首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
通过DAPI荧光染料染色观察胶孢炭疽菌Colletotrichumgloeosporioides附着胞发育过程中的核相动态变化,结果显示,第2次有丝分裂发生的部位在分生孢子产生芽管的一端中;分裂后,最接近芽管的一个子核移入芽管顶端,或通过芽管移入附着胞中。0.10μg/mL的三环唑可完全抑制附着胞中黑色素形成,但不影响核的分裂。三环唑处理12h后,发生2次有丝分裂数量约为73%,而发生3次有丝分裂的数量约为23.9%;绝大多数附着胞中是单核,双核数量小于5%。  相似文献   

2.
王晓光  曾宪录 《菌物系统》1998,17(3):240-245
以进行自然同步核内有丝分裂的多头绒孢菌(Physarumpolycephalm)原生质团为材料,应用常规制片和整体银染后制片的电镜技术研究了有丝分裂后细胞核的形态构建过程,形成新核仁的前体物质在有丝分裂中期时莠在染色体区域的周围,末期时与染色体组一起到达两极,子细胞核刚形成时核仁物质与染色质混合,以后核仁物质相互汇合并同染色质逐渐分开,最后形成一个大核仁,染色质在有丝分裂后期开始解集缩,到两极后在  相似文献   

3.
浙江无核柿炭疽病菌鉴定及附着胞形成过程中的核相变化   总被引:8,自引:1,他引:7  
浙江无核柿炭疽病近年来在浙江淳安地区严重发生,根据形态学特征病原菌鉴定为胶孢炭疽菌ColletotrichumgloeosporioidesPenz.,在枝条病斑上的分生孢子盘通常不产生刚毛,分生孢子顶端顶部钝圆,基部平截,分生孢子盘中的孢子包埋在基质中,紧密结合在一起。分生孢子在自然寄主和人工培养条件下形态特征相似。6个柿树炭疽菌菌株的rDNAITS序列联配显示,其序列是相同的。用UPGMA方法分析ITS1-ITS2序列构建的炭疽菌系统发育树把6个柿树炭疽菌菌株和其它寄主上的胶孢炭疽菌或其有性型围小丛壳菌菌系分入同一个组,与根据形态学的鉴定结果一致。在附着胞形成过程中,用DAPI荧光染色观察到核相发生两次有丝分裂变化。第一次有丝分裂发生在分生孢子固着聚苯乙烯塑料培养皿3-4h后,随后,分生孢子中部形成一个隔膜,把它分成两个细胞;6~7h后,分生孢子发生第二次有丝分裂。分裂后,一个核通过芽管移入附着胞中。  相似文献   

4.
双孢蘑菇疣孢霉病的发病过程及病原菌的核相研究   总被引:1,自引:0,他引:1  
【目的】确定有害疣孢霉的传播途径,明确双孢蘑菇受有害疣孢霉侵染后发病症状和微观形态变化,以及有害疣孢霉的核相。【方法】将有害疣孢霉喷施于培养料及覆土材料的不同深度,观察记录双孢蘑菇的发病情况;将有害疣孢霉接种于不同生长阶段的双孢蘑菇子实体,观察记录其发病情况;使用光学显微镜及扫描电镜观察双孢蘑菇子实体受有害疣孢霉侵染前后的形态变化;通过DAPI(4′,6-二脒基-2-苯基吲哚)染色的方法对有害疣孢霉核相进行观察。【结果】将有害疣孢霉接种于培养料及覆土层的不同深度得到双孢蘑菇发病率如下:覆土层表面覆土层中间覆土与培养料交界处培养料中间层;有害疣孢霉可以侵染双孢蘑菇的任意阶段,将其接种于原基直径小于3 mm子实体表面时,得到不能正常分化的"马勃状"组织;对有害疣孢霉的侵染过程进行观察得到:其孢子可粘附于双孢蘑菇表面,并萌发长出芽管,接种处双孢蘑菇表面产生褐色病斑,双孢蘑菇菌丝体发生质壁分离,最后菌丝体膨大,细胞壁变薄甚至溢裂,菌丝体内部中空;有害疣孢霉产生两种类型的分生孢子,Ⅰ类无隔膜含1个细胞核;Ⅱ类具1隔膜含2个细胞核,2个细胞核被隔膜分开;细胞核的第1次有丝分裂发生于分生孢子母细胞中;厚垣孢子由上下2个细胞构成,上胞中含有2个细胞核。下胞含1–2个细胞核。有害疣孢霉的厚垣孢子萌发可产生1–2个芽管,芽管中细胞核的数目不断变化,一般0–2个细胞核。【结论】双孢蘑菇受其侵染后发生显著的细胞学变化;我们对有害疣孢霉做遗传分析时,进行单孢分离需挑取无隔膜的分生孢子为实验材料进行遗传分析。  相似文献   

5.
以进行自然同步核内有丝分裂的多头绒泡菌(Physarum polycephalum)原生质团为材料,应用常规制片和整体银染后制片的电镜技术研究了有丝分裂后细胞核的形态构建过程。形成新核仁的前体物质在有丝分裂中期时散在染色体区域的周围,末期时与染色体组一起到达两极。子细胞核刚形成时核仁物质与染色质混合,以后核仁物质相互汇合并同染色质逐渐分开,最后形成一个大核仁。染色质在有丝分裂后期开始解集缩,到两极后在新形成的子核中进一步松解。染色质在充分松解后又开始集缩活动,形成一些集缩比较紧密的染色质小块。随着细胞核的进一步发育在核膜和核仁之间形成许多大小不等,形状不规则的染色质团块。  相似文献   

6.
用透射电镜的方法,对朱顶红(Am aryllisvittata Ait.)花粉管中生殖细胞的分裂过程中微管分布和结构形态变化进行了观察,获得如下主要的结果:有丝分裂前期,微管的数量较分裂前减少并变短,靠近细胞核分布。分裂前中期,微管出现于原来的核区并与染色体发生联系,形成着丝点微管。分裂中期,染色体排列于赤道面上形成赤道板,微管构成纺锤体。分裂后期,染色体分成两群,被缩短的着丝点微管拉向两极。在纺锤体两极的微管汇聚。后期的晚期,当极的微管尚未消失时,在赤道区域出现丰富的成膜体微管,在成膜体中央,细胞板前体物聚集。分裂末期,极微管和着丝点微管消失,成膜体微管在新形成的核膜和细胞板间扩展并穿过细胞板  相似文献   

7.
多头绒泡菌PhysarumpolycophalumSchw的营养生长阶段为没有细胞壁的原生质团(合胞体),内部众多的细胞核进行着同步的核内有丝分裂,本文电镜下研究了细胞核在有丝分裂周期中的结构变化。有丝分裂前期,染色质经松散改组和集缩形成染色体,核仁由中央移向边缘,并在近核膜处解体;中期核膜不消失,在核内形成纺锤体,核仁解体后的物质是不规则状散在于核内;有丝分裂后核膜的破裂处重新愈合,染色体解集缩成染色质,分散的核仁物质逐渐合并形成新的核仁。  相似文献   

8.
应用间接免疫荧光标记技术和激光共聚焦扫描显微镜成像技术观察了烟草小孢子母细胞减数分裂过程中微管的分布变化。在减数分裂前期,小孢子母细胞中的微管较短,随机分散在细胞质中。在减数分裂中期,细胞质中微管形成纺锤体,控制染色体的分布。进入减数分裂I后期,部分纺锤体微管将两组染色体拉向两级。在减数分裂Ⅱ中期,细胞中的微管又形成两个纺锤体。在减数分裂Ⅱ后期,纺锤体微管解聚为微管蛋白分散在细胞质中。胞质分裂发生在四个细胞核形成之后,通过细胞核之间的质膜向内缢缩分隔四个细胞核,产生四个小孢子。  相似文献   

9.
多头绒泡菌细胞核周期的电镜研究   总被引:1,自引:0,他引:1  
曾宪录  赵骥民 《菌物系统》1997,16(3):212-215
多头绒泡菌Physarum polycephalum Schw的营养生长 没有细胞壁的原生质团(合胞体),内部众多的细胞核进行着同步的核内有丝分裂,本文电镜下研究了细胞核在有丝分裂周期中的结构变化。有丝分裂前期,染色质经松散改组和集缩形成染色体,核仁由中央移向边缘,并在近核膜处解体;中期核膜不消失,在核内形成纺锤体,核仁解体后的物质呈不规则状散在于核内;有丝分裂后核膜的破裂处重新愈合,染色体解集缩  相似文献   

10.
似金隐藻有丝分裂及胞质分裂的观察   总被引:1,自引:0,他引:1  
似金隐藻(Cryptomonas chrysoidea)是从青岛附近渤海湾海水中分离得到的一种单细胞藻类。对它的胞质分裂和有丝分裂进行的观察表明,它的胞质分裂在有丝分裂的中期开始,细胞前端沟口处先开始分裂,继而沿纵轴纵沟处形成一收缩沟完成的。似金隐藻的有丝分裂过程中没有染色体和着丝点形成;核膜进入中期时完全消失,纺锤体呈桶状,微管通过染色质团中的通道或直接与染色质团块相联;在后期和末期,两块分开的染色质团十分靠近相应的色素体内质网膜。本文对其分裂过程进行了讨论。  相似文献   

11.
Conidial germination and differentiation – the so-called prepenetration processes – of the barley powdery mildew fungus (Blumeria graminis f. sp. hordei) are essential prerequisites for facilitating penetration of the host cuticle. Although the cell cycle is known to be pivotal to cellular differentiation in several phytopathogenic fungi there is as yet no information available concerning the relationship between cell cycle and infection structure development in the obligate biotroph B. graminis. The timing of specific developmental events with respect to nuclear division and morphogenesis was followed on artificial and host leaf surfaces by 4′,6-diamidino-2-phenylindole (DAPI) staining in combination with a pharmacological approach applying specific cell cycle inhibitors. It was found that the uninucleate conidia germinated and then underwent a single round of mitosis 5–6 h after inoculation. During primary germ tube formation the nucleus frequently migrated close to the site of primary germ tube emergence. This nuclear repositioning was distinctly promoted by very-long-chain aldehydes that are common host cuticular wax constituents known to induce conidial differentiation. The subsequent morphogenesis of the appressorial germ tube preceded mitosis that was spatially uncoupled from subsequent cytokinesis. Blocking of S-phase with hydroxyurea did not inhibit formation of the appressorial germ tube but prevented cytokinesis and appressorium maturation. Benomyl treatment that arrests the cell cycle in mitosis inhibited nuclear separation, cytokinesis, and formation of mature appressoria. Thus, we conclude that a completed mitosis is not a prerequisite for the formation and swelling of the appressorial germ tube, which normally provides the destination for one of the daughter nuclei, while appressorium maturation depends on mitosis.  相似文献   

12.
Multinucleate (MN) cells were induced in PtK1 cells by colcemid treatment. A large percentage of cells developed nuclear asynchrony both in relation to DNA synthesis and mitosis within one cell cycle. Asynchrony could be traced even in metaphase and anaphase cells in which interphase nuclei, PCC of S-phase nuclei and less condensed prophase-like chromosomes could be observed along with normally condensed chromosomes. The occurrence of such abnormalities in these large MN cells may be explained on the basis of an uneven distribution of inducer molecules of DNA synthesis and mitosis due to cytoplasmic compartmentation. The less condensed form of all the chromosomes except chromosome 4 could be traced in asynchronous metaphase. The failure of the less condensed chromosomes to undergo complete condensation does not always appear to result from late entry of nuclei containing these chromosomes into G2 phase. It is likely that chromosome 4 carries gene(s) for chromosome condensation, as this chromosome itself never appears in a less condensed form. The inducers for chromosome condensation may not always be available at equal concentrations to all chromosomes located in separate nuclei, thus they may sometimes fail to undergo complete condensation before other nuclei reach the end of prophase, when the nuclear envelopes of all nuclei present in the cell break down simultaneously.  相似文献   

13.
True endomitosis in the anther tapetum of the liliaceous plant Eremurus is described. The nuclear membrane does not disappear, but during metaphase the chromosomes are condensed, often considerably more than in normal mitosis. When the pollen mother cells (PMCs) go through the last premeiotic mitosis, the tapetal cells have one diploid nucleus which divides while the cell remains undivided. The two diploid nuclei may undergo an endomitosis and the resulting tetraploid nuclei a second endomitosis. An alternative pathway is an ordinary mitosis—again without cell division—instead of one of the endomitotic cycles. The cytological picture in the tapetum is further complicated by restitution in anaphase and fusion of metaphase and anaphase groups during mitosis, processes which could give rise to cells with one, two, or three nuclei, instead of the expected two or four. No sign of the so-called “inhibited” mitosis is seen in these tapetal cells. When the PMCs are in leptotene-zygotene, very few tapetal nuclei are in endomitosis. When the PMCs have reached diplotene, almost 100% of cells which are not in interphase show an endomitotic stage.  相似文献   

14.
DNA topoisomerase II (Topo II) is an essential enzyme that catalyzes topological changes of DNA and consists of a major member of mitotic chromosomes. To investigate the dynamic localization of Topo II in nuclei, we engineered the strain of Aspergillus nidulans expressing Topo II fused with green fluorescent protein (GFP). Time-lapse microscopy revealed that the distribution of Topo II-GFP in nuclei varied depending on the cell cycle. In interphase, Topo II-GFP distributed evenly in the nucleoplasm and at the onset of G2 phase became concentrated into nucleolus. During mitosis, Topo II-GFP accumulated on chromosomes, when the chromosomes condensed. In the early mitosis, the Topo II also showed a single or two brighter spots among the fluorescence of clumped chromosomes. The spots once divided into several spots and then concentrated again into a spot per nucleus in the dividing nuclei of anaphase. Along with the subsequent decondensation of chromosomes, Topo II diffused back into nucleoplasm.  相似文献   

15.
Details of mitosis in the chloromonadophycean alga Vacuolaria virescens Cienk. have been studied with the light microscope. The chromosomes are relatively large (up to μ in length at metaphase) and so mitotic stages are readily distinguishable. Chromosomes can be recognized in interphase nuclei as fine strands of chromatin. Contraction of these chromosomes marks the beginning of mitosis and continues progressively until the transition from metaphase to anaphase. Disintegration of nucleoli is complete by late prophase and nucleolar reformation begins in telophase. Some chromosomes exhibit less densely stained regions; centromeres are also present as indicated by their differential staining and by the behavior of chromosomes at metaphase and anaphase. At anaphase progeny chromosomes move apart parallel to the division axis of the nucleus. As anaphase progresses the chromosomes fuse at the polar surface of the progeny chromosome groups. This process continues in telophase and the chromosome groups become more spherical. By the end of telophase nucleolar reformation has begun and the chromosomes have relaxed to their interphase condition.  相似文献   

16.
Recent data from multiple organisms indicate that gamma-tubulin has essential, but incompletely defined, functions in addition to nucleating microtubule assembly. To investigate these functions, we examined the phenotype of mipAD159, a cold-sensitive allele of the gamma-tubulin gene of Aspergillus nidulans. Immunofluorescence microscopy of synchronized material revealed that at a restrictive temperature mipAD159 does not inhibit mitotic spindle formation. Anaphase A was inhibited in many nuclei, however, and after a slight delay in mitosis (approximately 6% of the cell cycle period), most nuclei reentered interphase without dividing. In vivo observations of chromosomes at a restrictive temperature revealed that mipAD159 caused a failure of the coordination of late mitotic events (anaphase A, anaphase B, and chromosomal disjunction) and nuclei reentered interphase quickly even though mitosis was not completed successfully. Time-lapse microscopy also revealed that transient mitotic spindle abnormalities, in particular bent spindles, were more prevalent in mipAD159 strains than in controls. In experiments in which microtubules were depolymerized with benomyl, mipAD159 nuclei exited mitosis significantly more quickly (as judged by chromosomal condensation) than nuclei in a control strain. These data reveal that gamma-tubulin has an essential role in the coordination of late mitotic events, and a microtubule-independent function in mitotic checkpoint control.  相似文献   

17.
In the present work we report the phosphorylation pattern of histone H3 and the development of microtubular structures using immunostaining techniques, in mitosis of Rhynchospora tenuis (2n = 4), a Cyperaceae with holocentric chromosomes. The main features of the holocentric chromosomes of R. tenuis coincide with those of other species namely: the absence of primary constriction in prometaphase and metaphase, and the parallel separation of sister chromatids at anaphase. Additionaly, we observed a highly conserved chromosome positioning at anaphase and early telophase sister nuclei. Four microtubule arrangements were distinguished during the root tip cell cycle. Interphase cells showed a cortical microtubule arrangement that progressively forms the characteristic pre-prophase band. At prometaphase the microtubules were homogeneously distributed around the nuclear envelope. Metaphase cells displayed the spindle arrangement with kinetochore microtubules attached throughout the entire chromosome extension. At anaphase kinetochoric microtubules become progressively shorter, whereas bundles of interzonal microtubules became increasingly broader and denser. At late telophase the microtubules were observed equatorially extended beyond the sister nuclei and reaching the cell wall. Immunolabelling with an antibody against phosphorylated histone H3 revealed the four chromosomes labelled throughout their entire extension at metaphase and anaphase. Apparently, the holocentric chromosomes of R. tenuis function as an extended centromeric region both in terms of cohesion and H3 phosphorylation.  相似文献   

18.
In the chironomid Acricotopus lucidus, germ line-soma differentiation becomes evident with the formation of the pole cells and the elimination of the germ line-limited chromosomes (Ks) from the future somatic nuclei of the embryo. Unlike in Drosophila, the early nuclear divisions do not proceed synchronously in A. lucidus. Usually, only one nucleus, the future pole nucleus, penetrates into the pole plasm, always at a telophase stage in the course of a regular mitosis. This happens by chance, depending on the orientation of the mitotic spindles of the early syncytial nuclei. Consequently, the time and the cell cycle at which a nucleus reaches the pole plasm, and pole cells arise, vary between embryos of the same oviposition. When entering the first germ line mitosis, while polar plasm and syncytial plasm are still not separated, some future somatic nuclei begin to eliminate their Ks. While the soma chromosomes (Ss) undergo normal anaphasic migration to the opposite poles, the K chromatids do not separate and remain in the equatorial plane, as demonstrated by fluorescence in situ hybridization using germ line-specific DNA probes. The elimination of the Ks does not occur at the same time in all future somatic nuclei. Nondisjunction of Ks was observed in the first mitosis of the pole nucleus, leading to primordial germ cells with different compositions of their K complements. The pattern and timing of elimination mitoses in the embryos indicate that each of the future somatic nuclei seems to regulate the elimination of the Ks autonomously.  相似文献   

19.
The mitosis and cytokinesis of Draparnaldia glomerata as examined here by transmission electron microscopy are in many aspects similar to those described earlier for other chaetophoralean algae. The standard chaetophoralean model of the mechanism of mitosis/cytokinesis is described in detail. Characteristic in this pattern is the movement of sets of centrioles towards the nuclear poles followed by a proliferation of extranuclear microtubules at prophase, the (partial) fusion of centrioles with the spindle poles at metaphase and anaphase, the simultaneous separation of chromosomes apparently caused by both spindle elongation and shortening of the chromosomal microtubules at anaphase, the expulsion of the centrioles by daughter nuclei and finally the non–persistent spindle at telophase. Cytokinesis takes place by formation of a cell plate associated with phycoplast microtubules. The possible function of the phycoplast in cytokinesis in Draparnaldia is discussed.  相似文献   

20.
Summary Nuclear and microtubular cycles were studied in large heterophasic multinuclear cells induced in root tips ofTriticum turgidum by caffeine treatment. Multinuclear cells and cells with polyploid nuclei exhibited various configurations of multiple and complex preprophase microtubule (Mt) bands (PPBs), including helical ones. The developmental stages of PPBs in some heterophasic cells did not comply with the cell cycle stages of the associated nuclei, a fact indicating that these events are not directly controlled by the associated nuclei. The heterophasic cells exhibited asynchronous nuclei at different stages of mitosis. In cells displaying prophase and interphase nuclei, the prophase spindle was either absent or developed around both of them or developed around the prophase nuclei earlier than around the interphase ones. During prometaphase-metaphase of the advanced nuclei the lagging interphase nuclei were induced to form prematurely condensed chromosomes (PCCs) along with spindle formation around them. These observations suggest that the mitotic transition in heterophasic cells is delayed but is ultimately achieved due to the effect of the advanced nuclei, which induces a premature mitotic entry of the lagging nuclei. Although kinetochore Mt bundles were found associated with PCCs, their metaphase and anaphase spindles were abnormal resulting in abnormal or abortive anaphases. In some heterophasic cells, metaphase-anaphase transition did not take place simultaneously in different chromosome groups, signifying that the cells do not exit from the mitotic state after anaphase initiation of the advanced nuclei. Asynchronous pace of mitosis of different chromosome groups was also observed during anaphase and telophase. Implications of these observations in understanding plant cell cycle regulation are discussed.Abbreviations cdk cyclin dependent kinase - Mt microtubule - PCC prematurely condensed chromosome - PPB preprophase band  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号