首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multi-disulfide-bond-containing proteins acquire their native structures through an oxidative folding reaction which involves formation of native disulfide bonds through thiol-disulfide exchange reactions between cysteines and disulfides coupled to a conformational folding event. Oxidative folding rates of the four-disulfide-bond-containing protein bovine pancreatic ribonuclease A (RNase A) in the presence of the synthetic redox-active molecule, (+/-)-trans-1,2-bis(2-mercaptoacetamido)cyclohexane (BMC), and in combination with non-redox-active trimethylamine-N-oxide (TMAO), and trifluorethanol were determined by HPLC analysis. The data indicate that regeneration of RNase A is enhanced 2-fold by BMC (50 microM) and 3-fold upon addition of TMAO (0.2 M) and TFE (3% v/v) relative to control experiments performed in the absence of small-molecules. Examination of the native tendency of the fully-reduced polypeptide and the stability of key folding intermediates suggests that the increased oxidative folding rate can be attributed to native-like elements induced within the fully-reduced polypeptide and the stabilization of native-like species by added non-redox-active molecules.  相似文献   

2.
Phosphate anions accelerate the oxidative folding of reduced bovine pancreatic ribonuclease A with dithiothreitol at several temperatures and ionic strengths. The addition of 400 mM phosphate at pH 8.1 increased the regeneration rate of native protein 2.5-fold at 15 degrees C, 3.5-fold at 25 degrees C, and 20-fold at 37 degrees C, compared to the rate in the absence of phosphate. In addition, the effects of other ions on the oxidative folding of RNase A were examined. Fluoride was found to accelerate the formation of native protein under the same oxidizing conditions. In contrast, cations of high charge density or ions with low charge density appear to have an opposite effect on the folding of RNase A. The catalysis of oxidative folding results largely from an anion-dependent stabilization and formation of tertiary structure in productive disulfide intermediates (des-species). Phosphate and fluoride also accelerate the initial equilibration of unstructured disulfide ensembles, presumably due to non-specific electrostatic and hydrogen bonding effects on the protein and solvent.  相似文献   

3.
Oxidative regeneration pathways of bovine pancreatic ribonuclease A (RNase A), which has four SS linkages, were studied at 25 degrees C and pH 8.0 by using trans-3,4-dihydroxy-1-selenolane oxide (DHS(ox)), a new selenoxide reagent with strong oxidation power. The short-term folding study using a quench-flow instrument ( approximately 1 min) revealed that early intermediates (1S, 2S, 3S and 4S) are formed stochastically and irreversibly from the reduced protein (R) and do not have any stable structures. In the long-term folding study ( approximately 300 min), on the other hand, slow generation of the key intermediates (des[65-72] and des[40-95]) through SS rearrangement from the 3S intermediate ensemble was observed, followed by slight formation of native RNase A (N). The parallel UV and CD measurements demonstrated that formation of the key intermediates is accompanied with the formation of the native-like structures. Thus, DHS(ox) allowed facile identification of the conformational folding steps coupled with SS rearrangement on the major oxidative folding pathways.  相似文献   

4.
Narayan M  Welker E  Scheraga HA 《Biochemistry》2003,42(23):6947-6955
A recently developed method is used here to characterize some of the folding intermediates, and the oxidative folding processes, of RNase A. This method is based on the ability of trans-[Pt(en)(2)Cl(2)](2+) to oxidize cysteine residues to form disulfide bonds faster than the disulfide bonds can be rearranged by reshuffling or reduction. Variations of this method have enabled us to address three issues. (i) How the nature of the residual structure and/or conformational order that is present, or develops, during the initial stages of folding can be elucidated. It is shown here that there is a 10-fold increase in the propensity of the unfolded reduced forms of RNase A to form the native set of disulfides directly, compared to the propensity under strongly denaturing conditions (4-6 M GdnHCl). Thus, the unfolded reduced forms of RNase A are not statistical coils with a more condensed form than in the GdnHCl-denatured state; rather, it is suggested that reduced RNase A has a little bias toward a native topology. (ii) The structural characterization of oxidative folding intermediates in terms of disulfide pairing is demonstrated; specifically, a lower-limit estimate is made of the percentage of native disulfide-containing molecules in the two-disulfide ensemble of RNase A. (iii) The critical role of structured intermediate species in determining the oxidative folding pathways of proteins was shown previously. Here, we demonstrate that the presence of a structured intermediate in the oxidative folding of proteins can be revealed by this method.  相似文献   

5.
Arai K  Kumakura F  Iwaoka M 《Biochemistry》2010,49(49):10535-10542
In the redox-coupled oxidative folding of a protein having several SS bonds, two folding phases are usually observed, corresponding to SS formation (oxidation) with generation of weakly stabilized heterogeneous structures (a chain-entropy losing phase) and the subsequent intramolecular SS rearrangement to search for the native SS linkages (a conformational folding phase). By taking advantage of DHS(ox) as a highly strong and selective oxidant, the former SS formation phase was investigated in detail in the oxidative folding of RNase A. The folding intermediates obtained at 25 °C and pH 4.0 within 1 min (1S°-4S°) showed different profiles in the HPLC chromatograms from those of the intermediates obtained at pH 7.0 and 10.0 (1S-4S). However, upon prolonged incubation at pH 4.0 the profiles of 1S°-3S° transformed slowly to those similar to 1S-3S intermediate ensembles via intramolecular SS reshuffling, accompanying significant changes in the UV and fluorescence spectra but not in the CD spectrum. Similar conversion of the intermediates was observed by pH jump from 4.0 to 8.0, while the opposite conversion from 1S-4S was observed by addition of guanidine hydrochloride to the folding solution at pH 8.0. The results demonstrated that the preconformational folding phase coupled with SS formation can be divided into two distinct subphases, a kinetic (or stochastic) SS formation phase and a thermodynamic SS reshuffling phase. The transition from kinetically formed to thermodynamically stabilized SS intermediates would be induced by hydrophobic nucleation as well as generation of the native interactions.  相似文献   

6.
K Saito  E Welker  H A Scheraga 《Biochemistry》2001,40(49):15002-15008
The conformational folding of the nativelike intermediate des-[40-95] on the major oxidative folding pathway of bovine pancreatic ribonuclease A (RNase A) has been examined at various pHs and temperatures in the absence of a redox reagent. Des-[40-95] has three of the four disulfide bonds of native RNase A and lacks the bond between Cys40 and Cys95. This three-disulfide species was unfolded at low pH to inhibit any disulfide reshuffling and was refolded at higher pH, allowing both conformational folding and disulfide-reshuffling reactions to take place. As a result of this competition, 15-85% of des-[40-95], depending on the experimental conditions, undergoes intramolecular disulfide-reshuffling reactions. That portion of the des-[40-95] population which has native isomers of essential proline residues appears to fold faster than the disulfide reaction can occur. However, when the folding is retarded, conceivably by the presence of non-native isomers of essential proline residues, des-[40-95] may reshuffle before completing the conformational folding process. These results enable us to distinguish among current models for the critical structure-forming step in oxidative folding and reveal a new model for coupling proline isomerization to disulfide-bond formation. These experiments also demonstrate that the reshuffling-folding competition assay is a useful tool for detecting structured populations in conformational folding intermediates.  相似文献   

7.
The burial of native disulfide bonds, formed within stable structure in the regeneration of multi-disulfide-containing proteins from their fully reduced states, is a key step in the folding process, as the burial greatly accelerates the oxidative folding rate of the protein by sequestering the native disulfide bonds from thiol-disulfide exchange reactions. Nevertheless, several proteins retain solvent-exposed disulfide bonds in their native structures. Here, we have examined the impact of an easily reducible native disulfide bond on the oxidative folding rate of a protein. Our studies reveal that the susceptibility of the (40-95) disulfide bond of Y92G bovine pancreatic ribonuclease A (RNase A) to reduction results in a reduced rate of oxidative regeneration, compared with wild-type RNase A. In the native state of RNase A, Tyr 92 lies atop its (40-95) disulfide bond, effectively shielding this bond from the reducing agent, thereby promoting protein oxidative regeneration. Our work sheds light on the unique contribution of a local structural element in promoting the oxidative folding of a multi-disulfide-containing protein.  相似文献   

8.
The major oxidative folding pathways of bovine pancreatic ribonuclease A at pH 8.0 and 25 degrees C involve a pre-equilibrium steady state among ensembles of intermediates with zero, one, two, three and four disulfide bonds. The rate-determining steps are the reshuffling of the unstructured three-disulfide ensemble to two native-like three-disulfide species, des-[65-72] and des-[40-95], that convert to the native structure during oxidative formation of the fourth disulfide bond. Under the same regeneration conditions, with oxidized and reduced DTT, used previously for kinetic oxidative-folding studies of this protein, the addition of 4 microM protein disulfide isomerase (PDI) was found to lead to catalysis of each disulfide-formation step, including the rate-limiting rearrangement steps in which the native-like intermediates des-[65-72] and des-[40-95] are formed. The changes in the distribution of intermediates were also determined in the presence and absence of PDI at three different temperatures (with the DTT redox system) as well as at 25 degrees C (with the glutathione redox system). The results indicate that the acceleration of the formation of native protein by PDI, which we observed earlier, is due to PDI catalysis of each of the intermediate steps without changing the overall pathways or folding mechanism.  相似文献   

9.
Narayan M  Welker E  Wanjalla C  Xu G  Scheraga HA 《Biochemistry》2003,42(36):10783-10789
The oxidative folding pathway(s) of single-domain proteins can be characterized by the existence, stability, and structural nature of the intermediates that populate the regeneration pathway. Structured intermediates can be disulfide-secure in that they are able to protect their existing (native) disulfide bonds from SH/SS reshuffling and reduction reactions, and thereby form the native protein directly, i.e., by oxidation of their exposed (or locally exposable) thiols. Alternatively, they can be disulfide-insecure, usually requiring global unfolding to expose their free thiols. However, such an unfolding event also exposes the existing native disulfide bonds. Thus, the subsequent oxidation reaction to form the native protein in a disulfide-insecure intermediate competes with the intramolecular attack by the thiols of the macromolecule on its own native disulfide bonds, resulting in a large population of intermediates that are reshuffled instead of being oxidized. Under stabilizing conditions, disulfide-insecure species become long-lived kinetically trapped intermediates that slowly and only indirectly convert to the native protein through reshuffling reactions. In this study, trans-[Pt(en)(2)Cl(2)](2+), a strong oxidizing agent which has not traditionally been used in oxidative folding, was applied to shift the competition between reshuffling and oxidation reactions in des [58-110] and des [26-84], two long-lived disulfide-insecure intermediates of RNase A, and oxidize them directly under stable conditions to form the native protein. Such a successful direct conversion of kinetically trapped intermediates to the native molecule by trans-[Pt(en)(2)Cl(2)](2+) may be helpful in facilitating the oxidative folding processes of multi-disulfide-containing proteins in general.  相似文献   

10.
Y Konishi  T Ooi  H A Scheraga 《Biochemistry》1981,20(14):3945-3955
Reduced RNase A was reoxidized, and the incorrectly formed disulfide bonds were reshuffled to the native ones by oxidized and reduced glutathiones, as described in the first paper of this series. The intermediates in the regeneration of the disulfide bonds were trapped without any chemical modification and were fractionated on a carboxymethylcellulose column at pH 3.5 with a salt gradient. The elution curves of the partially regenerated RNase A from the carboxymethylcellulose column were obtained by measurement of the absorption at 275 nm and by determination of the SH content (of cysteine residues) and consisted of 11 fractions, G8, G7, G6, G5, G4, G3, G2, G1, G0, N, and F. Some of the fractions were isolated, and their measured molecular weights were consistent with those of monomeric RNase A. Fraction F had a molecular weight between that of the monomer and dimer, so that this fraction could not be identified. The regeneration pathway could be represented in terms of two simple reactions, RNase A(-SH) + GSSG in equilibrium or formed from RNase A(-SSG) + GSH and RNase A(-SH-SSG) in equilibrium RNase A(greater than S2) + GSH, which produced 24 monomeric intermediates (not counting the fully reduced and the native species), which differed from each other in their amino acid composition. These 24 intermediates, plus the fully reduced protein, were assigned to fractions G8--G0 (as indicated in the last column of Table I), with the aid of data from amino acid analysis, SH content, and the elution position on the carboxymethylcellulose column chromatogram. Since the regeneration reaction rapidly reached a preequilibrium among the intermediates and the fully reduced RNase A prior to the rate-limiting steps, i.e., the relative concentrations of the intermediates and fully reduced RNase A became constant with reaction time, the populations of some of the intermediates in preequilibrium were estimated by curve fitting of the elution pattern from the carboxymethylcellulose column chromatogram. The equilibrium constants among the intermediates were calculated from their populations at preequilibrium. These equilibrium constants were "extrapolated" to other intermediates whose populations could not be estimated by curve fitting, and the relative populations of all of the possible intermediates at preequilibrium were thereby represented as a function of the concentrations of reduced and oxidized glutathiones. The regeneration process was also restarted from several of the isolated intermediates, and the resulting distribution of intermediates was consistent with that from which the equilibrium constants were determined, supporting the representation of the regeneration pathways in terms of two simple reactions. Thus, the equilibrium treatment of the regeneration pathways was useful to characterize the preequilibrium state, i.e., to identify the intermediates prior to the rate-limiting steps in the pathways and to estimate their stabilities at preequilibrium at various concentrations of reduced and oxidized glutathiones.  相似文献   

11.
Disulfide bonds and protein folding   总被引:22,自引:0,他引:22  
The applications of disulfide-bond chemistry to studies of protein folding, structure, and stability are reviewed and illustrated with bovine pancreatic ribonuclease A (RNase A). After surveying the general properties and advantages of disulfide-bond studies, we illustrate the mechanism of reductive unfolding with RNase A, and discuss its application to probing structural fluctuations in folded proteins. The oxidative folding of RNase A is then described, focusing on the role of structure formation in the regeneration of the native disulfide bonds. The development of structure and conformational order in the disulfide intermediates during oxidative folding is characterized. Partially folded disulfide species are not observed, indicating that disulfide-coupled folding is highly cooperative. Contrary to the predictions of "rugged funnel" models of protein folding, misfolded disulfide species are also not observed despite the potentially stabilizing effect of many nonnative disulfide bonds. The mechanism of regenerating the native disulfide bonds suggests an analogous scenario for conformational folding. Finally, engineered covalent cross-links may be used to assay for the association of protein segments in the folding transition state, as illustrated with RNase A.  相似文献   

12.
Curcumin, the major constituent of turmeric is a known antioxidant. We have examined the oxidative folding of the model four-disulfide-bond-containing protein bovine pancreatic ribonuclease A (RNase A) in its presence; results indicate that RNase A regeneration rate increases in a curcumin-dependent manner. Examination of the native tendency of the fully-reduced polypeptide and the stability of key folding intermediates suggests that the increased oxidative folding rate can be attributed to native-like elements induced within the fully-reduced polypeptide and the stabilization of native-like species by this non-redox-active natural product. Our results provide a template for the design of curcuminoid-based synthetic small-molecule fold catalysts that accelerate the folding of ER-processed proteins; this assumes significance given that nitrosative stress and dysfunction of the ER-resident oxidoreductase protein disulfide isomerise due to S-nitrosylation are factors associated with the pathogenesis of Alzheimer’s and Parkinson’s diseases.  相似文献   

13.
14.
Oxidative folding is the fusion of native disulfide bond formation with conformational folding. This complex process is guided by two types of interactions: first, covalent interactions between cysteine residues, which transform into native disulfide bridges, and second, non-covalent interactions giving rise to secondary and tertiary protein structure. The aim of this work is to understand both types of interactions in the oxidative folding of Amaranthus alpha-amylase inhibitor (AAI) by providing information both at the level of individual disulfide species and at the level of amino acid residue conformation. The cystine-knot disulfides of AAI protein are stabilized in an interdependent manner, and the oxidative folding is characterized by a high heterogeneity of one-, two-, and three-disulfide intermediates. The formation of the most abundant species, the main folding intermediate, is favored over other species even in the absence of non-covalent sequential preferences. Time-resolved NMR and photochemically induced dynamic nuclear polarization spectroscopies were used to follow the oxidative folding at the level of amino acid residue conformation. Because this is the first time that a complete oxidative folding process has been monitored with these two techniques, their results were compared with those obtained at the level of an individual disulfide species. The techniques proved to be valuable for the study of conformational developments and aromatic accessibility changes along oxidative folding pathways. A detailed picture of the oxidative folding of AAI provides a model study that combines different biochemical and biophysical techniques for a fuller understanding of a complex process.  相似文献   

15.
Laity JH  Montelione GT  Scheraga HA 《Biochemistry》1999,38(50):16432-16442
We have identified specific regions of the polypeptide chain of bovine pancreatic ribonuclease A (RNase A) that are critical for stabilizing the oxidative folding intermediate des-[40-95] (with three native disulfide bonds but lacking the fourth native Cys40-Cys95 disulfide bond) in an ensemble of largely disordered three-disulfide precursors (3S if des-[40-95]). A stable analogue of des-[40-95], viz., [C40A, C95A] RNase A, which contains three out of four native disulfide pairings, was previously found to have a three-dimensional structure very similar to that of the wild-type protein. However, it is determined here from GdnHCl denaturation experiments to have significantly reduced global stability, i.e., = 4.5 kcal /mol at 20 degrees C and pH 4.6. The local stability of [C40A, C95A] RNase A was also examined using site-specific amide (2)H/(1)H exchange measurements at pD 5.0 to determine the individual unfolding free energy of specific residues under both strongly native (12 degrees C) and more destabilizing (20 degrees C) conditions. Comparison of the relative stabilities at specific amide sites of [C40A, C95A] RNase A at both temperatures with the corresponding values for the wild-type protein at 35 degrees C corroborates previous experimental evidence that unidentified intramolecular contacts in the vicinity of the preferentially formed native one-disulfide (C65-C72) loop are crucial for stabilizing early folding intermediates, leading to des-[40-95]. Moreover, values of for residues at or near the third alpha-helix, and in part of the second beta-sheet of [C40A, C95A] RNase A, indicate that these two regions of regular backbone structure contribute to stabilizing the global chain fold of the des-[40-95] disulfide-folding intermediate in the wild-type protein. More significantly, we have identified numerous specific residues in the first alpha-helix and the first beta-sheet of the protein that are stabilized in the final step of the major oxidative regeneration pathway of RNase A (des-[40-95] --> N).  相似文献   

16.
Ruoppolo M  Vinci F  Klink TA  Raines RT  Marino G 《Biochemistry》2000,39(39):12033-12042
The eight cysteine residues of ribonuclease A form four disulfide bonds in the native protein. We have analyzed the folding of three double RNase A mutants (C65A/C72A, C58A/C110A, and C26A/C84A, lacking the C65-C72, C58-C110, and C26-C84 disulfide bonds, respectively) and two single mutants (C110A and C26A), in which a single cysteine is replaced with an alanine and the paired cysteine is present in the reduced form. The folding of these mutants was carried out in the presence of oxidized and reduced glutathione, which constitute the main redox agents present within the ER. The use of mass spectrometry in the analysis of the folding processes allowed us (i) to follow the formation of intermediates and thus the pathway of folding of the RNase A mutants, (ii) to quantitate the intermediates that formed, and (iii) to compare the rates of formation of intermediates. By comparison of the folding kinetics of the mutants with that of wild-type RNase A, the contribution of each disulfide bond to the folding process has been evaluated. In particular, we have found that the folding of the C65A/C72A mutant occurs on the same time scale as that of the wild-type protein, thus suggesting that the removal of the C65-C72 disulfide bond has no effect on the kinetics of RNase A folding. Conversely, the C58A/C110A and C26A/C84A mutants fold much more slowly than the wild-type protein. The removal of the C58-C110 and C26-C84 disulfide bonds has a dramatic effect on the kinetics of RNase A folding. Results described in this paper provide specific information about conformational folding events in the regions involving the mutated cysteine residues, thus contributing to a better understanding of the complex mechanism of oxidative folding.  相似文献   

17.
Unfolded ribonuclease (RNase) from porcine pancreas consists of a mixture of fast and slow-refolding species. The equilibrium distribution of these species differs strongly from other homologous RNases, because an additional proline residue is present at position 115 of the porcine protein. The major slow-folding species of porcine RNase contains incorrect proline isomers at Pro93 and at Pro114-Pro115. Both positions are presumably part of beta-turn structures in the native protein, as deduced from the structure of the homologous bovine RNase A. The folding kinetics of these molecules depend strongly on the conditions used. Under unfavorable conditions (near the unfolding transition), refolding is virtually blocked by the presence of the incorrect proline peptide bonds and partially folded intermediates with incorrect isomers could not be detected. As a consequence, folding is very slow under such conditions and the re-isomerization of Pro114-Pro115 is the first and rate-limiting step of folding. Under strongly native conditions (such as in the presence of ammonium sulfate), refolding is much faster. A largely folded intermediate accumulates with the turns around Pro93 and Pro114-Pro115 still in the non-native conformation. These results suggest that incorrect proline isomers strongly influence protein folding and that, under favorable conditions, the polypeptide chain can fold with two beta-turns locked into a non-native conformation. We conclude, therefore, that early formation of correct turn structure is not necessarily required for protein folding. However, the presence of incorrect turns, locked-in by non-native proline isomers, strongly decreases the rate of refolding. Alternative pathways of folding exist. The choice of pathway depends on the number and distribution of incorrect proline isomers and on the folding conditions.  相似文献   

18.
Two new three-disulfide intermediates have been found to be populated in the oxidative folding pathway of bovine pancreatic ribonuclease A at a low temperature (15 degrees C). These intermediates, des-[26-84] and des-[58-110], possess all but one of the four native disulfide bonds and have a stable tertiary structure, similar to the two previously observed intermediates, des-[65-72] and des-[40-95]. While the latter two des species each lack one surface-exposed disulfide bond, the newly discovered intermediates each lack one buried disulfide bond. The possible involvement of these species in the rate-determining steps during the oxidative folding of RNase A is discussed and a specific role for such species during oxidative folding is suggested.  相似文献   

19.
A Cao  E Welker  H A Scheraga 《Biochemistry》2001,40(29):8536-8541
Both the reductive unfolding and oxidative regeneration of a P93A mutant and wild-type RNase A have been studied at 15 degrees C and pH 8.0. The rate of reduction of the 40--95 disulfide bond is accelerated about 120-fold by the P93A mutation, while the reduction of the 65--72 disulfide bond is not accelerated by this mutation (within the experimental error). Moreover, the reduction of native P93A to des[40--95] is about 10 times faster than the further reduction of the same des[40--95] species. These results demonstrate that the reduction of the mutant proceeds through a local unfolding event and provides strong support for our model in which the reduction of wild-type RNase A to the des species proceeds through two independent local conformational unfolding events. The oxidative regeneration rate of the P93A mutant is comparable to that of wild-type RNase A, suggesting that a cis 92--93 peptide group that is present in native wild-type RNase A and in native des[40--95], is not obligatory for the formation of the third (final) native disulfide bond of des[40--95] by reshuffling from an unstructured 3S precursor. Thus, the trans to cis isomerization of the Tyr92-Pro93 peptide group during the regeneration of wild-type RNase A may occur after the formation of the third native disulfide bond.  相似文献   

20.
The oxidative folding and reductive unfolding pathways of leech carboxypeptidase inhibitor (LCI; four disulfides) have been characterized in this work by structural and kinetic analysis of the acid-trapped folding intermediates. The oxidative folding of reduced and denatured LCI proceeds rapidly through a sequential flow of 1-, 2-, 3-, and 4-disulfide (scrambled) species to reach the native form. Folding intermediates of LCI comprise two predominant 3-disulfide species (designated as III-A and III-B) and a heterogeneous population of scrambled isomers that consecutively accumulate along the folding reaction. Our study reveals that forms III-A and III-B exclusively contain native disulfide bonds and correspond to stable and partially structured species that interconvert, reaching an equilibrium prior to the formation of the scrambled isomers. Given that these intermediates act as kinetic traps during the oxidative folding, their accumulation is prevented when they are destabilized, thus leading to a significant acceleration of the folding kinetics. III-A and III-B forms appear to have both native disulfides bonds and free thiols similarly protected from the solvent; major structural rearrangements through the formation of scrambled isomers are required to render native LCI. The reductive unfolding pathway of LCI undergoes an apparent all-or-none mechanism, although low amounts of intermediates III-A and III-B can be detected, suggesting differences in protection against reduction among the disulfide bonds. The characterization of III-A and III-B forms shows that the former intermediate structurally and functionally resembles native LCI, whereas the III-B form bears more resemblance to scrambled isomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号