首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mechanistic relationship of phosphorylation of the C terminus of IKKbeta with phosphorylation of its T-loop kinase domain within the IKK complex remained unclear. We investigated the regulatory role of the serine cluster residing immediately adjacent to the HLH domain and of the serines in the NEMO/IKKgamma-binding domain (NBD/gammaBD) in the C-terminal portion of IKKbeta in MEFs deficient in IKKbeta and IKKalpha and in yeast reconstitution system. We show that phosphorylation events at the C terminus of IKKbeta can be divided into autophosphorylation of the serine cluster adjacent to the HLH domain and phosphorylation of the NBD/gammaBD. Autophosphorylation of the serine cluster occurs immediately after IKK activation and requires IKKgamma. In MEFs, this autophosphorylation does not have the down-regulatory function on the IKK complex that was previously described (1). On the other hand, phosphorylation of the NBD/gammaBD regulates IKKgamma-dependent phosphorylation of the T-loop activation domain in IKKbeta and, hence, IKK complex activation. Our study suggests that, within the IKK complex, modulation of the NBD/gammaBD by IKKgamma is upstream to the T-loop phosphorylation.  相似文献   

2.
3.
4.
IkappaB kinase (IKK) complex is a key regulator of NF-kappaB pathways. Signal-induced interaction of the IKKgamma (NEMO) subunit with the C-terminal IKKgamma/NEMO-binding domain (gammaBD) of IKKbeta is an essential interaction for IKK regulation. Underlying regulatory mechanism(s) of this interaction are not known. Phosphorylation of gammaBD has been suggested to play a regulatory role for IKK activation. However, a kinase that phosphorylates gammaBD has not been identified. In this study, we used a C-terminal fragment of IKKbeta as substrate and purified Polo-like kinase 1 (Plk1) from HeLa cell extracts by standard chromatography as a gammaBD kinase. Plk1 phosphorylates serines 733, 740, and 750 in the gammaBD of IKKbeta in vitro. Phosphorylating gammaBD with Plk1 decreased its affinity for IKKgamma in pulldown assay. We generated phosphoantibodies against serine 740 and showed that gammaBD is phosphorylated in vivo. Expressing a constitutively active Plk1 in mammalian cells reduced tumor necrosis factor (TNF)-induced IKK activation, resulting in decreased phosphorylation of endogenous IkappaBalpha and reduced NF-kappaB activation. To activate endogenous Plk1, cells were treated with nocodazole, which reduced TNF-induced IKK activation, and increased the phosphorylation of gammaBD. Knocking down Plk1 in mammalian cells restored TNF-induced IKK activation in nocodazole-treated cells. Activation of Plk1 inhibited TNF-induced expression of cyclin D1. In cells in which Plk1 was knocked down, TNFalpha increased expression of cyclin D1 and the proportion of cells in the S phase of the cell cycle. Taken together, this study shows that phosphorylation regulates the interaction of gammaBD of IKKbeta with IKKgamma and therefore plays a critical role for IKK activation. Moreover, we identify Plk1 as a gammaBD kinase, which negatively regulates TNF-induced IKK activation and cyclin D1 expression, thereby affecting cell cycle regulation. Untimely activation of cyclin D1 by TNFalpha can provide a potential mechanism for an involvement of TNFalpha in inflammation-induced cancer.  相似文献   

5.
Canonical activation of NF-kappa B is mediated via phosphorylation of the inhibitory I kappa B proteins by the I kappa B kinase complex (IKK). IKK is composed of a heterodimer of the catalytic IKK alpha and IKK beta subunits and a presumed regulatory protein termed NEMO (NF-kappa B essential modulator) or IKK gamma. NEMO/IKK gamma is indispensable for activation of the IKKs in response to many signals, but its mechanism of action remains unclear. Here we identify TANK (TRAF family member-associated NF-kappa B activator) as a NEMO/IKK gamma-interacting protein via yeast two-hybrid analyses. This interaction is confirmed in mammalian cells, and the domains required are mapped. TANK was previously shown to assist NF-kappa B activation in a complex with TANK-binding kinase 1 (TBK1) or IKK epsilon, two kinases distantly related to IKK alpha/beta, but the underlying mechanisms remained unknown. Here we show that TBK1 and IKK epsilon synergize with TANK to promote interaction with the IKKs. The TANK binding domain within NEMO/IKK gamma is required for proper functioning of this IKK subunit. These results indicate that TANK can synergize with IKK epsilon or TBK1 to link them to IKK complexes, where the two kinases may modulate aspects of NF-kappa B activation.  相似文献   

6.
The Nuclear factor (NF)-kappaB signalling pathway plays a critical role in the regulation and coordination of a wide range of cellular events such as cell growth, apoptosis and cell differentiation. Activation of the IKK (inhibitor of NF-kappaB kinase) complex is a crucial step and a point of convergence of all known NF-kappaB signalling pathways. To analyse bovine IKKalpha (IKK1), IKKbeta (IKK2) and IKKgamma (or NF-kappaB Essential MOdulator, NEMO) and their substrate IkappaBalpha (Inhibitor of NF-kappaB), the corresponding cDNAs of these molecules were isolated, sequenced and characterized. A comparison of the amino acid sequences with those of their orthologues in other species showed a very high degree of identity, suggesting that the IKK complex and its substrate IkappaBalpha are evolutionarily highly conserved components of the NF-kappaB pathway. Bovine IKKalpha and IKKbeta are related protein kinases showing 50% identity which is especially prominent in the kinase and leucine zipper domains. Co-immunoprecipitation assays and GST-pull-down experiments were carried out to determine the composition of bovine IKK complexes compared to that in human Jurkat T cells. Using these approaches, the presence of bovine IKK complexes harbouring IKKalpha, IKKbeta, NEMO and the interaction of IKK with its substrate IkappaBalpha could be demonstrated. Parallel experiments using human Jurkat T cells confirmed the high degree of conservation also at the level of protein-protein interactions. Finally, a yeast two-hybrid analysis showed that bovine NEMO molecules, in addition to the binding to IKKalpha and IKKbeta, also strongly interact with each other.  相似文献   

7.
The human T-cell leukemia virus type 1 Tax oncoprotein deregulates the NF-kappa B signaling pathway by persistently stimulating a key signal transducer, the I kappa B kinase (IKK). Tax physically associates with the IKK regulatory subunit, IKK gamma, although the underlying biochemical mechanism and functional significance remain unclear. We show that the Tax-IKK gamma interaction requires two homologous leucine zipper domains located within IKK gamma. These leucine zipper domains are unique for the presence of a conserved upstream region that is essential for Tax binding. Site-directed mutagenesis analysis revealed that a leucine-repeat region of Tax is important for IKK gamma binding. Interestingly, all the Tax mutants defective in IKK gamma binding failed to engage the IKK complex or stimulate IKK activity, and these functional defects can be rescued by fusing the Tax mutants to IKK gamma. These results provide mechanistic insights into how Tax specifically targets and functionally activates the cellular kinase IKK.  相似文献   

8.
9.
A critical step in the activation of NF-kappa B is the phosphorylation of I kappa Bs by the I kappa B kinase (IKK) complex. IKK alpha and IKK beta are the two catalytic subunits of the IKK complex and two additional molecules, IKK gamma/NEMO and IKAP, have been described as further integral members. We have analyzed the function of both proteins for IKK complex composition and NF-kappa B signaling. IKAP and IKK gamma belong to distinct cellular complexes. Quantitative association of IKK gamma was observed with IKK alpha and IKK beta. In contrast IKAP was complexed with several distinct polypeptides. Overexpression of either IKK gamma or IKAP blocked tumor necrosis factor alpha induction of an NF-kappa B-dependent reporter construct, but IKAP in addition affected several NF-kappa B-independent promoters. Whereas specific down-regulation of IKK gamma protein levels by antisense oligonucleotides significantly reduced cytokine-mediated activation of the IKK complex and subsequent NF-kappa B activation, a similar reduction of IKAP protein levels had no effect on NF-kappa B signaling. Using solely IKK alpha, IKK beta, and IKK gamma, we could reconstitute a complex whose apparent molecular weight is comparable to that of the endogenous IKK complex. We conclude that while IKK gamma is a stoichiometric component of the IKK complex, obligatory for NF-kappa B signaling, IKAP is not associated with IKKs and plays no specific role in cytokine-induced NF-kappa B activation.  相似文献   

10.
Post-translational modifications of RelA play an important role in regulation of NF-κB activation. We previously demonstrated that in malignant hematopoietic cells, histone deacetylase inhibitors (HDACIs) induced RelA hyperacetylation and NF-κB activation, attenuating lethality. We now present evidence that IκB kinase (IKK) β-mediated RelA Ser-536 phosphorylation plays a significant functional role in promoting RelA acetylation, inducing NF-κB activation, and limiting HDACI lethality in human multiple myeloma (MM) cells. Immunoblot profiling revealed that although basal RelA phosphorylation varied in MM cells, Ser-536 phosphorylation correlated with IKK activity. Exposure to the pan-HDACIs vorinostat or LBH-589 induced phosphorylation of IKKα/β (Ser-180/Ser-181) and RelA (Ser-536) in MM cells, including cells expressing an IκBα "super-repressor," accompanied by increased RelA nuclear translocation, acetylation, DNA binding, and transactivation activity. These events were substantially blocked by either pan-IKK or IKKβ-selective inhibitors, resulting in marked apoptosis. Consistent with these events, inhibitory peptides targeting either the NF-κB essential modulator (NEMO) binding domain for IKK complex formation or RelA phosphorylation sites also significantly increased HDACI lethality. Moreover, IKKβ knockdown by shRNA prevented Ser-536 phosphorylation and significantly enhanced HDACI susceptibility. Finally, introduction of a nonphosphorylatable RelA mutant S536A, which failed to undergo acetylation in response to HDACIs, impaired NF-κB activation and increased cell death. These findings indicate that HDACIs induce Ser-536 phosphorylation of the NF-κB subunit RelA through an IKKβ-dependent mechanism, an action that is functionally involved in activation of the cytoprotective NF-κB signaling cascade primarily through facilitation of RelA acetylation rather than nuclear translocation.  相似文献   

11.
12.
Two related kinases, IkappaB kinase alpha (IKKalpha) and IKKbeta, phosphorylate the IkappaB proteins, leading to their degradation and the subsequent activation of gene expression by NF-kappaB. IKKbeta has a much higher level of kinase activity for the IkappaB proteins than does IKKalpha and is more critical than IKKalpha in modulating tumor necrosis factor alpha activation of the NF-kappaB pathway. These results indicate an important role for IKKbeta in activating the NF-kappaB pathway but leave open the question of the role of IKKalpha in regulating this pathway. In the current study, we demonstrate that IKKalpha directly phosphorylates IKKbeta. Moreover, IKKalpha either directly or indirectly enhances IKKbeta kinase activity for IkappaBalpha. Finally, transfection studies to analyze NF-kappaB-directed gene expression suggest that IKKalpha is upstream of IKKbeta in activating the NF-kappaB pathway. These results indicate that IKKalpha, in addition to its previously described ability to phosphorylate IkappaBalpha, can increase the ability of IKKbeta to phosphorylate IkappaBalpha.  相似文献   

13.
Epithelial cells represent the first line of host innate defense against invading microbes by elaborating a range of molecules involved in pathogen clearance. In particular, epithelial mucins facilitate the mucociliary clearance by physically trapping inhaled microbes. Up-regulation of mucin production thus represents an important host innate defense response against invading microbes. How mucin is induced in upper respiratory Streptococcus pneumoniae infections is unknown. In this study, we show that pneumolysin is required for up-regulation of MUC5AC mucin via TLR4-dependent activation of ERK in human epithelial cells in vitro and in mice in vivo. Interestingly, a "second wave" of ERK activation appears to be important in mediating MUC5AC induction. Moreover, IkappaB kinase (IKK) alpha and IKKbeta are distinctly involved in MUC5AC induction via an ERK1-dependent, but IkappaBalpha-p65- and p100-p52-independent, mechanism, thereby revealing novel roles for IKKs in mediating up-regulation of MUC5AC mucin by S. pneumoniae.  相似文献   

14.
Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation   总被引:17,自引:0,他引:17  
Sphingosine kinase 1 is an agonist-activated signalling enzyme that catalyses the formation of sphingosine 1-phosphate, a lipid second messenger that has been implicated in a number of agonist-driven cellular responses, including stimulation of cell proliferation, inhibition of apoptosis and expression of inflammatory molecules. Although agonist-induced stimulation of sphingosine kinase activity is critical in a number of signalling pathways, nothing has been known of the molecular mechanism of this activation. Here we show that this activation results directly from phosphorylation of sphingosine kinase 1 at Ser225, and present several lines of evidence to show compellingly that the activating kinase is ERK1/2 or a close relative. Furthermore, we show that phosphorylation of sphingosine kinase 1 at Ser225 results not only in an increase in enzyme activity, but is also necessary for translocation of the enzyme from the cytosol to the plasma membrane. Thus, these studies have elucidated the mechanism of agonist-mediated sphingosine kinase activation, and represent a key finding in understanding the regulation of sphingosine kinase/sphingosine 1-phosphate-controlled signalling pathways.  相似文献   

15.
Regulation of casein kinase 2 by phosphorylation/dephosphorylation.   总被引:1,自引:0,他引:1       下载免费PDF全文
The effects of various polycation-stimulated (PCS) phosphatases and of the active catalytic subunit of the ATPMg-dependent (AMDc) protein phosphatase on the activity of casein kinase 2 (CK-2) were investigated by using the synthetic peptide substrate Ser-Glu-Glu-Glu-Glu-Glu, whose phosphorylated derivative is entirely insensitive to these protein phosphatases. Previous dephosphorylation of native CK-2 enhances its specific activity 2-3-fold. Such an effect, accounted for by an increase in Vmax, is more readily promoted by the PCS phosphatases than by the AMDc phosphatase. The phosphate incorporated by autophosphorylation could not be removed by the protein phosphatases, suggesting the involvement of phosphorylation site(s) other than the one(s) affected by intramolecular autophosphorylation. The activation of CK-2 by the phosphatase pretreatment is neutralized during the kinase assay; the mechanism of this phenomenon, which is highly dependent on the kinase concentration, is discussed.  相似文献   

16.
This study presents a molecular inhibitory mechanism by Fas-associated factor 1 (FAF1) on IkappaB kinase (IKK) activation, where divergent NF-kappaB-activating stimuli converge. FAF1 interacts with IKKbeta in response to proinflammatory stimuli (such as tumor necrosis factor-alpha, interleukin-1beta, and lipopolysaccharide) and suppresses IKK activation. Interaction of the leucine-zipper domain of IKKbeta with FAF1 affected the IKK heterocomplex (IKKalpha/beta) and homocomplex (IKKalpha/alpha, IKKbeta/beta) formations and attenuated IKKgamma recruitment to IKKbeta. Overexpression of FAF1 reduced the level of IKKbeta activity, whereas FAF1 depletion increased the activity. These results indicate that FAF1 inhibits IKK activation and its downstream signaling by interrupting the IKK complex assembly through physical interaction with IKKbeta. Taken together, FAF1 robustly suppresses NF-kappaB activation through the inhibition of IKK activation in combination with previously reported cytoplasmic retention of NF-kappaB p65 (Park, M. Y., Jang, H. D., Lee, S. Y., Lee, K. J., and Kim, E. (2004) J. Biol. Chem. 279, 2544-2549). Such redundant suppression would prevent inadvertent activation of the NF-kappaB pathway.  相似文献   

17.
IKKgamma/NEMO is a protein that is critical for the assembly of the high molecular weight IkappaB kinase (IKK) complex. To investigate the role of IKKgamma/NEMO in the assembly of the IKK complex, we conducted a series of experiments in which the chromatographic distribution of extracts prepared from cells transiently expressing epitope-tagged IKKgamma/NEMO and the IKKs were examined. When expressed alone following transfection, IKKalpha and IKKbeta were present in low molecular weight complexes migrating between 200 and 400 kDa. However, when coexpressed with IKKgamma/NEMO, both IKKalpha and IKKbeta migrated at approximately 600 kDa which was similar to the previously described IKK complex that is activated by cytokines such as tumor necrosis factor-alpha. When either IKKalpha or IKKbeta was expressed alone with IKKgamma/NEMO, IKKbeta but not IKKalpha migrated in the higher molecular weight IKK complex. Constitutively active or inactive forms of IKKbeta were both incorporated into the high molecular weight IKK complex in the presence of IKKgamma/NEMO. The amino-terminal region of IKKgamma/NEMO, which interacts directly with IKKbeta, was required for formation of the high molecular weight IKK complex and for stimulation of IKKbeta kinase activity. These results suggest that recruitment of the IKKs into a high molecular complex by IKKgamma/NEMO is a crucial step involved in IKK function.  相似文献   

18.
IkappaB kinase gamma (IKKgamma) (also known as NEMO, Fip-3, and IKKAP-1) is the essential regulatory component of the IKK complex; it is required for NF-kappaB activation by various stimuli, including tumor necrosis factor alpha (TNF-alpha), interleukin 1 (IL-1), phorbol esters, lipopolysaccharides, and double-stranded RNA. IKKgamma is encoded by an X-linked gene, deficiencies in which may result in two human genetic disorders, incontinentia pigmenti (IP) and hypohidrotic ectodermal dysplasia with severe immunodeficiency. Subsequent to the linkage of IKKgamma deficiency to IP, we biochemically characterized the effects of a mutation occurring in an IP-affected family on IKK activity and NF-kappaB signaling. This particular mutation results in premature termination, such that the variant IKKgamma protein lacks its putative C-terminal Zn finger and, due to decreased mRNA stability, is underexpressed. Correspondingly, IKK and NF-kappaB activation by TNF-alpha and, to a lesser extent, IL-1 are reduced. Mutagenesis of the C-terminal region of IKKgamma was performed in an attempt to define the role of the putative Zn finger and other potential functional motifs in this region. The mutants were expressed in IKKgamma-deficient murine embryonic fibroblasts (MEFs) at levels comparable to those of endogenous IKKgamma in wild-type MEFs and were able to associate with IKKalpha and IKKbeta. Substitution of two leucines within a C-terminal leucine zipper motif markedly reduced IKK activation by TNF-alpha and IL-1. Another point mutation resulting in a cysteine-to-serine substitution within the putative Zn finger motif affected IKK activation by TNF-alpha but not by IL-1. These results may explain why cells that express these or similar mutant alleles are sensitive to TNF-alpha-induced apoptosis despite being able to activate NF-kappaB in response to other stimuli.  相似文献   

19.
We have previously shown that the activity of the interleukin-1 (IL-1) receptor-associated kinase (IRAK) is required for nerve growth factor (NGF)-induced activation of NF-kappaB and cell survival ((2002) J. Biol. Chem. 277, 28010-28018). Herein we demonstrate that NGF induces co-association of IRAK with atypical protein kinase C iota (PKC) and that the iota PKC.IRAK complex is recruited to the p75 neurotrophin receptor. Recruitment of IRAK to the receptor was dependent upon the activity of the iota PKC. Moreover, transfection of kinase-dead iota PKC blocked both NGF- and IL-1-induced IRAK activation and the activity of NF-kappaB. Hence, iota PKC lies upstream of IRAK in the kappaB pathway. Examining the primary structure of IRAK, we identified three putative PKC phosphorylation sites; iota PKC selectively phosphorylated peptide 1 (RTAS) within the death domain domain at Thr66, which is highly conserved among all IRAK family members. Mutation of Thr66 to Ala impaired the autokinase activity of IRAK and reduced its association with iota PKC but not TRAF6, resulting in impaired NGF- as well as IL-1-induced NF-kappaB activation. These findings provide insight into the underlying mechanism whereby IRAK regulates the kappaB pathway and reveal that IRAK is a substrate of iota PKC.  相似文献   

20.
Selective degradation of the IκB kinase (IKK) by autophagy   总被引:1,自引:0,他引:1  
Li D 《Cell research》2006,16(11):855-856
Proteasome-mediated degradation and autophagy are the two major pathways mediating the turnover of cellular proteins. The proteasomal pathway is known to be a highly specific and regulated process mediating the degradation of short-lived proteins such as many important factors involved in cellular signaling. In contrast, it is generally thought that autophagy is rather nonselective as it is responsible for the bulk degradation of long-lived proteins and organelles. Challenging this general view, in this issue of Cell Research, Qing et al. report that selective degradation of the IκB kinase (IKK) triggered by the loss of Hsp90 function is mediated by autophagy [1].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号