首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Estrogen-related receptor α (ERRα) is a member of the nuclear receptor superfamily and regulates many physiological functions, including mitochondrial biogenesis and lipid metabolism. ERRα enhances the transactivation function without endogenous ligand by associating with coactivators such as peroxisome proliferator-activated receptor γ coactivator 1 α and β (PGC-1α and -β) and members of the steroid receptor coactivator family. However, the molecular mechanism by which the transactivation function of ERRα is converted from a repressive state to an active state is poorly understood. Here we used biochemical purification techniques to identify ERRα-associated proteins in HeLa cells stably expressing ERRα. Interestingly, we found that double PHD fingers protein DPF2/BAF45d suppressed PGC-1α-dependent transactivation of ERRα by recognizing acetylated histone H3 and associating with HDAC1. DPF2 directly bound to ERRα and suppressed the transactivation function of nuclear receptors such as androgen receptor. DPF2 was recruited to ERR target gene promoters in myoblast cells, and knockdown of DPF2 derepressed the level of mRNA expressed by target genes of ERRα. These results show that DPF2 acts as a nuclear receptor-selective co-repressor for ERRα by associating with both acetylated histone H3 and HDAC1.  相似文献   

2.
Estrogen-related receptor α (ERRα) belongs to the superfamily of nuclear orphan receptors. However, the role of ERRα in bladder cancer remains unknown. This study examined the expression of ERRα in bladder cancer tissues and explored the molecular mechanisms of ERRα in bladder cancer progression. The expression of ERRα in bladder cancer tissues from 61 patients was determined by immunohistochemistry. We performed quantitative real-time polymerase chain reaction assay to detect the gene expression levels and carried out Western blot assay to measure protein levels. In vitro functional assays, including colony formation, Cell Counting Kit-8, Transwell invasion, and migration assays, were performed to detect bladder cancer cell growth, proliferation, invasion, and migration, respectively. Flow cytometry was used to determine the cell apoptotic rate of bladder cancer cells. Among the 61 detected bladder cancer tissues, 39 bladder cancer tissues showed positive ERRα immunoreactivity. Higher ERRα immunoreactivity score was significantly associated with TNM stage, tumor grade, distant metastasis, and poor survival in patients with bladder cancer. Univariate and multivariate analyses showed that ERRα immunoreactivity was an independent prognostic factor for overall survival in patients with bladder cancer. ERRα was found to be upregulated in bladder cancer cell lines, and knockdown of ERRα suppressed bladder cancer cell growth, proliferation, invasion, and migration; promoted bladder cancer cell apoptosis; and inhibited the epithelial-mesenchymal transition of bladder cancer cells. On the other hand, bladder cancer cell proliferation, invasion, and migration were significantly enhanced after cells were transfected with an ERRα-overexpressing vector. In vivo tumor growth and metastasis assays showed that ERRα knockdown resulted in remarkable inhibition of tumor growth and tumor metastasis in nude mice. Collectively, our results suggest that the enhanced expression of ERRα may play a key role in the development and progression of bladder cancer and ERRα may serve as an important prognostic factor for bladder cancer.  相似文献   

3.
We have previously reported that the increase in c-Jun expression induced by quercetin inhibited androgen receptor (AR) transactivation, and Sp1 was involved in quercetin-mediated downregulation of AR activity. Transient transfection assays in this work revealed that co-expression of c-Jun quenched Sp1-induced production of luciferase activity driven by AR promoter or three copies of Sp1 binding elements in the AR promoter. Moreover, c-Jun repressed AR-mediated luciferase activity via androgen-response elements (AREs) of the hK2 gene, while this suppression could be restored partially by cotransfection of Sp1 expression plasmid. The physical associations of c-Jun, Sp1, and AR induced by quercetin were further demonstrated by co-immunoprecipitation experiments. In addition, quercetin-mediated repression of AR expression and activity was partially reversed by blocking of JNK signaling pathway. These results suggested that c-Jun might play an important role in the suppression of AR expression and activity in the presence of quercetin, and association of a c-Jun/Sp1/AR protein complex induced by quercetin represented a novel mechanism that was involved in down-regulation of the AR function in prostate cancer cells.  相似文献   

4.
Background: The biological functions of estrogens extend beyond the female and male reproductive tract, affecting the cardiovascular and renal systems. Traditional views on the role of postmenopausal hormone therapy (HT) in protecting against heart disease, which were challenged by clinical end point studies that found adverse effects of combined HT, are now being replaced by more differentiated concepts suggesting a beneficial role of early and unopposed HT that does not include a progestin.Objective: We reviewed recent insights, concepts, and research results on the biology of both estrogen receptor (ER) subtypes, ERα and ERβ, in cardiac and vascular tissues. Knowledge of these ER subtypes is crucial to understanding gender and estrogen effects and to developing novel, exciting strategies that may have a profound clinical impact.Methods: This review focuses on in vivo studies and includes data presented at the August 2007 meeting of the American Physiological Society as well as data from a search of the MEDLINE and Ovid databases from January 1986 to November 2007. Search results were restricted to English-language publications, using the following search terms: estrogen, estrogen receptor α, estrogen receptor β, estrogen receptor α agonist, estrogen receptor α antagonist, estrogen receptor β agonist, estrogen receptor β antagonist, PPT, DPN, heart, vasculature, ERKO mice, BERKO mice, transgenic mice, and knockout mice.Results: Genetic mouse models and pharmacologic studies that employed selective as well as nonselective ER agonists support the concept that both ER subtypes confer protective effects in experimental models of human heart disease, including hypertension, cardiac hypertrophy, and chronic heart failure.Conclusions: Genetic models and novel ligands hold the promise of further improving our understanding of estrogen action in multiple tissues and organs. These efforts will ultimately enhance the safety and efficacy of HT and may also result in new applications for synthetic female sex hormone analogues.  相似文献   

5.
6.
7.
Kinase suppressor of ras 1 (KSR1) is a molecular scaffold of the Raf/MEK/extracellular signal-regulated kinase (ERK) cascade that enhances oncogenic Ras signaling. Here we show KSR1-dependent, but ERK-independent, regulation of metabolic capacity is mediated through the expression of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) and estrogen-related receptor α (ERRα). This KSR1-regulated pathway is essential for the transformation of cells by oncogenic Ras. In mouse embryo fibroblasts (MEFs) expressing H-Ras(V12), ectopic PGC1α was sufficient to rescue ERRα expression, metabolic capacity, and anchorage-independent growth in the absence of KSR1. The ability of PGC1α to promote anchorage-independent growth required interaction with ERRα, and treatment with an inhibitor of ERRα impeded anchorage-independent growth. In contrast to PGC1α, the expression of constitutively active ERRα (CA-ERRα) was sufficient to enhance metabolic capacity but not anchorage-independent growth in the absence of KSR1. These data reveal KSR1-dependent control of PGC1α- and ERRα-dependent pathways that are necessary and sufficient for signaling by oncogenic H-Ras(V12) to regulate metabolism and anchorage-independent growth, providing novel targets for therapeutic intervention.  相似文献   

8.
We have isolated the F0F1-ATP synthase complex from oligomycin-sensitive mitochondria of the green algaChlamydomonas reinhardtii. A pure and active ATP synthase was obtained by eans of sonication, extraction with dodecyl maltoside and ion exchange and gel permeation chromatography in the presence of glycerol, DTT, ATP and-21. The enzyme consists of 14 subunits as judged by SDS-PAGE. A cDNA clone encoding the ATP synthase subunit has been sequenced. The deduced protein sequence contains a presequence of 45 amino acids which is not present in the mature protein. The mature protein is 58–70% identical to corresponding mitochondrial proteins from other organisms. In contrast to the ATP synthase subunit fromC. reinhardtii (Franzen and Falk, Plant Mol Biol 19 (1992) 771–780), the protein does not have a C-terminal extension. However, the N-terminal domain of the mature protein is 15–18 residues longer than in ATP synthase subunits from other organisms. Southern blot analysis indicates that the protein is encoded by a single-copy gene.Abbreviations DM dodecyl--D-maltoside - OSCP oligomycin sensitivity conferring protein - PMSF phenyl-methylsulfonylfluoride - DTT dithiothreitol - EDTA ethylenediaminotetraacetic disodium salt  相似文献   

9.
Estrogen signaling is considered to play an important role in spermatogenesis, spermiogenesis and male fertility. Estrogens can act via the two nuclear estrogen receptors ESR1 (ERα) and ESR2 (ERβ) or via the intracellular G-protein-coupled estrogen receptor 1 (GPER, formerly GPR30). Several reports on the localization and expression of all three receptors in the human testis have been published but are controversial particularly in case of ERα. Contrary to previous studies, we decided therefore to evaluate expression of all three receptors in the testis by a number of different methods and in comparison with MCF-7 cells. Using qPCR, we could show that mRNA expression of ERα is considerably lower and expression of ERβ and GPER much higher in the testis than in MCF-7 cells. RT-PCR after laser-assisted microdissection of tubular and interstitial compartments from normal and Sertoli cell only syndrome testes plus in situ hybridization and immunohistochemical analyses of the same samples demonstrated that there is very low expression of ERα in germ cells and in single interstitial cells, very high expression of ERβ in germ cells and Sertoli cells and high expression of GPER in interstitial cells and less in Sertoli cells.  相似文献   

10.
11.
In the current scenario, widespread multidrug resistivity in ESKAPE pathogens demands identification of novel drug targets to keep their infections at bay. For this purpose, we have identified a novel target Hpa2 of A. baumannii, a member of GNAT superfamily of HATs. But due to sequence identity of equal or less than 35%, the correct sequence alignment and construction of 3D monomeric and dimeric models of Hpa2 having optimal structural parameters is a troublesome task. To circumvent these problems, we have designed an easy and optimized protocol for Hpa2 monomer modeling, and for generation of dimeric Hpa2 model using data-driven protein–protein docking experiment. Improvement in the structural features of generated model is an onerous process and generally achieved by paying time and computational cost. Herein, it is achieved by reconciliation of FoldX commands which takes less time in execution. Evaluations performed to validate structural parameters and stability of monomeric and dimeric Hpa2 attests to its quality. Analysis of interfacial residues, energy terms and RMSD values indicated a clear correlation between experimental and theoretical interface properties of the dimers, corroborating to the regime used for Hpa2 dimer generation. Structural information from the refined models was used for virtual screening of substrate-derived library and polyamines to achieve a new platform for developing A. baumannii inhibitory molecules. Molecules showing preferential binding at the dimer interface could be used as allosteric inhibitors. Binding of polyamines with model illustrated the same binding pattern as described experimentally in case of yeast Hpa2.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Deposition of amyloid-beta (Aβ) protein, a 39–43 amino acid peptide, in the brain is a major pathological feature of Alzheimer’s disease (AD). We have previously provided evidence that in primary cultures of rat basal forebrain and human fetal neurons (HFNs), neurotoxic effects of oligomeric Aβ are expressed through the amylin receptor. In this study, we utilized RT-PCR arrays to compare RNA expression levels of 84 markers for pro and anti- apoptotic signalling pathways following exposure of HFNs to either Aβ1-42 (20 μM) or human amylin (2 μM). Oligomeric Aβ1-42 or human amylin was applied to HFNs alone or after pre-treatment of cultures with the amylin receptor antagonist, AC253. Changes in RNA levels were then quantified and compared to each other in order to identify increases or decreases in gene expression of apoptotic markers. Applications of Aβ1-42 or human amylin, but not the inactive inverse sequence Aβ42-1 or rat amylin, resulted in a time-dependent marked increase in mediators of apoptosis including a 10- to 30-fold elevations in caspases 3, 6, 9, BID and XIAP levels. Amylin receptor antagonists, AC253 (10 μM) or AC187 (10 μM), significantly attenuated the induction of several pro-apoptotic mediators up-regulated following exposure to Aβ1-42 or human amylin and increased the expression of several anti-apoptotic markers. These data allow us to identify key elements in the Aβ-induced apoptosis that are blocked by antagonism of the amylin receptor and further support the potential for amylin receptor blockade as a potential therapeutic avenue in AD.  相似文献   

19.
20.
Estrogen-related receptor (ERR)α regulates genes involved in fatty acid oxidation (FAO) and oxidative phosphorylation (OXPHOS) in muscle. The soy isoflavone daidzein was reported to be a putative ERRα activator, but little is known about its effects on gene expression and FA metabolism. This study aimed to clarify whether daidzein affects FAO- and OXPHOS-related genes thereby modulating intracellular FA metabolism in muscle cells. For this purpose, we used the C2C12 murine muscle cell line. ERRα-expressing C2C12 myotubes were treated with 50 μM daidzein, and gene expression was examined. The expression of FAO genes such as pyruvate dehydrogenase kinase 4 (Pdk4) and acyl-coenzyme A dehydrogenase (Acadm) and that of OXPHOS genes such as ATP synthase F1 subunit beta (Atp5b) and cytochrome c (Cycs) was significantly increased by daidzein, and these effects were partially blocked by an ERRα inhibitor. Using a reporter assay, we showed that daidzein enhanced the promoter activity of these genes and that ERRα responsive elements in the promoter region were necessary for the action of daidzein. Finally, daidzein significantly decreased lipid accumulation in C2C12 myotubes associated with increased oxygen consumption. In conclusion, daidzein decreases lipid deposition in muscle cells by regulating the expression of genes related to FAO and OXPHOS via an ERRα-associated pathway at least in part. These results suggest that daidzein would be a beneficial tool to protect against various diseases caused by muscle lipotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号