首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Given the substantial literature on the use of Monte Carlo (MC) simulations to verify treatment planning system (TPS) calculations of radiotherapy dose in heterogeneous regions, such as head and neck and lung, this study investigated the potential value of running MC simulations of radiotherapy treatments of nominally homogeneous pelvic anatomy. A pre-existing in-house MC job submission and analysis system, built around BEAMnrc and DOSXYZnrc, was used to evaluate the dosimetric accuracy of a sample of 12 pelvic volumetric arc therapy (VMAT) treatments, planned using the Varian Eclipse TPS, where dose was calculated with both the Analytical Anisotropic Algorithm (AAA) and the Acuros (AXB) algorithm. In-house TADA (Treatment And Dose Assessor) software was used to evaluate treatment plan complexity, in terms of the small aperture score (SAS), modulation index (MI) and a novel exposed leaf score (ELS/ELA). Results showed that the TPS generally achieved closer agreement with the MC dose distribution when treatments were planned for smaller (single-organ) targets rather than larger targets that included nodes or metastases. Analysis of these MC results with reference to the complexity metrics indicated that while AXB was useful for reducing dosimetric uncertainties associated with density heterogeneity, the residual TPS dose calculation uncertainties resulted from treatment plan complexity and TPS model simplicity. The results of this study demonstrate the value of using MC methods to recalculate and check the dose calculations provided by commercial radiotherapy TPSs, even when the treated anatomy is assumed to be comparatively homogeneous, such as in the pelvic region.  相似文献   

2.
Patient’s CT images taken with metallic shields for radiotherapy suffer from artifacts. Furthermore, the treatment planning system (TPS) has a limitation on accurate dose calculations for high density materials. In this study, a Monte Carlo (MC)-based method was developed to accurately evaluate the dosimetric effect of the metallic shield. Two patients with a commercial tungsten shield of lens and two patients with a custom-made lead shield of lip were chosen to produce their non-metallic dummy shields using 3D scanner and printer. With these dummy shields, we generated artifact-free CT images. The maximum CT number allowed in TPS was assigned to metallic shields. MC simulations with real material information were carried out. In addition, clinically relevant dose-volumetric parameters were calculated for the comparison between MC and TPS. Relative dosimetry was performed using radiochromic films. The dose reductions below metallic structures were shown on MC dose distributions, but not evident on TPS dose distributions. The differences in dose-volumetric parameters of PTV between TPS and MC for eye shield cases were not clearly shown. However, the mean dose of lens from TPS and MC was different. The MC results were in superior agreement with measured data in relative dosimetry. The lens dose could be overestimated by TPS. The differences in dose-volumetric parameters of PTV between TPS and MC were generally larger in lip cases than in eye cases. The developed method is useful in predicting the realistic dose distributions around the organs blocked by the metallic shields.  相似文献   

3.
AimThe purpose of this study was to investigate the dosimetric characteristics of three stereotactic ablative body radiotherapy (SABR) techniques using the anisotropic analytical algorithm (AAA) and Acuros XB algorithm. The SABR techniques include coplanar volumetric modulated arc therapy (C-VMAT), non-coplanar intensity modulated radiation therapy (NC-IMRT) and non-coplanar three-dimensional conformal radiotherapy (NC-3D CRT).BackgroundSABR is a special type of radiotherapy where a high dose of radiation is delivered over a short time. The treatment outcome and accuracy of the dose delivered to cancer patients highly depend on the dose calculation algorithm and treatment technique.Materials and methodsTwelve lung cancer patients underwent 4D CT scanning, and three different treatment plans were generated: C-VMAT, NC-IMRT, NC-3D CRT. Dose calculation was performed using the AAA and Acuros XB algorithm. The dosimetric indices, such as conformity index (CI), homogeneity index, dose fall-off index, doses received by organs at risk and planning target volume, were used to compare the plans. The accuracy of AAA and Acuros XB (AXB) algorithms for the lung was validated against measured dose on a CIRS thorax phantom.ResultsThe CIs for C-VMAT, NC-IMRT and NC-3D CRT were 1.21, 1.28 and 1.38 for the AAA, respectively, and 1.17, 1.26 and 1.36 for the Acuros XB algorithm, respectively. The overall dose computed by AcurosXB algorithm was close to the measured dose when compared to the AAA algorithm. The overall dose computed by the AcurosXB algorithm was close to the measured dose when compared to the AAA algorithm.ConclusionThis study showed that the treatment planning results obtained using the Acuros XB algorithm was better than those using the AAA algorithm in SABR lung radiotherapy.  相似文献   

4.

Aim

To present the results obtained using radiochromic films EBT and RTQA 1010P for the reconstruction the dose distributions for targets irradiated by proton beam and modified by wax boluses.

Background

In Medico-Technical Complex at the Joint Institute for Nuclear Research in Dubna implemented technology of wax boluses.

Materials and methods

Wax boluses are easier to make and they give better dose distributions than boluses made from modeling clay previously used at our center. We irradiated two imaginary targets, one shaped as a cylinder and the other one as two cuboids. The evaluated calibration curve was used for calculation of the dose distributions measured by the EBT and RTQA radiochromic film. In both cases, the measured dose distributions were compared to the dose distributions calculated by the treatment planning system (TPS). We also compared dose distributions using three different conformity indices at a 95% isodose.

Results

Better target coverage and better compliance of measurements (semiconductor detectors and radiochromic films) with calculated doses was obtained for cylindrical target than for cuboidal target. The 95% isodose covered well the tumor for both target shapes, while for cuboidal target larger volume around the target received therapeutic dose, due to the complicated target shape. The use wax boluses provided to be effective tool in modifying proton beam to achieve appropriate shape of isodose distribution.

Conclusion

EBT film yielded the best visual matching. Both EBT and RTQA films confirmed good conformity between calculated and measured doses, thus confirming that wax boluses used to modify the proton beam resulted in good dose distributions.  相似文献   

5.

The aim of this study was to dosimetrically compare three total body irradiation (TBI) techniques which can be delivered by a standard linear accelerator, and to deduce which one is preferable. Specifically, Extended Source to Surface Distance (SSD) Field-in-Field (FiF), Extended SSD Volumetric Modulated Arc Therapy (VMAT), and Standard SSD VMAT TBI techniques were dosimetrically evaluated. Percent depth dose and dose profile measurements were made under treatment conditions for each specified technique. After having generated treatment plans with a treatment planning system (TPS), dose homogeneity and critical organ doses were investigated on a Rando phantom using radiochromic films and optically stimulated luminescence dosimeters (OSLDs). TBI dose of 12 Gy in six fractions was prescribed for each technique. The gamma index (5%/5 mm) was used for the analysis of radiochromic films. Passing rates for Extended SSD FiF, Extended SSD VMAT and Standard SSD VMAT techniques were found to be 90%, 87% and 94%, respectively. OSLD measurements were within?±?5% agreement with TPS calculations for the first two techniques whereas the agreement was found to be within?±?3% for the Standard SSD VMAT technique. TPS calculations demonstrated that mean lung doses in the first two techniques were around 8.5 Gy while it was kept around 7 Gy in Standard SSD VMAT. It is concluded that Standard SSD VMAT is superior in sparing the lung tissue while all three TBI techniques are feasible in clinical practice with acceptable dose homogeneity. In the absence of VMAT-based treatment planning, Extended SSD FiF would be a reasonable choice compared to other conventional techniques.

  相似文献   

6.
An increasing number of studies have shown that post-mastectomy radiotherapy presents benefits associated with the patients survival and a significant fraction of the treated patients makes use of tissue expanders for breast reconstruction. Some models of tissue expanders have a magnetic disk on their surface that constitutes heterogeneity in the radiation field, which can affect the dose distribution during the radiotherapy treatment. In this study, the influence of a metallic heterogeneity positioned in a breast tissue expander was evaluated by means of Monte Carlo simulations using the MCNPX code and using Eclipse treatment planning system. Deposited energy values were calculated in structures which have clinical importance for the treatment. Additionally, the effect in the absorbed energy due to backscattering and attenuation of the incident beam caused by the heterogeneity, as well as due to the expansion of the prosthesis, was evaluated in target structures for a 6 MV photon beam by simulations. The dose distributions for a breast treatment were calculated using a convolution/superposition algorithm from the Eclipse treatment planning system. When compared with the smallest breast expander volume, underdosage of 7% was found for the largest volume of breast implant, in the case of frontal irradiation of the chest wall, by Monte Carlo simulations. No significant changes were found in dose distributions for the presence of the heterogeneity during the treatment planning of irradiation with an opposed pair of beams. Even considering the limitation of the treatment planning system, the results obtained with its use confirm those ones found by Monte Carlo simulations for a tangent beam irradiation. The presence of a heterogeneity didńt alters the dose distributions on treatment structures. The underdosage of 7% observed with Monte Carlo simulations were found for irradiation at 0°, not used frequently in a clinical routine.  相似文献   

7.
ObjectivesTo verify the dosimetric accuracy of treatment plans in high dose rate (HDR) brachytherapy by using Gafchromic EBT2 film and to demonstrate the adequacy of dose calculations of a commercial treatment planning system (TPS) in a heterogeneous medium.MethodsAbsorbed doses at chosen points in anatomically different tissue equivalent phantoms were measured using Gafchromic EBT2 film. In one case, tandem ovoid brachytherapy was performed in a homogeneous cervix phantom, whereas in the other, organ heterogeneities were introduced in a phantom to replicate the upper thorax for esophageal brachytherapy treatment. A commercially available TPS was used to perform treatment planning in each case and the EBT2 films were irradiated with the HDR Ir-192 brachytherapy source.ResultsFilm measurements in the cervix phantom were found to agree with the TPS calculated values within 3% in the clinically relevant volume. In the thorax phantom, the presence of surrounding heterogeneities was not seen to affect the dose distribution in the volume being treated, whereas, a little dose perturbation was observed at the lung surface. Doses to the spinal cord and to the sternum bone were overestimated and underestimated by 14.6% and 16.5% respectively by the TPS relative to the film measurements. At the trachea wall facing the esophagus, a dose reduction of 10% was noticed in the measurements.ConclusionsThe dose calculation accuracy of the TPS was confirmed in homogeneous medium, whereas, it was proved inadequate to produce correct dosimetric results in conditions of tissue heterogeneity.  相似文献   

8.
BackgroundThe radiotherapy treatment planning process involves target delineation and dose calculation, both of which directly depend on image quality and Hounsfield unit (HU) accuracy of computed tomography (CT) images. CT images of patients having metal implants undergo image quality deterioration and show inaccurate HU values due to various artifacts. Metal artifact reduction (MAR) is used to improve the image quality. In this study, four treatment planning methods with and without MAR, in combination with actual and assigned HU values, were analyzed for dose calculation accuracy. The aim was to study the effects of metal implants on planning CT and to evaluate the dose calculation accuracy of four treatment planning methods for radiotherapy.Materials and methodsTwo phantoms with six different metal inserts were scanned in the extended HU mode, with and without MAR. Geometry verification and HU analysis of the metals and the surrounding region were carried out. Water equivalent distance (WED) measurements and dose calculation for each metal insert were done in the treatment planning system (TPS) using the anisotropic analytical algorithm (AAA). Point dose and two-dimensional dose distribution were studied. Percentage variation analysis between calculated and measured doses and gamma evaluation were conducted to determine the most suitable method for treatment planning.ConclusionThis study concludes that an MARCT image with an assigned HU similar to that of the metal implant is better for contouring and high dose calculation accuracy. If MAR is not available, the actual HU value from the extended HU CT for the metal should be used for dose calculation.  相似文献   

9.
PurposeTo evaluate a commercially available Ferrous-Xylenol Orange-Gel (FXG) dosimeter (TrueView™) coupled with Optical-Computed Tomography (OCT) read out, for 3D dose verification in an Ir-192 superficial brachytherapy application.MethodsTwo identical polyethylene containers filled with gel from the same batch were used. One was irradiated with an 18 MeV electron field to examine the dose-response linearity and obtain a calibration curve. A flap surface applicator was attached to the other to simulate treatment of a skin lesion. The dose distribution in the experimental set up was calculated with the TG-43 and the model based dose calculation (MBCA) algorithms of a commercial treatment planning system (TPS), as well as Monte Carlo (MC) simulation using the MCNP code. Measured and calculated dose distributions were spatially registered and compared.ResultsApart from a region close to the container’s neck, where gel measurements exhibited an over-response relative to MC calculations (probably due to stray light perturbation), an excellent agreement was observed between measurements and simulations. More than 97% of points within the 10% isodose line (80 cGy) met the gamma index criteria established from uncertainty analysis (5%/2 mm). The corresponding passing rates for the comparison of experiment to calculations using the TG-43 and MBDCA options of the TPS were 57% and 92%, respectively.ConclusionTrueView™ is suitable for the quality assurance of demanding radiotherapy applications. Experimental results of this work confirm the advantage of the studied MBDCA over TG-43, expected from the improved account of scatter radiation in the treatment geometry.  相似文献   

10.
PurposeThis report covers the first multi-institutional study of independent monitor unit (MU)/dose calculation verification for the CyberKnife, Vero4DRT, and TomoTherapy radiotherapy delivery systems.MethodsA total of 973 clinical treatment plans were collected from 12 institutions. Commercial software employing the Clarkson algorithm was used for verification after a measurement validation study, and the doses from the treatment planning systems (TPSs) and verification programs were compared on the basis of the mean value ± two standard deviations. The impact of heterogeneous conditions was assessed in two types of sites: non-lung and lung.ResultsThe dose difference for all locations was 0.5 ± 7.2%. There was a statistically significant difference (P < 0.01) in dose difference between non-lung (−0.3 ± 4.4%) and lung sites (3.5 ± 6.7%). Inter-institutional comparisons showed that various systematic differences were associated with the proportion of different treatment sites and heterogeneity correction.ConclusionsThis multi-institutional comparison should help to determine the departmental action levels for CyberKnife, Vero4DRT, and TomoTherapy, as patient populations and treatment sites may vary between the modalities. An action level of ±5% could be considered for intensity-modulated radiation therapy (IMRT), non-IMRT, and volumetric modulated arc radiotherapy using these modalities in homogenous and heterogeneous conditions with a large treatment field applied to a large region of homogeneous media. There were larger systematic differences in heterogeneous conditions with a small treatment field because of differences in heterogeneity correction with the different dose calculation algorithms of the primary TPS and verification program.  相似文献   

11.
PurposeBone cement used for vertebroplasty can affect the accuracy on the dose calculation of the radiation therapy treatment. In addition the CT values of high density objects themselves can be misrepresented in kVCT images. The aim of our study is then to propose a streamlined approach for estimating the real density of cement implants used in stereotactic body radiation therapy.MethodsSeveral samples of cement were manufactured and irradiated in order to investigate the impact of their composition on the radiation dose. The validity of the CT conversion method for a range of photon energies was investigated, for the studied samples and on six patients. Calculations and measurements were carried out with various overridden densities and dose prediction algorithms (AXB with dose-to-medium reporting or AAA) in order to find the effective density override.ResultsRelative dose differences of several percent were found between the dose measured and calculated downstream of the implant using an ion chamber and TPS or EPID dosimetry. If the correct density is assigned to the implant, calculations can provide clinically acceptable accuracy (gamma criteria of 3%/2 mm). The use of MV imaging significantly favors the attribution of a correct equivalent density to the implants compared to the use of kVCT images.ConclusionThe porosity and relative density of the various studied implants vary significantly. Bone cement density estimations can be characterized using MV imaging or planar in vivo dosimetry, which could help determining whether errors in dose calculations are due to incorrect densities.  相似文献   

12.
Three methods of transit dosimetry using Electronic Portal Imaging Devices (EPIDs) were investigated for use in routine in-vivo dosimetry for cranial stereotactic radiosurgery and radiotherapy. The approaches examined were (a) A full Monte Carlo (MC) simulation of radiation transport through the linear accelerator and patient; (b) Calculation of the expected fluence by a treatment planning system (TPS); (c) Point doses calculated along the central axis compared to doses calculated using parameters acquired using the EPID. A dosimetric comparison of each of the three methods predicted doses at the imager plane to within ±5% and a gamma comparison for the MC and TPS based approaches showed good agreement for a range of dose and distance to agreement criteria. The MC technique was most time consuming, followed by the TPS calculation with the point dose calculation significantly quicker than the other methods.  相似文献   

13.
This study compares Treatment Planning System (TPS) out of field dose calculation on a pacemaker (PMK) during external beam radiotherapy treatment. We consider four TPSs (Elekta-Monaco, Oncentra- Masterplan and two Philips-Pinnacle3) commissioned for two linacs (Elekta Sinergy and Varian Clinac) delivering two test beams (a highly modulated one and a square field) and two clinical breast plans. To calculate and measure dose to a PMK we built a Real Water3 phantom with a PMK embedded in it. Measures are performed with thermo-luminescent dosimeters and Mosfet dosimeters. We evaluate differences between TPS calculated values for the dose to the PMK (both point dose and dose-volume histogram parameters) when the PMK is positioned in the first 10 cm outside the radiation fields. TPS calculation accuracy is evaluated comparing such values with measures. Differences in TPS calculations are on average 3.5 cGy Gy-1 for the modulated beam, and always lower than 2 cGy Gy-1 for the square beam. TPS dose calculation depends mostly on the TPS algorithm and model rather than the linac commissioned. TPSs considered show different degrees of calculation accuracy. In the first 4 cm to the field edge three out of four TPSs are in good agreement with measurements in the square beam, but only one keeps the agreement in the modulated beam: the others show over and underestimations up to +20% −40%. The same accuracy is found considering a homogeneous phantom. Our results confirm what reported in previous studies and highlight the impact of TPS commissioning.  相似文献   

14.
Monte Carlo (MC) dose calculation algorithms have been widely used to verify the accuracy of intensity-modulated radiotherapy (IMRT) dose distributions computed by conventional algorithms due to the ability to precisely account for the effects of tissue inhomogeneities and multileaf collimator characteristics. Both algorithms present, however, a particular difference in terms of dose calculation and report. Whereas dose from conventional methods is traditionally computed and reported as the water-equivalent dose (Dw), MC dose algorithms calculate and report dose to medium (Dm). In order to compare consistently both methods, the conversion of MC Dm into Dw is therefore necessary.This study aims to assess the effect of applying the conversion of MC-based Dm distributions to Dw for prostate IMRT plans generated for 6 MV photon beams. MC phantoms were created from the patient CT images using three different ramps to convert CT numbers into material and mass density: a conventional four material ramp (CTCREATE) and two simplified CT conversion ramps: (1) air and water with variable densities and (2) air and water with unit density. MC simulations were performed using the BEAMnrc code for the treatment head simulation and the DOSXYZnrc code for the patient dose calculation. The conversion of Dm to Dw by scaling with the stopping power ratios of water to medium was also performed in a post-MC calculation process.The comparison of MC dose distributions calculated in conventional and simplified (water with variable densities) phantoms showed that the effect of material composition on dose-volume histograms (DVH) was less than 1% for soft tissue and about 2.5% near and inside bone structures. The effect of material density on DVH was less than 1% for all tissues through the comparison of MC distributions performed in the two simplified phantoms considering water. Additionally, MC dose distributions were compared with the predictions from an Eclipse treatment planning system (TPS), which employed a pencil beam convolution (PBC) algorithm with Modified Batho Power Law heterogeneity correction. Eclipse PBC and MC calculations (conventional and simplified phantoms) agreed well (<1%) for soft tissues. For femoral heads, differences up to 3% were observed between the DVH for Eclipse PBC and MC calculated in conventional phantoms. The use of the CT conversion ramp of water with variable densities for MC simulations showed no dose discrepancies (0.5%) with the PBC algorithm. Moreover, converting Dm to Dw using mass stopping power ratios resulted in a significant shift (up to 6%) in the DVH for the femoral heads compared to the Eclipse PBC one.Our results show that, for prostate IMRT plans delivered with 6 MV photon beams, no conversion of MC dose from medium to water using stopping power ratio is needed. In contrast, MC dose calculations using water with variable density may be a simple way to solve the problem found using the dose conversion method based on the stopping power ratio.  相似文献   

15.
PurposeEvaluating performance of modern dose calculation algorithms in SBRT and locally advanced lung cancer radiotherapy in free breathing (FB) and deep inspiration breath hold (DIBH).MethodsFor 17 patients with early stage and 17 with locally advanced lung cancer, a plan in FB and in DIBH were generated with Anisotropic Analytical Algorithm (AAA). Plans for early stage were 3D-conformal SBRT, 45 Gy in 3 fractions, prescribed to 95% isodose covering 95% of PTV and aiming for 140% dose centrally in the tumour. Locally advanced plans were volumetric modulated arc therapy, 66 Gy in 33 fractions, prescribed to mean PTV dose. Calculation grid size was 1 mm for SBRT and 2.5 mm for locally advanced plans. All plans were recalculated with AcurosXB with same MU as in AAA, for comparison on target coverage and dose to risk organs.ResultsLung volume increased in DIBH, resulting in decreased lung density (6% for early and 13% for locally-advanced group).In SBRT, AAA overestimated mean and near-minimum PTV dose (p-values < 0.01) compared to AcurosXB, with largest impact in DIBH (differences of up to 11 Gy). These clinically relevant differences may be a combination of small targets and large dose gradients within the PTV.In locally advanced group, AAA overestimated mean GTV, CTV and PTV doses by median less than 0.8 Gy and near-minimum doses by median 0.4–2.7 Gy.No clinically meaningful difference was observed for lung and heart dose metrics between the algorithms, for both FB and DIBH.ConclusionsAAA overestimated target coverage compared to AcurosXB, especially in DIBH for SBRT.  相似文献   

16.
AimIn this study, an accuracy survey of intensity-modulated radiation therapy (IMRT) and volumetric arc radiation therapy (VMAT) implementation in radiotherapy centers in Thailand was conducted.BackgroundIt is well recognized that there is a need for radiotherapy centers to evaluate the accuracy levels of their current practices, and use the related information to identify opportunities for future development.Materials and methodsAn end-to-end test using a CIRS thorax phantom was carried out at 8 participating centers. Based on each center's protocol for simulation and planning, linac-based IMRT or VMAT plans were generated following the IAEA (CRP E24017) guidelines. Point doses in the region of PTVs and OARs were obtained from 5 ionization chamber readings and the dose distribution from the radiochromic films. The global gamma indices of the measurement doses and the treatment planning system calculation doses were compared.ResultsThe large majority of the RT centers (6/8) fulfilled the dosimetric goals, with the measured and calculated doses at the specification points agreeing within ±3% for PTV and ±5% for OARS. At 2 centers, TPS underestimated the lung doses by about 6% and spinal cord doses by 8%. The mean percentage gamma pass rates for the 8 centers were 98.29 ± 0.67% (for the 3%/3 mm criterion) and 96.72 ± 0.84% (for the 2%/2 mm criterion).ConclusionsThe 8 participating RT centers achieved a satisfactory quality level of IMRT/VMAT clinical implementation.  相似文献   

17.
ObjectivesTo investigate the dosimetric effect of air gaps under bolus on skin dose for left-sided post-mastectomy radiotherapy with loco regional involvement.MethodsEight patients were planned retrospectively with volume modulated arc therapy (VMAT) and conventional static Field-in-Field (FinF) methods. Three different setups were applied for the 5-mm bolus over the chest wall having 0, 5 or 10 mm air gap under the bolus. The dose calculation was performed using Monte Carlo (MC) simulation. In addition, Analytic Anisotropic Algorithm (AAA) was used to demonstrate the differences observed in clinical setting.ResultsThe investigated air gaps under the bolus had minimal effect on surface dose for FinF plans (relative difference ≤ 2.6%), whereas for VMAT plans the surface dose decreased 13.6% when compared to the case with no air gap. In both FinF and VMAT, the largest differences between AAA and MC were seen at the surface where AAA underestimated the dose by 1.5 Gy (p < 0.05) on average; while the dose in the target volume excluding the surface was relatively similar being on average 0.3 Gy (p > 0.05) larger with AAA than with MC calculations.ConclusionsThe surface dose was significantly lower with VMAT technique than with FinF technique. Possible air gaps under the bolus reduced the surface dose significantly further for VMAT but not for FinF treatments, which may have clinical impact on recurrence rate. AAA was shown to underestimate the surface dose when compared to MC calculation.  相似文献   

18.
目的对比研究三维适形放疗(3DCRT)和常规模拟机定位放疗两种不同方法在食管癌放射治疗中的优缺点。方法 20例食管癌患者采用3DCRT方法进行治疗,应用同一治疗计划系统,制定适形放疗和常规模拟机定位放疗方案。结果与常规模拟定位机定位放疗相比,食管癌照射中3DCRT有最好的剂量分布,既可明显提高靶区的剂量,同时能较好地保护正常组织。结论食管癌的适形放疗技术能降低正常组织的放射损伤和并发症,提高放疗治疗的适形度,改善靶区的剂量分布。  相似文献   

19.
ObjectivesThe purpose of this study was to dosimetrically benchmark gel dosimetry measurements in a dynamically deformable abdominal phantom for intrafraction image guidance through a multi-dosimeter comparison. Once benchmarked, the study aimed to perform a proof-of-principle study for validation measurements of an ultrasound image-guided radiotherapy delivery system.MethodsThe phantom was dosimetrically benchmarked by delivering a liver VMAT plan and measuring the 3D dose distribution with DEFGEL dosimeters. Measured doses were compared to the treatment planning system and measurements acquired with radiochromic film and an ion chamber. The ultrasound image guidance validation was performed for a hands-free ultrasound transducer for the tracking of liver motion during treatment.ResultsGel dosimeters were compared to the TPS and film measurements, showing good qualitative dose distribution matches, low γ values through most of the high dose region, and average 3%/5 mm γ-analysis pass rates of 99.2%(0.8%) and 90.1%(0.8%), respectively. Gel dosimeter measurements matched ion chamber measurements within 3%. The image guidance validation study showed the measurement of the treatment delivery improvements due to the inclusion of the ultrasound image guidance system. Good qualitative matching of dose distributions and improvements of the γ-analysis results were observed for the ultrasound-gated dosimeter compared to the ungated dosimeter.ConclusionsDEFGEL dosimeters in phantom showed good agreement with the planned dose and other dosimeters for dosimetric benchmarking. Ultrasound image guidance validation measurements showed good proof-of-principle of the utility of the phantom system as a method of validating ultrasound-based image guidance systems and potentially other image guidance methods.  相似文献   

20.
PurposeThis study investigates the effects of temporary tissue expanders (TTEs) on the dose distributions in breast cancer radiotherapy treatments under a variety of conditions.MethodsUsing EBT2 radiochromic film, both electron and photon beam dose distribution measurements were made for different phantoms, and beam geometries. This was done to establish a more comprehensive understanding of the implant's perturbation effects under a wider variety of conditions.ResultsThe magnetic disk present in a tissue expander causes a dose reduction of approximately 20% in a photon tangent treatment and 56% in electron boost fields immediately downstream of the implant. The effects of the silicon elastomer are also much more apparent in an electron beam than a photon beam.ConclusionsEvidently, each component of the TTE attenuates the radiation beam to different degrees. This study has demonstrated that the accuracy of photon and electron treatments of post-mastectomy patients is influenced by the presence of a tissue expander for various beam orientations. The impact of TTEs on dose distributions establishes the importance of an accurately modelled high-density implant in the treatment planning system for post-mastectomy patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号