首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laboratory model systems were developed for studying Shewanella putrefaciens adhesion and biofilm formation under batch and flow conditions. S. putrefaciens plays a major role in food spoilage and may cause microbially induced corrosion on steel surfaces. S. putrefaciens bacteria suspended in buffer adhered readily to stainless steel surfaces. Maximum numbers of adherent bacteria per square centimeter were reached in 8 h at 25 degrees C and reflected the cell density in suspension. Numbers of adhering bacteria from a suspension containing 10(8) CFU/ml were much lower in a laminar flow system (modified Robbins device) (reaching 10(2) CFU/cm(2)) than in a batch system (reaching 10(7) CFU/cm(2)), and maximum numbers were reached after 24 h. When nutrients were supplied, S. putrefaciens grew in biofilms with layers of bacteria. The rate of biofilm formation and the thickness of the film were not dependent on the availability of carbohydrate (lactate or glucose) or on iron starvation. The number of S. putrefaciens bacteria on the surface was partly influenced by the presence of other bacteria (Pseudomonas fluorescens) which reduced the numbers of S. putrefaciens bacteria in the biofilm. Numbers of bacteria on the surface must be quantified to evaluate the influence of environmental factors on adhesion and biofilm formation. We used a combination of fluorescence microscopy (4',6'-diamidino-2-phenylindole staining and in situ hybridization, for mixed-culture studies), ultrasonic removal of bacteria from surfaces, and indirect conductometry and found this combination sufficient to quantify bacteria on surfaces.  相似文献   

2.
Bacterial biofilms impair the operation of many industrial processes. Deinococcus geothermalis is efficient primary biofilm former in paper machine water, functioning as an adhesion platform for secondary biofilm bacteria. It produces thick biofilms on various abiotic surfaces, but the mechanism of attachment is not known. High-resolution field-emission scanning electron microscopy and atomic force microscopy (AFM) showed peritrichous adhesion threads mediating the attachment of D. geothermalis E50051 to stainless steel and glass surfaces and cell-to-cell attachment, irrespective of the growth medium. Extensive slime matrix was absent from the D. geothermalis E50051 biofilms. AFM of the attached cells revealed regions on the cell surface with different topography, viscoelasticity, and adhesiveness, possibly representing different surface layers that were patchily exposed. We used oscillating probe techniques to keep the tip-biofilm interactions as small as possible. In spite of this, AFM imaging of living D. geothermalis E50051 biofilms in water resulted in repositioning but not in detachment of the surface-attached cells. The irreversibly attached cells did not detach when pushed with a glass capillary but escaped the mechanical force by sliding along the surface. Air drying eliminated the flexibility of attachment, but it resumed after reimmersion in water. Biofilms were evaluated for their strength of attachment. D. geothermalis E50051 persisted 1 h of washing with 0.2% NaOH or 0.5% sodium dodecyl sulfate, in contrast to biofilms of Burkholderia cepacia F28L1 or the well-characterized biofilm former Staphylococcus epidermidis O-47. Deinococcus radiodurans strain DSM 20539(T) also formed tenacious biofilms. This paper shows that D. geothermalis has firm but laterally slippery attachment not reported before for a nonmotile species.  相似文献   

3.
Laboratory model systems were developed for studying Shewanella putrefaciens adhesion and biofilm formation under batch and flow conditions. S. putrefaciens plays a major role in food spoilage and may cause microbially induced corrosion on steel surfaces. S. putrefaciens bacteria suspended in buffer adhered readily to stainless steel surfaces. Maximum numbers of adherent bacteria per square centimeter were reached in 8 h at 25°C and reflected the cell density in suspension. Numbers of adhering bacteria from a suspension containing 108 CFU/ml were much lower in a laminar flow system (modified Robbins device) (reaching 102 CFU/cm2) than in a batch system (reaching 107 CFU/cm2), and maximum numbers were reached after 24 h. When nutrients were supplied, S. putrefaciens grew in biofilms with layers of bacteria. The rate of biofilm formation and the thickness of the film were not dependent on the availability of carbohydrate (lactate or glucose) or on iron starvation. The number of S. putrefaciens bacteria on the surface was partly influenced by the presence of other bacteria (Pseudomonas fluorescens) which reduced the numbers of S. putrefaciens bacteria in the biofilm. Numbers of bacteria on the surface must be quantified to evaluate the influence of environmental factors on adhesion and biofilm formation. We used a combination of fluorescence microscopy (4′,6′-diamidino-2-phenylindole staining and in situ hybridization, for mixed-culture studies), ultrasonic removal of bacteria from surfaces, and indirect conductometry and found this combination sufficient to quantify bacteria on surfaces.  相似文献   

4.
N-Acetyl-L-cysteine (NAC) is used in medical treatment of patients with chronic bronchitis. The positive effects of NAC treatment have primarily been attributed to the mucus-dissolving properties of NAC, as well as its ability to decrease biofilm formation, which reduces bacterial infections. Our results suggest that NAC also may be an interesting candidate for use as an agent to reduce and prevent biofilm formation on stainless steel surfaces in environments typical of paper mill plants. Using 10 different bacterial strains isolated from a paper mill, we found that the mode of action of NAC is chemical, as well as biological, in the case of bacterial adhesion to stainless steel surfaces. The initial adhesion of bacteria is dependent on the wettability of the substratum. NAC was shown to bind to stainless steel, increasing the wettability of the surface. Moreover, NAC decreased bacterial adhesion and even detached bacteria that were adhering to stainless steel surfaces. Growth of various bacteria, as monocultures or in a multispecies community, was inhibited at different concentrations of NAC. We also found that there was no detectable degradation of extracellular polysaccharides (EPS) by NAC, indicating that NAC reduced the production of EPS, in most bacteria tested, even at concentrations at which growth was not affected. Altogether, the presence of NAC changes the texture of the biofilm formed and makes NAC an interesting candidate for use as a general inhibitor of formation of bacterial biofilms on stainless steel surfaces.  相似文献   

5.
Deinococcus geothermalis is resistant to chemical and physical stressors and forms tenuous biofilms in paper industry. The architecture of its biofilms growing on glass and on stainless acid proof steel was studied with confocal laser scanning microscopy and fluorescent lectins and nanobeads as in situ probes. Hydrophobic nanobeads adhered to the biofilms but did not penetrate to biofilm interior. In contrast, the biofilms were readily permeable towards many different lectins. A skeletal network of glycoconjugates, reactive with Dolichos biflorus and Maclura pomifera lectins, was prominent in the space inside the biofilm colony core but absent on the exterior. Cells in the core space of the biofilm were interconnected by a network of adhesion structures, reactive with Amaranthus caudatus lectin but with none of the 65 other tested lectins. The glycoconjugates connecting the individual cells to steel reacted with Phaseolus vulgaris lectin whereas those connecting to glass mainly reacted with A. caudatus lectin. Envelopes of all cells in the D. geothermalis biofilm reacted with several other lectins, with many different specificities. We conclude that numerous different glycoconjugates are involved in the adhesion and biofilm formation of D. geothermalis , possibly contributing its unique survival capacity when exposed to dehydration, biocidal chemicals and other extreme conditions.  相似文献   

6.
The competing mechanisms that regulate adhesion of bacteria to surfaces and subsequent biofilm formation remain unclear, though nearly all studies have focused on the role of physical and chemical properties of the material surface. Given the large monetary and health costs of medical-device colonization and hospital-acquired infections due to bacteria, there is considerable interest in better understanding of material properties that can limit bacterial adhesion and viability. Here we employ weak polyelectrolyte multilayer (PEM) thin films comprised of poly(allylamine) hydrochloride (PAH) and poly(acrylic acid) (PAA), assembled over a range of conditions, to explore the physicochemical and mechanical characteristics of material surfaces controlling adhesion of Staphylococcus epidermidis bacteria and subsequent colony growth. Although it is increasingly appreciated that eukaryotic cells possess subcellular structures and biomolecular pathways to sense and respond to local chemomechanical environments, much less is known about mechanoselective adhesion of prokaryotes such as these bacteria. We find that adhesion of viable S. epidermidis correlates positively with the stiffness of these polymeric substrata, independently of the roughness, interaction energy, and charge density of these materials. Quantitatively similar trends observed for wild-type and actin analogue mutant Escherichia coli suggest that these results are not confined to only specific bacterial strains, shapes, or cell envelope types. These results indicate the plausibility of mechanoselective adhesion mechanisms in prokaryotes and suggest that mechanical stiffness of substrata materials represents an additional parameter that can regulate adhesion of and subsequent colonization by viable bacteria.  相似文献   

7.
The surface physicochemical properties of Listeria monocytogenes LO28 under different conditions (temperature and growth phase) were determined by use of microelectrophoresis and microbial adhesion to solvents. The effect of these parameters on adhesion and biofilm formation by L. monocytogenes LO28 on hydrophilic (stainless steel) and hydrophobic (polytetrafluoroethylene [PTFE]) surfaces was assessed. The bacterial cells were always negatively charged and possessed hydrophilic surface properties, which were negatively correlated with growth temperature. The colonization of the two surfaces, monitored by scanning electron microscopy, epifluorescence microscopy, and cell enumeration, showed that the strain had a great capacity to colonize both surfaces whatever the incubation temperature. However, biofilm formation was faster on the hydrophilic substratum. After 5 days at 37 or 20 degrees C, the biofilm structure was composed of aggregates with a three-dimensional shape, but significant detachment took place on PTFE at 37 degrees C. At 8 degrees C, only a bacterial monolayer was visible on stainless steel, while no growth was observed on PTFE. The growth phase of bacteria used to inoculate surfaces had a significant effect only in some cases during the first steps of biofilm formation. The surface physicochemical properties of the strain are correlated with adhesion and surface colonization.  相似文献   

8.
Biofouling of equipment surfaces in the food industry is due initially to physico-chemical adhesion processes, and subsequently to the proliferation of microbes within an extracellular polymer matrix. Two physico-chemical theories can be applied to predict simple cases of bacterial adhesion. However, these models are limited in their applicability owing to the complexity of bacterial surfaces and the surrounding medium. Various factors that can affect the bacterial adhesion process have been listed, all directly linked to the solid substratum, the suspension liquid or the microorganism. For stainless steel surfaces, it is important to take into account the grade of steel, the type of finish, surface roughness, the cleaning procedures used and the age of the steel. Regarding the suspension fluid within which adhesion takes place, pH, ionic composition and the presence of macromolecules are important variables. In addition, the adhering microorganisms have extremely complex surfaces and many factors must be taken into account when conducting adhesion tests, such as the presence of cell appendages, the method of culture, the contact time between the microorganism and the surface, and exopolymer synthesis. Research on biofilms growing on stainless steel has confirmed results obtained with other materials, regarding resistance to disinfectants, the role of the extracellular matrix and the process by which the biofilm forms. However, it appears that the bactericidal activity of disinfectants on biofilms differs according to the type of surface on which they are growing. The main cleaners and disinfectants used in the food industry are alkaline and acid detergents, peracetic acid, quaternary ammonium chlorides and iodophors. The cleanability and disinfectability of stainless steel surfaces have been compared with those of other materials. According to the published research findings, stainless steel is comparable in its biological cleanability to glass, and significantly better than polymers, aluminium or copper. Moreover, microorganisms in a biofilm developing on a stainless steel surface can be killed with lower concentrations of disinfectant than those on polymer surfaces.  相似文献   

9.
AIMS: The aim of this study was to evaluate the respective influence of the physicochemical interactions and the roughness involved in the first part of the biological substrate biocontamination. METHODS AND RESULTS: Therefore we compared the bioadhesion results obtained on the biological model substrate (Episkin) and on a commonly employed inert substrate (AISI 304 stainless steel), frequently used either in dermatology or in development of medical devices. The two studied strains presented different characteristics, both physicochemical and microbiological. Staphylococcus epidermidis, a relatively hydrophobic bacteria capable of exchanging interactions which are principally of the van der Waals type, adhered more to 304 steel than to the surface of reconstituted skin. As for S. aureus, an essentially basic, hydrophilic bacteria, was more adherent to Episkin (a bipolar, hydrophilic substrate) than to stainless steel (a unipolar, basic, hydrophilic substrate). CONCLUSIONS: In the absence of electrostatic interactions, the adhesion of substrate-dependent bacteria to the surface of reconstituted skin was dependent upon the balance between gamma(LW), gamma(+) and gamma(-). SIGNIFICANCE AND IMPACT OF THE STUDY: Consequently, so as to restrict microbial adhesion and reduce adhesive binding between micro-organisms and the surface of the skin, it would be preferable to render this substrate hydrophobic and apolar through the use of appropriate surface treatment.  相似文献   

10.
A range of titanium doped diamond-like carbon (Ti-DLC) coatings with different Ti contents were prepared on stainless steel substrates using a plasma-enhanced chemical vapour deposition technique. It was found that both the electron donor surface energy and the surface roughness of the Ti-DLC coatings increased with increasing Ti contents in the coatings. Bacterial adhesion to the coatings was evaluated against Escherichia coli WT F1693 and Pseudomonas aeruginosa ATCC 33347. The experimental data showed that bacterial adhesion decreased with the increases of the Ti content, the electron donor surface energy and surface roughness of the coatings, while the bacterial removal percentage increased with the increases of these parameters. The Ti-DLC coatings reduced bacterial attachment by up to 75% and increased bacterial detachment from 15 to 45%, compared with stainless steel control.  相似文献   

11.
This study examined bacterial community structure of biofilms on stainless steel and polycarbonate in seawater from the Delaware Bay. Free-living bacteria in the surrounding seawater were compared to the attached bacteria during the first few weeks of biofilm growth. Surfaces exposed to seawater were analyzed by using 16S rDNA libraries, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE). Community structure of the free-living bacterial community was different from that of the attached bacteria according to FISH and DGGE. In particular, alpha-proteobacteria dominated the attached communities. Libraries of 16S rRNA genes revealed that representatives of the Rhodobacterales clade were the most abundant members of biofilm communities. Changes in community structure during biofilm growth were also examined by DGGE analysis. We hypothesized that bacterial communities on dissimilar surfaces would initially differ and become more similar over time. In contrast, the compositions of stainless steel and polycarbonate biofilms were initially the same, but differed after about 1 week of biofilm growth. These data suggest that the relationship between surface properties and biofilm community structure changes as biofilms grow on surfaces such as stainless steel and polycarbonate in estuarine water.  相似文献   

12.
The purpose of these investigations was to evaluate the influence of limited nutrient availability in the culture medium on Proteus vulgaris biofilm formation on surfaces of stainless steel. The relationship between the P. vulgaris adhesion to the abiotic surfaces, the cellular ATP levels, cell surface hydrophobicity and changes in the profiles of extracellular proteins and lipopolysaccharides was examined. In all experimental variants the starvation conditions induced the bacterial cells to adhere to the surfaces of stainless steel. Higher ATP content and lower cell surface hydrophobicity of P. vulgaris cells was observed upon nutrient-limited conditions. Under starvation conditions a reduction in the levels of extracellular low molecular weight proteins was noticed. High molecular weight proteins formed the conditioning layer on stainless steel plates, making the bacteria adhesion process more favorable. The production of low molecular weight carbohydrates promoted more advanced stages of P. vulgaris biofilm formation process on the surfaces of stainless steel upon starvation.  相似文献   

13.
Staphylococcus epidermidis has become a significant pathogen causing infections due to biofilm formation on surfaces of indwelling medical devices. Biofilm-associated bacteria exhibit enhanced resistance to many conventional antibiotics. It is therefore, important to design novel antimicrobial reagents targeting S. epidermidis biofilms. In a static chamber system, the bactericidal effect of two leading compounds active as YycG inhibitors was assessed on biofilm cells by confocal laser scanning microscopy combined with viability staining. In young biofilms (6-h-old), the two compounds killed the majority of the embedded cells at concentrations of 100 microM and 25 microM, respectively. In mature biofilms (24-h-old), one compound was still effectively killing biofilm cells, whereas the other compound mainly killed cells located at the bottom of the biofilm. In contrast, vancomycin was found to stimulate biofilm development at the MBC (8 microg mL(-1)). Even at a high concentration (128 microg mL(-1)), vancomycin exhibited poor killing on cells embedded in biofilms. The two compounds exhibited faster and more effective killing of S. epidermidis planktonic cells than vancomycin at the early stage of exposure (6 h). The data suggest that the new inhibitors can serve as potential agents against S. epidermidis biofilms when added alone or in concert with other antimicrobial agents.  相似文献   

14.
AIMS: To investigate the bactericidal influence of copper-alloying of stainless steel on microbial colonization. METHODS AND RESULTS: Inhibition of bacterial adherence was investigated by monitoring (192 h) the development of a multi-species biofilm on Cu-alloyed (3.72 wt%) stainless steel in a natural surface water. During the first 120 h of exposure, lower numbers of viable bacteria in the water in contact with copper-containing steel relative to ordinary stainless steel were observed. Moreover, during the first 48 h of exposure, lower colony counts were found in the biofilm adhering to the Cu-alloyed steel. No lower colony or viable counts were found throughout the remainder of the experimental period. CONCLUSION: The presence of Cu in the steel matrix impedes the adhesion of micro-organisms during an initial period (48 h), while this bactericidal effect disappears after longer incubation periods. SIGNIFICANCE AND IMPACT OF THE STUDY: The application of Cu-alloyed stainless steels for bactericidal purposes should be restricted to regularly-cleaned surfaces.  相似文献   

15.
The surface physicochemical properties of Listeria monocytogenes LO28 under different conditions (temperature and growth phase) were determined by use of microelectrophoresis and microbial adhesion to solvents. The effect of these parameters on adhesion and biofilm formation by L. monocytogenes LO28 on hydrophilic (stainless steel) and hydrophobic (polytetrafluoroethylene [PTFE]) surfaces was assessed. The bacterial cells were always negatively charged and possessed hydrophilic surface properties, which were negatively correlated with growth temperature. The colonization of the two surfaces, monitored by scanning electron microscopy, epifluorescence microscopy, and cell enumeration, showed that the strain had a great capacity to colonize both surfaces whatever the incubation temperature. However, biofilm formation was faster on the hydrophilic substratum. After 5 days at 37 or 20°C, the biofilm structure was composed of aggregates with a three-dimensional shape, but significant detachment took place on PTFE at 37°C. At 8°C, only a bacterial monolayer was visible on stainless steel, while no growth was observed on PTFE. The growth phase of bacteria used to inoculate surfaces had a significant effect only in some cases during the first steps of biofilm formation. The surface physicochemical properties of the strain are correlated with adhesion and surface colonization.  相似文献   

16.
Environmental scanning electron microscopy (ESEM) and atomic force microscopy (AFM) were compared as tools for the observation of bacterial biofilms developed on carbon steel and AISI 316 stainless steel surfaces under stagnant conditions. Biofilms were generated in batch cultures of two different isolates of marine sulphate reducing bacteria (SRB) and in cultures consisting of mixed populations of acidophilic bacteria, known as "acid streamers";. Imaging of single SRB cells on mica was also carried out to reveal the surface topography of individual bacterial cells at nanometre resolution. Following the removal of biofilms, the stainless steel surfaces were profiled using AFM to determine the degree of steel deterioration. ESEM and AFM studies of bacterial biofilms in-situ, gave both qualitative and quantitative information on biofilm structure at high resolution. The use of AFM image analysis software allowed estimation of the width and height of bacterial cells, the thickness and width of exopolymeric (EPS) capsule and bacterial flagella, as well as characterisation of the surface roughness of the steel, including measurements of depth and diameter of individual pits. Exposure of stainless steel specimens to acid streamers resulted in a significant increase in the surface roughness of the steel, compared to specimens placed in sterile medium.  相似文献   

17.
18.
Biomaterial-centered infections of orthopedic percutaneous implants are serious complications which can ultimately lead to osteomyelitis, with devastating effects on bone and surrounding tissues, especially since the biofilm mode of growth offers protection against antibiotics and since removal frequently is the only ultimate solution. Recently, it was demonstrated that as a possible pathway to prevent infections of percutaneous stainless steel implants, electric currents of 60 to 100 microA were effective at stimulating the detachment of initially adhering staphylococci from surgical stainless steel. However, initially adhering bacteria are known to adhere more reversibly than bacteria growing in the later stages of biofilm formation. Hence, the aim of this study was to examine whether a growing Staphylococcus epidermidis biofilm can be stimulated to detach from surgical stainless steel by the use of electric currents. In separate experiments, four currents, i.e., 60 and 100 microA of direct current (DC) and 60 and 100 microA of block current (50% duty cycle, 1 Hz), were applied for 360 min to stimulate the detachment of an S. epidermidis biofilm that had grown for 200 min. A 100-microA DC yielded 78% detachment, whereas a 100-microA block current under the same experimental conditions yielded only 31% detachment. The same trend was found for 60 microA, with 37% detachment for a DC and 24% for a block current. Bacteria remaining on the surface after the current application were less viable than they were prior to the current application, as demonstrated by confocal laser scanning microscopy. In conclusion, these results suggest that DCs are preferred for curing infections.  相似文献   

19.
Thermophilic Bacillus species readily attached and grew on stainless steel surfaces, forming mature biofilms of >106.0 cells/cm2 in 6 h on a surface inoculated with the bacteria. Clean stainless steel exposed only to pasteurized skim milk at 55 °C developed a mature biofilm of >106.0 cells/cm2 within 18 h. When bacilli were inoculated onto the steel coupons, 18-h biofilms were 30 m thick. Biofilm growth followed a repeatable pattern, with a reduction in the numbers of bacteria on the surface occurring after 30 h, followed by a recovery. This reduction in numbers was associated with the production of a substance that inhibited the growth of the bacteria. Variations in the environment, including pH and molarity, affected the viability of the cells. Chemicals that attack the polysaccharide matrix of the biofilm were particularly effective in killing and removing cells from the biofilm, demonstrating the importance of polysaccharides in the persistence of these biofilms. Treatment of either the biofilm or a clean stainless steel surface with lysozyme killed biofilm cells and prevented the attachment of any bacteria exposed to the surface. This suggests that lysozyme may have potential as an alternative control method for biofilms of these bacteria.  相似文献   

20.
Staphylococcus epidermidis is a frequent cause of infection associated with the use of biomedical devices. Flow cell studies of the interaction between bacteria and surfaces do not generally allow direct comparison of different materials using the same bacterial suspension. The use of a modified Robbins Device (MRD) to compare the adhesion to different surfaces of Staph. epidermidis RP62A grown in continuous culture was investigated. Adhesion to glass was compared with siliconized glass, plasma-conditioned glass, titanium, stainless steel and Teflon. Attachment to siliconized glass was also compared with glass under differing ionic strength, and divalent cation concentrations. Both the differences in numbers adhering and changes in adhesion (slope) through the MRD were compared. There was a trend towards higher numbers adhering to the discs at the in-flow end of the MRD than at the outflow end, probably reflecting depletion of adherent bacteria in the interacting stream. Adhesion of Staph. epidermidis RP62A to siliconized glass and Teflon was reduced when compared to glass with increasing flow rates. Adhesion to stainless steel was not affected by flow rate and titanium gave a different slope of adhesion through the MRD when compared with glass, suggesting an interaction with different sub-populations within the interacting stream. Differences between siliconized glass and glass at flow rates of 300 ml h-1 were abolished by the addition of calcium or EDTA and reduced by the addition of magnesium. Increasing ionic strength reduced the statistical significance of the differences between glass and siliconized glass. Pre-conditioning of glass with pooled human plasma reduced adhesion compared with untreated glass and again gave a different slope to glass. The MRD linked to a chemostat can be used to compare directly bacterial adhesion to potential biomaterials. Variable depletion of the interacting stream should be taken into account in the interpretation of results. Divalent cation concentration, substrate properties and flow rate were important determinants of the comparative adhesion of Staph. epidermidis RP62A to surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号