首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermodynamics of DNA duplexes with adjacent G.A mismatches.   总被引:11,自引:0,他引:11  
Y Li  G Zon  W D Wilson 《Biochemistry》1991,30(30):7566-7572
The sequence 5'-d(ATGAGCGAAT) forms a very stable self-complementary duplex with four G.A mismatch base pairs (underlined) out of ten total base pairs [Li et al. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 26-30]. The conformation is in the general B-family and is stabilized by base-pair hydrogen bonding of an unusual type, by favorable base dipole orientations, and by extensive purine-purine stacking at the mismatched sites. We have synthesized 13 decamers with systematic variations in the sequence above to determine how the flanking sequences, the number of G.A mismatches, and the mismatch sequence order (5'-GA-3' or 5'-AG-3') affect the duplex stability. Changing A.T to G.C base pairs in sequences flanking the mismatches stabilizes the duplexes, but only to the extent observed with B-form DNA. The sequence 5'-pyrimidine-GA-purine-3', however, is considerably more stable than 5'-purine-GA-pyrimidine-3'. The most stable sequences with two pairs of adjacent G.A mismatches have thermodynamic parameters for duplex formation that are comparable to those for fully Watson-Crick base-paired duplexes. Similar sequences with single G.A pairs are much less stable than sequences with adjacent G.A mismatches. Reversing the mismatch order from 5'-GA-3' to 5'-AG-3' results in an oligomer that does not form a duplex. These results agree with predictions from the model derived from NMR and molecular mechanics and indicate that the sequence 5'-pyrimidine-GA-purine-3' forms a stable conformational unit that fits quite well into a B-form double helix.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The decoding of UGA as a selenocysteine (Sec) codon in mammalian selenoprotein mRNAs requires a selenocysteine insertion sequence (SECIS) element in the 3' untranslated region. The SECIS is a hairpin structure that contains a non-Watson-Crick base-pair quartet with a conserved G.A/A.G tandem in the core of the upper helix. Another essential component of the Sec insertion machinery is SECIS-binding protein 2 (SBP2). In this study, we define the binding site of SBP2 on six different SECIS RNAs using enzymatic and hydroxyl radical footprinting, gel mobility shift analysis, and phosphate-ethylation binding interference. We show that SBP2 binds to a variety of mammalian SECIS elements with similar affinity and that the SBP2 binding site is conserved across species. Based on footprinting studies, SBP2 protects the proximal part of the hairpin and both strands of the lower half of the upper helix that contains the non-Watson-Crick base pair quartet. Gel mobility shift assays showed that the G.A/A.G tandem and internal loop are critical for the binding of SBP2. Modification of phosphates by ethylnitrosourea along both strands of the non-Watson-Crick base pair quartet, on the 5' strand of the lower helix and part of the 5' strand of the internal loop, prevented binding of SBP2. We propose a model in which SBP2 covers the central part of the SECIS RNA, binding to the non-Watson-Crick base pair quartet and to the 5' strands of the lower helix and internal loop. Our results suggest that the affinity of SBP2 for different SECIS elements is not responsible for the hierarchy of selenoprotein expression that is observed in vivo.  相似文献   

3.
G.U pairs occur frequently and have many important biological functions. The stability of symmetric tandem G.U motifs depends both on the adjacent Watson-Crick base pairs, e.g., 5'G > 5'C, and the sequence of the G.U pairs, i.e., 5'-UG-3' > 5'-GU-3', where an underline represents a nucleotide in a G.U pair [Wu, M., McDowell, J. A., and Turner, D. H. (1995) Biochemistry 34, 3204-3211]. In particular, at 37 degrees C, the motif 5'-CGUG-3' is less stable by approximately 3 kcal/mol compared with other symmetric tandem G.U motifs with G-C as adjacent pairs: 5'-GGUC-3', 5'-GUGC-3', and 5'-CUGG-3'. The solution structures of r(GAGUGCUC)(2) and r(GGCGUGCC)(2) duplexes have been determined by NMR and restrained simulated annealing. The global geometry of both duplexes is close to A-form, with some distortions localized in the tandem G.U pair region. The striking discovery is that in r(GGCGUGCC)(2) each G.U pair apparently has only one hydrogen bond instead of the two expected for a canonical wobble pair. In the one-hydrogen-bond model, the distance between GO6 and UH3 is too far to form a hydrogen bond. In addition, the temperature dependence of the imino proton resonances is also consistent with the different number of hydrogen bonds in the G.U pair. To test the NMR models, U or G in various G.U pairs were individually replaced by N3-methyluridine or isoguanosine, respectively, thus eliminating the possibility of hydrogen bonding between GO6 and UH3. The results of thermal melting studies on duplexes with these substitutions support the NMR models.  相似文献   

4.
A new method for the synthesis of 2'-O-methyl-2-thiouridine (s2Um) found in thermophilic bacterial tRNA was developed. Structural properties of s2Um and s2Um(p)U were studied by using 1H NMR spectroscopy. A modified nonaribonucleotide (RNA*: 5'-CGUUs2UmUUGC-3') was synthesized to study the base-recognition ability of s2Um in formation of RNA-RNA and RNA DNA duplexes. The UV melting experiments revealed that RNA*-RNA and RNA*-DNA duplexes having an s2U-A base pair are more stable than those having a U-A base pair. On the contrary, the thermal stability of RNA*-RNA and RNA*-DNA duplexes having an s2U-G wobble base pair was much lower than that of the unmodified duplexes having a natural U-G base pair. It is concluded that s2Um has higher selectivity toward A over G than unmodified U.  相似文献   

5.
Solution structure of an oncogenic DNA duplex containing a G.A mismatch   总被引:7,自引:0,他引:7  
The DNA duplex 5'-d(GCCACAAGCTC).d(GAGCTGGTGGC), which contains a central G.A mismatch has been studied by one and two-dimensional NMR techniques. The duplex corresponds to the sequence 29-39 of the K-ras gene. The mismatch position is that of the first base of the Gly12 codon, a hot spot for mutations. The observed NOEs of the nonexchangeable protons show that both of the bases of the mismatched pair are intrahelical over a wide range of pH. However, the structure of the G.A mispair and the conformation of the central part of the duplex change with pH. This structural change shows a pK of 6.0. At low pH, the G.A bases are base paired with hydrogen bonds between the keto group of the G residue and the amino group of the A residue and, secondly, between the N7 of the G and a proton on N1 of A. This causes the G residue to adopt a syn conformation. On raising the pH, the N1-H proton of the protonated A residue is removed, and the base pair rearranges. In the neutral G.A base pair both residues adopt an anti conformation, and the mismatch is stabilized by hydrogen bonds. Our results on the exchangeable and A(H2) protons of the mismatched pair indicate a shift from a classical face-to-face two hydrogen-bonded structure to a slipped structure stabilized by bifurcated hydrogen bonds. This may be a particular characteristics of this oncogenic sequence in which the G.A error is poorly repaired.  相似文献   

6.
Two similar, but not identical, models have been proposed for the amino acid-base pair contacts in the CAP-DNA complex ('Model I,' Weber, I. and Steitz, T., Proc. Natl. Acad. Sci. USA, 81, 3973-3977, 1984; 'Model II,' Ebright, et al., Proc. Natl. Acad. Sci. USA, 81, 7274-7278, 1984). One difference between the two models involves Glu181 of CAP. Model I predicts that Glu181 of CAP makes two specificity determining contacts: one H-bond with the cytosine N4 atom of G:C at base pair 7 of the DNA half site, and one H-bond with the adenine N6 atom of T:A at base pair 6 of the DNA half site. In contrast, Model II predicts that Glu181 makes only one specificity determining contact: one H-bond with the cytosine N4 atom of G:C at base pair 7 of the DNA half site. In the present work, we show that replacement of T:A at base pair 6 of the DNA half site by T:N6-methyl-adenine has no, or almost no, effect on the binding of CAP. We conclude, contrary to Model I, that Glu181 of CAP makes no contact with the adenine N6 atom of base pair 6 of the DNA half site.  相似文献   

7.
Stable DNA loop structures closed by a novel G.C base-pair have been determined for the single-residue d(GXC) loops (X=A, T, G or C) in low-salt solution by high-resolution nuclear magnetic resonance (NMR) techniques. The closing G.C base-pair in these loops is not of the canonical Watson-Crick type, but adopts instead a unique sheared-type (trans Watson-Crick/sugar-edge) pairing, like those occurring in the sheared mismatched G.A or A.C base-pair, to draw the two opposite strands together. The cytidine residue in the closing base-pair is transformed into the rare syn domain to form two H-bonds with the guanine base and to prevent the steric clash between the G 2NH(2) and the C H-5 protons. Besides, the sugar pucker of the syn cytidine is still located in the regular C2'-endo domain, unlike the C3'-endo domain adopted for the pyrimidines of the out-of-alternation left-handed Z-DNA structure. The facile formation of the compact d(GXC) loops closed by a unique sheared-type G(anti).C(syn) base-pair demonstrates the great potential of the single-stranded d(GXC) triplet repeats to fold into stable hairpins.  相似文献   

8.
J G Moe  I M Russu 《Biochemistry》1992,31(36):8421-8428
Proton nuclear magnetic resonance (NMR) spectroscopy is used to characterize the kinetics and energetics of base-pair opening in the dodecamers 5'-d(CGCGAATTCGCG)-3' and 5'-d(CGCGAATTTGCG)-3'. The latter dodecamer contains two symmetrical G.T mismatched base pairs. The exchange kinetics of imino protons is measured from resonance line widths and selective longitudinal relaxation times. For the G.T pair, the two imino protons (G-N1H and T-N3H) provide probes for the opening of each base in the mismatched pair. The lifetimes of individual base pairs in the closed state and the equilibrium constants for formation of the open state are obtained from the dependence of the exchange rates on the concentration of ammonia catalyst. The activation energies and standard enthalpy changes for base-pair opening are obtained from the temperature dependence of the lifetimes and equilibrium constants, respectively. The results indicate that the G.T mismatched pairs are kinetically and energetically destabilized relative to normal, Watson-Crick base pairs. The lifetimes of the G.T pairs are of the order of 1 ms or less, over the temperature range from 0 to 20 degrees C. The equilibrium constants for base-pair opening, at 20 degrees C, are increased up to 4000-fold, relative to those of normal base pairs. The energetic destabilization of the G.T base pairs is, at least in part, enthalpic in origin. The presence of the G.T mismatched base pairs destabilizes also neighboring base pairs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
J E Patten  A G So  K M Downey 《Biochemistry》1984,23(8):1613-1618
The influence of the stability of base pairs formed by nearest-neighbor nucleotides on misincorporation frequency has been studied with the large fragment of DNA polymerase I, the alternating DNA copolymers, poly(dI-dC) and poly-(dG-dC), as template-primers, and dGTP, dITP, and dCTP as substrates. We have utilized the difference in thermodynamic stability between the doubly H-bonded I X C base pair and triply H-bonded G X C base pair to examine the effects of base-pair stability of both the "preceding" and the "following" nucleotides on the frequency of insertion of a mismatched nucleotide, as well as on its stable incorporation into polynucleotide. The present studies demonstrate that the stability of the base pairs formed by nearest-neighbor nucleotides affects the frequency of incorporation of noncomplementary nucleotides. Misincorporation frequency is increased when the nearest-neighbor nucleotides form more stable base pairs with the corresponding nucleotides in the template and is decreased when they form less stable base pairs. The stability of the base pair formed by a nucleotide either preceding (5' to) or following (3' to) a misincorporated nucleotide influences misincorporation frequency, but by different mechanisms. The stability of base pairs formed by preceding nucleotides affects the rate of insertion of mismatched nucleotide but does not protect the mismatched nucleotide from removal by the 3' to 5' exonuclease activity. In contrast, the stability of a base pair formed by a following nucleotide determines whether a misincorporated nucleotide is extended or excised by affecting the ability of the enzyme to edit errors of incorporation.  相似文献   

10.
2′-O-Carbamoyluridine (Ucm) was synthesized and incorporated into DNAs and 2′-O-Me-RNAs. The oligonucleotides incorporating Ucm formed less stable duplexes with their complementary and Ucm–U, Ucm–C single-base mismatched DNAs and RNAs in comparison with those without the carbamoyl group. On the contrary, the Tm analyses revealed that the duplexes with a mismatched Ucm–G base pair showed almost the same thermostability as the corresponding unmodified duplexes. Molecular dynamics (MD) simulations of the Ucm-modified 2′-O-Me-RNA/RNA duplexes with Ucm–G mismatched base pair suggested that the carbamoyl group could participate in the Ucm–G base pair by an additional intermolecular hydrogen bond between the carbamoyl oxygen and the H2 of the guanine base.  相似文献   

11.
The SECIS element is an RNA hairpin in the 3'UTR of selenoprotein mRNAs required for decoding UGA selenocysteine codons. Our experimentally derived 2D structure model for the SECIS RNA revealed the conservation of four consecutive non-Watson-Crick base pairs, with a central G.A/A.G tandem. The present study was dedicated to gaining insight into the role of this quartet of base pairs. The effects of mutations introduced into the SECIS quartet of the glutathione peroxidase (GPx) cDNA, an enzyme with selenocysteine in its active center, were reported in vivo by the GPx activity. The detrimental consequence of an all-Watson-Crick mutant quartet disclosed the paramount importance of the non-Watson-Crick base pairs for GPx activity. Next, structure probing established that base pair changes in the central G.A/A.G tandem, predicted by the model to be structurally unfavorable, effectively led to local opening of the helix at the quartet. A concomitant abolition of GPx activity was observed, arising from translational impairment of full-length GPx. In contrast, an isosteric base pair replacement in the tandem did not affect base pairing in the quartet, leading to an almost wt GPx activity. Collectively, the data provided conclusive evidence for the functional relevance of these non-Watson-Crick base pairs in vivo, thus identifying a noncanonical RNA motif crucial to SECIS function in mediating selenoprotein translation. Within the quartet, the prominent requirement for the central G.A/A.G tandem is highlighted, our previous structural model and the mutagenesis data presented here strongly arguing in favor of a sheared arrangement for the G.A base pairs. The SECIS RNA is therefore another member to be added to the growing list of RNAs containing building blocks of non-Watson-Crick base pairs, required for structure and/or function.  相似文献   

12.
The kinetics of the reactions between 15N-labelled cisplatin and 14-base pair duplex oligonucleotides with either 5'-AG-3' or 5'-GA-3' groupings as the principal platination site are examined in the presence of 60-80 mM chloride by [1H,15N]HSQC 2D NMR spectroscopy. The presence of chloride at these concentrations results in a five-fold decrease in the rate of hydrolysis of cisplatin to cis-[PtCl(NH3)2(OH2)]+ and a two- to twenty-fold decrease in the rate of monofunctional adduct formation. The effects on the rate of closure from monofunctional to bifunctional adducts are less well established but some of these rates appear not to be significantly reduced by the presence of added chloride. The results provide a caution that the use of chloride to quench platination reactions may not be fully effective.  相似文献   

13.
Two in vitro selection experiments were conducted to determine the RNA sequence requirements for binding ribosomal protein L32 (RPL32) from Saccharomyces cerevisiae. To preserve the wild-type stem-internal loop-stem fold, only a limited portion of the RNA comprising the internal loop region was randomized. Most of the selected RNAs have secondary structures similar to that of the wild-type, and four purines on both sides of the internal loop are highly conserved. Indeed, a pair of 5'-GA-3' dinucleotides is found in all but one of the stem-loop-stem L32 aptamers and these conserved purines may contact the protein directly or form a necessary RNA secondary or tertiary structure. These aptamers have a potential G:U pair bordering the loop adjacent to the conserved GAs, but a cytidine replaces a phylogenetically conserved adenosine at one loop position in many of the selected RNAs. In model RNAs, the cytidine-bearing variant binds protein slightly more strongly than does the wild-type RNA. That the seven-member, 2 + 5 internal loop is important for protein binding is reinforced by the finding that the position, but not the size, of the loop is variable. A minority of the RNA aptamers has three consecutive uridines and may fold into a similar structure, but with the internal loop inverted.  相似文献   

14.
Znosko BM  Kennedy SD  Wille PC  Krugh TR  Turner DH 《Biochemistry》2004,43(50):15822-15837
The J4/5 loop of group I introns has tertiary interactions with the P1 helix that position the P1 substrate for the self-splicing reaction. The J4/5 loop of Candida albicans and Candida dubliniensis, 5'GAAGG3'/3'UAAUU5', potentially contains two A.A pairs flanked by one G.U pair on one side and two G.U pairs on the other side. Results from optical melting, nuclear magnetic resonance spectroscopy, and functional group substitution experiments with a mimic of the C. albicans and C. dubliniensis J4/5 loop are consistent with the adenosines forming tandem sheared A.A pairs with a cross-strand stack and only the G.U pair not adjacent to an A.A pair forming a static wobble G.U pair. The two G.U pairs adjacent to the tandem A.A pairs are likely in a dynamic equilibrium between multiple conformations. Although Co(NH(3))(6)(3+) stabilizes the loop by several kilocalories per mole at 37 degrees C, addition of Mg(2+) or Co(NH(3))(6)(3+) has no effect on the structure of the loop. The tandem G.U pairs provide a pocket of negative charge for Co(NH(3))(6)(3+) to bind. The results contribute to understanding the structure and dynamics of purine-rich internal loops and potential G.U pairs adjacent to internal loops.  相似文献   

15.
We have determined the crystal structure of the RNA octamer duplex r(guguuuac)/r(guaggcac) with a tandem wobble pair, G·G/U·U (motif III), to compare it with U·G/G·U (motif I) and G·U/U·G (motif II) and to better understand their relative stabilities. The crystal belongs to the rhombohedral space group R3. The hexagonal unit cell dimensions are a = b = 41.92 Å, c = 56.41 Å, and γ = 120°, with one duplex in the asymmetric unit. The structure was solved by the molecular replacement method at 1.9 Å resolution and refined to a final R factor of 19.9% and Rfree of 23.3% for 2862 reflections in the resolution range 10.0–1.9 Å with F ≥ 2σ(F). The final model contains 335 atoms for the RNA duplex and 30 water molecules. The A-RNA stacks in the familiar head-to-tail fashion forming a pseudo-continuous helix. The uridine bases of the tandem U·G pairs have slipped towards the minor groove relative to the guanine bases and the uridine O2 atoms form bifurcated hydrogen bonds with the N1 and N2 of guanines. The N2 of guanine and O2 of uridine do not bridge the ‘locked’ water molecule in the minor groove, as in motifs I and II, but are bridged by water molecules in the major groove. A comparison of base stacking stabilities of motif III with motifs I and II confirms the result of thermodynamic studies, motif I > motif III > motif II.  相似文献   

16.
In this paper, hydrogen bonding interaction and hydration in crystal structures of both DNA and RNA oligonucleotides are discussed. Their roles in the formation and stabilization of oligonucleotides have been covered. Details of the Watson-Crick base pairs G.C and A.U in DNA and RNA are illustrated. The geometry of the wobble (mismatched) G.U base pairs and the cis and almost trans conformations of the mismatched U.U base pairs in RNA is described. The difference in hydration of the Watson-Crick base pairs G.C, A.U and the wobble G.U in different sequences of codon-anticodon interaction in double helical molecules are indicative of the effect of hydration. The hydration patterns of the phosphate, the 2'-hydroxyl groups, the water bridges linking the phosphate group, N7 (purine) and N4 of Cs or O4 of Us in the major groove, the water bridges between the 2'-hydroxyl group and N3 (purine) and O2 (pyrimidine) in the minor groove are discussed.  相似文献   

17.
S Ebel  A N Lane  T Brown 《Biochemistry》1992,31(48):12083-12086
We have used ultraviolet melting techniques to compare the stability of several DNA duplexes containing tandem G.A mismatches to similar duplexes containing tandem A.G, I.A, and T.A base pairs. We have found that tandem G.A mismatches in 5'-Y-G-A-R-3' duplexes are more stable than their I.A counterparts and that they are sometimes more stable than tandem 5'-Y-T-A-R-3' sequences. This is not the case for tandem G.A mismatches in other base stacking environments, and it suggests that tandem G.A mismatches in 5'-Y-G-A-R-3' sequences have a unique configuration. In contrast to tandem 5'-G-A-3' mismatches, tandem 5'-A-G-3' mismatches were found to be unstable in all cases examined.  相似文献   

18.
The triplex forming ability of oligonucleotides containing 2'-O-methyl-2-thiouridine (s2Um) and 2-thiothymidine (s2T) was studied. The UV melting experiments revealed that triplex forming oligonucleotides (TFOs) containing both s2Um or s2T stabilized significantly parallel triplexes. The main reason for stabilization of triplexes was due to the stacking effect of the 2-thiocarbonyl group. Moreover, it turned out that these modified TFOs had a high selectivity in recognition of a matched Hoogsteen base from a mismatched one.  相似文献   

19.
Giri I  Stone MP 《Biochemistry》2003,42(23):7023-7034
The structure of 5'-d(ACATC(AFB)GATCT)-3'.5'-d(AGATCAATGT)-3', containing the C(5).A(16) mismatch at the base pair 5' to the modified (AFB)G(6), was determined by NMR. The characteristic 5'-intercalation of the AFB(1) moiety was maintained. The mismatched C(5).A(16) pair existed in the wobble conformation, with the C(5) imino nitrogen hydrogen bonded to the A(16) exocyclic amino group. The wobble pair existed as a mixture of protonated and nonprotonated species. The pK(a) for protonation at the A(16) imino nitrogen was similar to that of the C(5).A(16) wobble pair in the corresponding duplex not adducted with AFB(1). Overall, the presence of AFB(1) did not interfere with wobble pair formation at the mismatched site. Molecular dynamics calculations restrained by distances derived from NOE data and torsion angles derived from (1)H (3)J couplings were carried out for both the protonated and nonprotonated wobble pairs at C(5).A(16). Both sets of calculations predicted the A(16) amino group was within 3 A of the C(5) imino nitrogen. The calculations suggested that protonation of the C(5).A(16) wobble pair should shift C(5) toward the major groove and shift A(16) toward the minor groove. The NMR data showed evidence for the presence of a minor conformation characterized by unusual NOEs between T(4) and (AFB)G(6). T(4) is two nucleotides in the 5'-direction from the modified base. These NOEs suggested that in the minor conformation nucleotide T(4) was in closer proximity to (AFB)G(6) than would be expected for duplex DNA. Modeling studies examined the possibility that T(4) transiently paired with the mismatched A(16), allowing it to come within NOE distance of (AFB)G(6). This model structure was consistent with the unusual NOEs associated with the minor conformation. The structural studies are discussed in relationship to nontargeted C --> T transitions observed 5' to the modified (AFB)G in site-specific mutagenesis experiments [Bailey, E. A., Iyer, R. S., Stone, M. P., Harris, T. M., and Essigmann, J. M. (1996) Proc. Natl. Acad. Sci. U.S.A. 93, 1535-1539].  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号