpLDL and hdLDL than was more extensively oxidized LDL, consistent with the recognition of the former by CD36 and the latter primarily by SR-A.Collectively, these studies suggest that formation of specific pyrrole adducts on LDL leads to recognition by both the mSR-A and mouse homolog of CD36 expressed on MPM, while formation of specific pyridinium adducts on LDL leads to recognition by the mouse homolog of CD 36 but not by mSR-A. As such, these two modifications of LDL may represent useful models for dissecting the relative contributions of specific modifications on LDL produced during oxidation, to the cellular uptake of this heterogeneous ligand.  相似文献   

17.
CD36 is a type 2 scavenger receptor with multiple functions. CD36 binding to oxidized LDL triggers signaling cascades that are required for macrophage foam cell formation, but the mechanisms by which CD36 signals remain incompletely understood. Mass spectrometry analysis of anti-CD36 immuno-precipitates from macrophages identified the tetraspanin CD9 as a CD36 interacting protein. Western blot showed that CD9 was precipitated from mouse macrophages by anti-CD36 monoclonal antibody and CD36 was likewise precipitated by anti-CD9, confirming the mass spectrometry results. Macrophages from cd36 null mice were used to demonstrate specificity. Membrane associations of the two proteins on intact cells was analyzed by confocal immunofluorescence microscopy and by a novel cross linking assay that detects proteins in close proximity (<40 nm). Functional significance was determined by assessing lipid accumulation, foam cell formation and JNK activation in wt, cd9 null and cd36 null macrophages exposed to oxLDL. OxLDL uptake, lipid accumulation, foam cell formation, and JNK phosphorylation were partially impaired in cd9 null macrophages. The present study demonstrates that CD9 associates with CD36 on the macrophage surface and may participate in macrophage signaling in response to oxidized LDL.  相似文献   

18.
The macrophage scavenger receptor CD36 plays a key role in the initiation of atherosclerosis through its ability to bind to and internalize oxidized low-density lipoproteins (oxLDL). Prompted by recent findings that the CD36 receptor also recognizes amyloid fibrils formed by beta-amyloid and apolipoprotein C-II, we investigated whether the oxidation of low-density lipoproteins (LDL) generates characteristic amyloid-like structures and whether these structures serve as CD36 ligands. Our studies demonstrate that LDL oxidized by copper ions, 2,2-azobis(2-amidinopropane) dihydrochloride (AAPH), or ozone react with the diagnostic amyloid dyes thioflavin T and Congo Red and bind to serum amyloid P component (SAP), a universal constituent of physiological amyloid deposits. X-ray powder diffraction patterns for native LDL show a diffuse powder diffraction ring with maximum intensity corresponding to an atomic spacing of approximately 4.7 A, consistent with the spacing between beta-strands in a beta-sheet. Ozone treatment of LDL generates an additional diffuse powder diffraction ring with maximum intensity indicating a spacing of approximately 9.8 A. This distance is consistent with the presence of cross-beta-structure, a defining characteristic of amyloid. Evidence that these cross-beta-amyloid structures in oxLDL are recognized by macrophages is provided by the observation that SAP strongly inhibits the association and internalization of (125)I-labeled copper-oxidized LDL by peritoneal macrophages. The ability of SAP to bind to amyloid-like structures in oxLDL and prevent lipid uptake by macrophages highlights the potential importance of these structures and suggests an important preventative role for SAP in foam cell formation and early-stage atherosclerosis.  相似文献   

19.
Accumulation of macrophage foam cells in atherosclerotic blood vessel intima is a critical component of atherogenesis mediated by scavenger receptor-dependent internalization of oxidized LDL. We demonstrated by coimmunoprecipitation and pull-down assays that the macrophage scavenger receptor CD36 associates with a signaling complex containing Lyn and MEKK2. The MAP kinases JNK1 and JNK2 were specifically phosphorylated in macrophages exposed to oxLDL. Using cells isolated from SRA, TLR2, or CD36 null mice, and phospholipid ligands specific for either SRA or CD36, we showed that JNK activation was mediated by CD36. Both foam cell formation and activation of JNK2 in hyperlipidemic mice were diminished in the absence of CD36. Furthermore, inhibition of Src or JNK blocked oxLDL uptake and inhibited foam cell formation in vitro and in vivo. These findings show that a specific CD36-dependent signaling pathway initiated by oxLDL is necessary for foam cell formation and identify potential targets for antiatherosclerosis therapy.  相似文献   

20.
CD36, belongs to class B scavenger receptor family, is a macrophage receptor for oxidized low-density lipoprotein (oxLDL) and has been proven to play a critical role in atherosclerotic foam cell formation. In addition, CD36 expression is regulated by many factors including oxLDL and HDL. A recent study suggests that CD36 can also bind with oxidized high-density lipoprotein (oxHDL). However, the direct role of oxHDL in atherosclerosis is still not clear and it is not known whether oxHDL has any influence on the expression of CD36 in macrophages. Here, we performed experiments to investigate the effect of oxHDL on the expression of CD36 on human peripheral blood monocytes–macrophages and the possible mechanisms. Our results suggest that the uptake of oxHDL by CD36 on macrophages accelerates foam cell formation. In addition, oxHDL can down-regulate both the mRNA and surface protein expression of CD36 on human peripheral macrophages in vitro. oxHDL increased the mRNA expression and protein phosphorylation of peroxisome proliferators-activated receptor-γ (PPARγ). Using different mitogen-activated protein kinase (MAPK) inhibitors, we demonstrated that oxHDL regulated CD36 and PPARγ expression in a p38-MAP kinase dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号