首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Superantigens (SAGs) bind simultaneously to major histocompatibility complex (MHC) and T-cell receptor (TCR) molecules, resulting in the massive release of inflammatory cytokines that can lead to toxic shock syndrome (TSS) and death. A major causative agent of TSS is toxic shock syndrome toxin-1 (TSST-1), which is unique relative to other bacterial SAGs owing to its structural divergence and its stringent TCR specificity. Here, we report the crystal structure of TSST-1 in complex with an affinity-matured variant of its wild-type TCR ligand, human T-cell receptor beta chain variable domain 2.1. From this structure and a model of the wild-type complex, we show that TSST-1 engages TCR ligands in a markedly different way than do other SAGs. We provide a structural basis for the high TCR specificity of TSST-1 and present a model of the TSST-1-dependent MHC-SAG-TCR T-cell signaling complex that is structurally and energetically unique relative to those formed by other SAGs. Our data also suggest that protein plasticity plays an exceptionally significant role in this affinity maturation process that results in more than a 3000-fold increase in affinity.  相似文献   

2.
The T-cell antigen receptor (TCR x CD3) is a multi-subunit complex that is responsible for triggering an adaptive immune response. It shows high specificity and sensitivity, while having a low affinity for the ligand. Furthermore, T cells respond to antigen over a wide concentration range. The stoichiometry and architecture of TCR x CD3 in the membrane have been under intense scrutiny because they might be the key to explaining its paradoxical properties. This review highlights new evidence that TCR x CD3 is found on intact unstimulated T cells in a monovalent form (one ligand-binding site per receptor) as well as in several distinct multivalent forms. This is in contrast to the TCR x CD3 stoichiometries determined by several biochemical means; however, these data can be explained by the effects of different detergents on the integrity of the receptor. Here, we discuss a model in which the multivalent receptors are important for the detection of low concentrations of ligand and therefore confer sensitivity, whereas the co-expressed monovalent TCR x CD3s allow a wide dynamic range.  相似文献   

3.
While much is known about the signalling pathways within lymphocytes that are triggered during activation, much less is known about how the various cell surface molecules on T cells initiate these events. To address this, we have focused on the primary interaction that drives T-cell activation, namely the binding of a particular T-cell receptor (TCR) to peptide-MHC ligands, and find a close correlation between biological activity and off-rate; that is, the most stimulatory TCR ligands have the slowest dissociation rates. In general, TCRs from multiple histocompatibility complex (MHC) class-II-restricted T cells have half-lives of 1-11s at 25 degrees C, a much narrower range than found with antibodies and suggesting a strong selection for an optimum dissociation rate. TCR ligands with even faster dissociation rates tend to be antagonists. To observe the effects of these different ligands in their physiological setting, we made gene fusions of various molecules with green fluorescent protein (GFP), transfected them into the relevant lymphocytes, and observed their movements during T-cell recognition using multicolour video microscopy. We find that clustering of CD3zeta-GFP and CD4-GFP on the Tcell occurs concomitantly or slightly before the first rise in calcium by the T cell, and that various GFP-labelled molecules on the B-cell side cluster shortly thereafter (ICAM-1, class II MHC, CD48), apparently driven byT-cell molecules. Most of this movement towards the interface is mediated by signals through the co-stimulatory receptors, CD28 and LFA-1, and involves myosin motors and the cortical actin cytoskeleton. Thus, we have proposed that the principal mechanism by which co-stimulation enhances T-cell responsiveness is by increasing the local density of T-cell activation molecules, their ligands and their attendant signalling apparatus. In collaboration with Michael Dustin and colleagues, we have also found that the formation and stability of the TCR-peptide-MHC cluster at the centre of the interaction cap between T and B cells is highly dependent on the dissociation rate of the TCR and its ligand. Thus, we are able to link this kinetic parameter to the formation of a cell surface structure that is linked to and probably causal with respect to T-cell activation.  相似文献   

4.
We analyze a simple linear triggering model of the T-cell receptor (TCR) within the framework of queuing theory, in which TCRs enter the queue upon full activation and exit by downregulation. We fit our model to four experimentally characterized threshold activation criteria and analyze their specificity and sensitivity: the initial calcium spike, cytotoxicity, immunological synapse formation, and cytokine secretion. Specificity characteristics improve as the time window for detection increases, saturating for time periods on the timescale of downregulation; thus, the calcium spike (30 s) has low specificity but a sensitivity to single-peptide MHC ligands, while the cytokine threshold (1 h) can distinguish ligands with a 30% variation in the complex lifetime. However, a robustness analysis shows that these properties are degraded when the queue parameters are subject to variation-for example, under stochasticity in the ligand number in the cell-cell interface and population variation in the cellular threshold. A time integration of the queue over a period of hours is shown to be able to control parameter noise efficiently for realistic parameter values when integrated over sufficiently long time periods (hours), the discrimination characteristics being determined by the TCR signal cascade kinetics (a kinetic proofreading scheme). Therefore, through a combination of thresholds and signal integration, a T cell can be responsive to low ligand density and specific to agonist quality. We suggest that multiple threshold mechanisms are employed to establish the conditions for efficient signal integration, i.e., coordinate the formation of a stable contact interface.  相似文献   

5.
Recently developed major histocompatibility complex (MHC) multimer technologies allow visualization and isolation of antigen-specific T cells. However, functional analysis and in vivo transfer of MHC multimer-stained cells is hampered by the persistence of T-cell receptor (TCR) MHC interactions and subsequently induced signaling events. As MHC monomers do not stably bind to TCRs, we postulated that targeted disassembly of multimers into MHC monomers would result in dissociation of surface-bound TCR ligands. We generated a new type of MHC multimers, which can be monomerized in the presence of a competitor, resulting in rapid loss of the staining reagent. Following dissociation, the T cells are phenotypically and functionally indistinguishable from untreated cells. This 'reversible' T-cell staining procedure, which maintains the specificity and sensitivity of MHC multimer staining while preserving the functional status of T lymphocytes, may be of broad benefit for ex vivo investigation of T-cell functions and clinical applications.  相似文献   

6.
T-cell receptor (TCR) engagement initiates intracellular signalling cascades that lead to T-cell proliferation, cytokine production and differentiation into effector cells. These cascades comprise an array of protein-tyrosine kinases, phosphatases, GTP-binding proteins and adaptor proteins that regulate generic and specialised functions. The integration of these signals is essential for the normal development, homeostasis and function of T cells. Defects in a single mediator can produce T cells that are unable to participate fully in an immune response and/or that mount an inappropriate response, which leads to immunodeficiency, autoimmunity or leukaemia/lymphomas. This review highlights some of the key players in T-cell signalling and their involvement in the development of various clinical disease states. Some of these immune-specific signalling proteins are attractive potential targets in the development of therapies to augment T-cell responses to antigen or tumours, and to treat immune cell disorders.  相似文献   

7.
Although ligation of the T-cell antigen receptor (TCR) is central to the responsiveness and antigen specificity of T-cells, it is insufficient to elicit a response. To determine whether the need for costimulation reflects inadequate strength of signal transduction through the TCR or an absolute block of signaling in the absence of a coligand, we studied T-cell activation under serum-free conditions eliminating costimulation by various extracellular matrix proteins which otherwise have an omnipresent and frequently overlooked effect. Engagement of the TCR leads to induction of Fas, but not to measurable IL-2 secretion or apoptosis. Those activation parameters are induced by costimulation through integrin alphaVbeta3. Furthermore, T-cell survival or elimination is determined by the type of ligand binding to this coreceptor with vitronectin, fibronectin, and fibrinogen efficiently inducing apoptosis and IL-2 production while osteopontin and entactin mediate IL-2 secretion comparably without causing programmed cell death. Consistent with the cytokine properties of these ligands, differential costimulation depends on their presentation in soluble rather than immobilized form. The determination of elimination versus survival of activated T-cells by coligation of beta3-integrins may have bearing on the fundamental postthymic mechanisms that shape the T-cell repertoire.  相似文献   

8.
CD28 is one of the most important co-stimulatory receptors necessary for full T lymphocyte activation. By binding its cognate ligands, B7.1/CD80 or B7.2/CD86, expressed on the surface of professional antigen presenting cells (APC), CD28 initiates several signalling cascades, which qualitatively and quantitatively support T cell receptor (TCR) signalling. More recent data evidenced that human CD28 can also act as a TCR-independent signalling unit, by delivering specific signals, which regulate the expression of pro-inflammatory cytokine/chemokines. Despite the enormous progresses made in identifying the mechanisms and molecules involved in CD28 signalling properties, much remains to be elucidated, especially in the light of the functional differences observed between human and mouse CD28. In this review we provide an overview of the current mechanisms and molecules through which CD28 support TCR signalling and highlight recent findings on the specific signalling motifs that regulate the unique pro-inflammatory activity of human CD28.  相似文献   

9.
The therapeutic efficacy of donor lymphocyte infusions has been proven for patients with relapsed hematologic malignancies after allogeneic stem cell transplantation. The beneficial effect of donor lymphocytes, however, is often accompanied by graft-versus-host-disease (GvHD). Adoptive transfer of antigen (Ag)-specific T-cell lines may eradicate the relapsed hematological malignancy, and may separate the anti-leukemic effect from GvHD. The main drawback of adoptive therapy of defined T-cell populations is the difficulty in producing sufficient quantities of these Ag-specific T cells. In addition, the specificity of the infused T cells is difficult to control. As the T-cell receptor (TCR) solely determines the specificity of T cells, transfer of relevant TCR genes into appropriate T-cell populations may provide a potent therapeutic reagent. With this strategy, donor-derived T-cell populations would be equipped with a TCR of defined specificity in short-term in vitro procedures, and infusion of the redirected cells would result in T-cell reactivity against the defined Ag. In this review we discuss the current status of TCR gene transfer for the treatment of hematological malignancies.  相似文献   

10.
Induction of tolerance to transplantation antigens is believed to be a promising way to achieve long-term allograft survival without a deleterious immunosuppressive regimen. T-cell activation, which is an essential feature of graft rejection, requires a first signal provided by T-cell receptor (TCR) ligation and a second signal provided by engagement of co-stimulatory molecules with their respective ligands on antigen-presenting cells. The coordinated triggering of these two independent signalling systems ensures the full T-cell activation, including proliferation and acquisition of effector function. TCR occupancy in the absence of co-stimulatory signals leads to a sustained loss of antigen responsiveness called clonal anergy, which could be of major importance in transplantation. In vivo, co-stimulation blockade was indeed shown to allow for long-term allograft survival in several transplantation models. However, the current continuous identification of new co-stimulatory molecules suggests that a functional redundancy of the system exists and that tolerance to transplantation antigens might be achieved more easily through the combined blockade of two or several co-stimulatory signals. In this review, we analyse the biological effects of the disruption of some co-stimulation pathways in vitro and in vivo and discuss their potential interest for tolerance induction.  相似文献   

11.
We investigated the T-cell receptor (TCR) repertoire of CD8(+) T cells that recognize the Tax11-19 immunodominant epitope of Tax protein expressed by human T-cell leukemia virus (HTLV-1) that is implicated in the disease HTLV-1-associated myelopathy (HAM/TSP). A panel of Tax11-19-reactive CD8(+) T-cell clones was generated by single-cell cloning of Tax11-19/HLA-A*0201 tetramer-positive peripheral blood lymphocytes from an HTLV-1-infected individual. The analyses of TCR usage revealed that the combination of diverse TCR alpha and beta chains could be used for the recognition of Tax11-19 but the major population of T-cell clones (15 of 24 clones) expressed the TCR V beta 13S1 and V alpha 17 chain. We found striking similarities in CDR3 regions of TCR alpha and beta chains between our major group of CD8(+) T-cell clones and those originating from different subjects as previously reported, including TCRs with resolved crystal structures. A 3-amino-acid sequence (PG-G) in the CDR3 region of the V beta chain was conserved among all the Tax11-19-reactive T-cell clones expressing V beta 13S1 and V alpha 17 chains. Conserved amino acids in the CDR3 region do not directly contact the Tax11-19 peptide, as corroborated by the crystal structure of B7-TCR, a TCR that is almost identical to VB13S1 clones isolated in this study. Analysis of fine peptide specificity using altered peptide ligands (APL) of Tax11-19 revealed a similar recognition pattern among this panel of T-cell clones. These data suggest that the PG-G amino acids in the CDR3 beta loop provide a structural framework necessary for the maintenance of the tertiary TCR structure.  相似文献   

12.
Antibody-induced antigenic modulation occurs after binding of antibodies to a variety of cell surface proteins. It is characterized by aggregation and subsequent loss of the molecules from the cell surface, usually by internalization. In this study we have investigated the effect of modulation of the T-cell antigen receptor complex (TCR) and the transferrin receptor (TFR) on the distribution of cholera toxin (CTx)- and pertussis toxin (PTx)-sensitive GTP binding proteins in human T-lymphocytes. Modulation of both the TCR and the TFR induced a selective shift of PTx-sensitive G-proteins from the plasma membrane to a high density membrane fraction enriched for lysosomal membranes. The distribution of CTx-sensitive G-proteins was unaffected. This shift was found in both the T-cell leukemia line Jurkat and in normal T-cells. The loss of PTx-sensitive G-proteins from the plasma membrane required approximately 15 h to be complete and was not inhibited by cycloheximide. It had no influence on T-cell triggering via anti-T-cell receptor antibodies and is unrelated to the inactivating effect of TCR-modulation on T-cell signalling. The loss of PTx-sensitive G-proteins was not accompanied by greater sensitivity to stimuli raising cAMP concentration. These results show that PTx-sensitive G-proteins can be selectively depleted from the plasma membrane by antibody treatment of T-cells.  相似文献   

13.
A chimeric T-cell receptor (TCR) alpha-chain gene was produced by shuffling the immunoglobulin VDJH from a 40-140 digoxin-specific hybridoma onto alpha-chain constant region (C alpha) exons. This hybrid immunoglobulin-TCR gene was used to produce transgenic mice. Previous results indicated that this chimeric gene encoded a polypeptide that associated with endogenously encoded beta chains to form a hybrid TCR. T cells expressing this receptor could be stimulated with antibodies specific for CD3 or the 40-140 idiotype (Id40-140), and also with digoxin coupled to bovine serum albumin (digoxin-BSA). We were interested in determining whether a hybrid receptor such as this could also recognize the natural ligand of T cells, namely allelic variants of major histocompatibility complex (MHC) molecules. A T-cell hybridoma was produced that expressed a hybrid receptor with specificity for an IAk-encoded determinant, digoxin-BSA, or staphyloccocal enterotoxin B. Transfection experiments showed that the specificity for MHC determinants was dependent on both the hybrid alpha chain and a particular beta chain. These results indicate that a V beta domain combined with a VH domain can produce a receptor capable of reacting with MHC molecules, and at the same time retain specificities mediated by the beta chain and alpha chain alone. A conclusion is that the pervasive MHC specificity of the TCR is not unique to the family of TCR heterodimers, but is selected, and can be mediated by immunoglobulin domains.  相似文献   

14.
T cell populations are regulated both by signals specific to the T-cell receptor (TCR) and by signals and resources, such as cytokines and space, that act independently of TCR specificity. Although it has been demonstrated that disruption of either of these pathways has a profound effect on T-cell development, we do not yet have an understanding of the dynamical interactions of these pathways in their joint shaping of the T cell repertoire. Complete DiGeorge Anomaly is a developmental abnormality that results in the failure of the thymus to develop, absence of T cells, and profound immune deficiency. After receiving thymic tissue grafts, patients suffering from DiGeorge anomaly develop T cells derived from their own precursors but matured in the donor tissue. We followed three DiGeorge patients after thymus transplantation to utilize the remarkable opportunity these subjects provide to elucidate human T-cell developmental regulation. Our goal is the determination of the respective roles of TCR-specific vs. TCR-nonspecific regulatory signals in the growth of these emerging T-cell populations. During the course of the study, we measured peripheral blood T-cell concentrations, TCRβ V gene-segment usage and CDR3-length spectratypes over two years or more for each of the subjects. We find, through statistical analysis based on a novel stochastic population-dynamic T-cell model, that the carrying capacity corresponding to TCR-specific resources is approximately 1000-fold larger than that of TCR-nonspecific resources, implying that the size of the peripheral T-cell pool at steady state is determined almost entirely by TCR-nonspecific mechanisms. Nevertheless, the diversity of the TCR repertoire depends crucially on TCR-specific regulation. The estimated strength of this TCR-specific regulation is sufficient to ensure rapid establishment of TCR repertoire diversity in the early phase of T cell population growth, and to maintain TCR repertoire diversity in the face of substantial clonal expansion-induced perturbation from the steady state.  相似文献   

15.
Engagement of the T-cell receptor (TCR) complex initiates a cascade of intracellular events ultimately leading to T-cell proliferation and differentiation. One of the first detectable consequences of TCR triggering is the activation of cytoplasmic protein kinases which, through phosphorylation of specific substrates, couple the TCR to downstream signalling cascades. Although it is well established that activation of the Ras- and the calcium-dependent calcineurin pathway is required for the achievement of T-cell activation, the precise mechanism as to how the TCR is connected to these intracellular effector molecules is still unclear. Major progress has been made in this regard with the molecular characterization of novel cytoplasmic and transmembrane molecules called adaptor proteins which integrate TCR-mediated signals at the intracellular level thus allowing fine tuning of T-cell responses.  相似文献   

16.
The molecular interactions between the T-cell receptor (TCR) and peptide-MHC (pMHC) have been elucidated in recent years. Nevertheless, the fact that binding of only slightly different ligands by a TCR, or ligation of the same pMHC at different developmental stages of the T cell, can have opposing consequences, continues to pose intellectual challenges. Kinetic proofreading models, which have at their core the dissociation rates of pMHC from the TCR, are best suited to account for these observations. However, T cells can be triggered by peptides with often minimal homology to the primary immunogenic peptide. This cross-reactivity of the TCR is manifest at several levels, from positive selection of immature thymocytes to homeostasis and antigen-cross- reactive immune responses of mature peripheral T cells. The implications of the high cross-reactivity of T-cell antigen recognition for self-tolerance and T-cell memory are discussed.  相似文献   

17.
At the interface between T cell and antigen-presenting cell (APC), peptide antigen presented by MHC (pMHC) binds to the T cell receptor (TCR) and initiates signaling. The mechanism of TCR signal initiation, or triggering, remains unclear. An interesting aspect of this puzzle is that although soluble agonist pMHCs cannot trigger TCR even at high concentrations, the same ligands trigger TCR very efficiently on the surface of APCs. Here, using lipid bilayers or plastic-based artificial APCs with defined components, we identify the critical APC-associated factors that confer agonist pMHCs with such potency. We found that CD4+ T cells are triggered by very low numbers of monomeric agonist pMHCs anchored on fluid lipid bilayers or fixed plastic surfaces, in the absence of any other APC surface molecules. Importantly, on bilayers, plastic surfaces, or real APCs, endogenous pMHCs did not enhance TCR triggering. TCR triggering, however, critically depended upon the adhesiveness of the surface and an intact T cell actin cytoskeleton. Based on these observations, we propose the receptor deformation model of TCR triggering to explain the remarkable sensitivity and specificity of TCR triggering.  相似文献   

18.
The failure of Thy-1 and Ly-6 to trigger interleukin-2 production in the absence of surface T-cell antigen receptor complex (TCR) expression has been interpreted to suggest that functional signalling via these phosphatidylinositol-linked alternative activation molecules is dependent on the TCR. We find, in contrast, that stimulation of T cells via Thy-1 or Ly-6 in the absence of TCR expression does trigger a biological response, the cell suicide process of activation-driven cell death. Activation-driven cell death is a process of physiological cell death that likely represents the mechanism of negative selection of T cells. The absence of the TCR further reveals that signalling leading to activation-driven cell death and to lymphokine production are distinct and dissociable. In turn, the ability of alternative activation molecules to function in the absence of the TCR raises another issue: why immature T cells, thymomas, and hybrids fail to undergo activation-driven cell death in response to stimulation via Thy-1 and Ly-6. One possibility is that these activation molecules on immature T cells are defective. Alternatively, susceptibility to activation-driven cell death may be developmentally regulated by TCR-independent factors. We have explored these possibilities with somatic cell hybrids between mature and immature T cells, in which Thy-1 and Ly-6 are contributed exclusively by the immature partner. The hybrid cells exhibit sensitivity to activation-driven cell death triggered via Thy-1 and Ly-6. Thus, the Thy-1 and Ly-6 molecules of the immature T cells can function in a permissive environment. Moreover, with regard to susceptibility to Thy-1 and Ly-6 molecules of the immature T cells can function in a permissive environment. Moreover, with regard to susceptibility to Thy-1 and Ly-6 triggering, the mature phenotype of sensitivity to cell death is genetically dominant.  相似文献   

19.
The extent to which lipid raft proteins are organized in functional clusters within the plasma membrane is central to the debate on structure and function of rafts. Glycosylphosphatidylinositol (GPI)-linked proteins are characteristic components of biochemically defined rafts. Several studies report a function for rafts in T-cell stimulation, but it is unclear whether molecules involved in T-cell receptor (TCR) signalling are recruited to (or excluded from) T-cell synapses through asymmetric distribution of raft microdomains or through specific protein-protein interactions. Here we used FRET analysis in live cells to determine whether GPI-linked proteins are clustered in the plasma membrane of unstimulated cells, and at regions where TCR signalling has been activated using antibody-coated beads. Multiple criteria suggested that FRET between different GPI-linked fluorescent proteins in COS-7 or unstimulated Jurkat T-cells is generated by a random, un-clustered distribution. Stimulation of TCR signalling in Jurkat cells resulted in localized increases in fluorescence of GPI-linked fluorescent proteins and cholera toxin B-subunit (CTB). However, measurements of FRET and ratio imaging showed that there was no detectable clustering and no overall enrichment of GPI-linked proteins or CTB in these regions.  相似文献   

20.
Effective activation of T cells requires engagement of two separate T-cell receptors. The antigen-specific T-cell receptor (TCR) binds foreign peptide antigen-MHC complexes, and the CD28 receptor binds to the B7 (CD80/CD86) costimulatory molecules expressed on the surface of antigen-presenting cells (APC). The simultaneous triggering of these T-cell surface receptors with their specific ligands results in an activation of this cell. In contrast, CTLA-4 (CD152) is a distinct T-cell receptor that, upon binding to B7 molecules, sends an inhibitory signal to T cell activation. Many in vitro and in vivo studies demonstrated that both CD80 and CD86 ligands have an identical role in the activation of T cells. Recently, functions of B7 costimulatory molecules in vivo have been investigated in B7-1 and/or B7-2 knockout mice, and the authors concluded that CD86 could be more important for initiating T-cell responses, while CD80 could be more significant for maintaining these immune responses. In this study, we directly compared the role of CD80 and CD86 in initiating and maintaining proliferation of resting CD4(+) T cells in an in vitro mode system that allowed to provide the first signal-to-effector cells through the use of suboptimal doses of PHA and the second costimulatory signal through cells expressing CD80 or CD86, but not any other costimulatory molecules. Using this experimental system we demonstrate that the CD80 and CD86 molecules can substitute for each other in the initial activation of resting CD4(+) T cells and in the maintenance of their proliferative response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号