首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to investigate the relationship between skeletal muscle fiber type composition and the maximum number of repetitions performed during submaximal resistance exercise. Twelve young men performed a maximum repetitions test at 85% of 1 repetition maximum (1RM) in the leg press, which was repeated after 1 week. Seven days after the second 85% 1RM test, they performed a maximum repetitions test at 70% of 1RM in the leg press. This test, at 70% 1RM, was repeated 7 days later. One week before the initiation of the testing sessions, a biopsy sample was obtained from the vastus lateralis muscle and analyzed for fiber type distribution, fiber cross-sectional area, and capillary density (capillaries x mm(2)). A low and nonsignificant relationship was found between the fiber type distribution or percent fiber type area and the number of repetitions performed at either 70% or 85% 1RM. Moreover, the number of repetitions performed at 70% or 85% of 1RM was not related significantly with 1RM strength. In contrast, the number of repetitions performed at 70% 1RM was significantly correlated with the number of capillaries per mm(2) of muscle cross-sectional area (r = 0.70; p = 0.01). These results suggest that fiber type composition is not the major biological variable regulating the number of repetitions performed in submaximal resistance exercise. Rather, it seems that submaximal strength performance depends on muscle capillary density, which is linked with the endurance capacity of the muscle tissue.  相似文献   

2.
Direct determination of muscle fiber composition is invasive and expensive, with indirect methods also requiring specialist resources and expertise. Performing resistance exercises at 80% 1RM is suggested as a means of indirectly estimating muscle fiber composition, though this hypothesis has never been validated against a direct method. The aim of the study was to investigate the relationship between the number of completed repetitions at 80% 1RM of back squat exercise and muscle fiber composition. Thirty recreationally active participants’ (10 females, 20 males) 1RM back squat load was determined, before the number of consecutive repetitions at 80% 1RM was recorded. The relationship between the number of repetitions and the percentage of fast-twitch fibers from vastus lateralis was investigated. The number of completed repetitions ranged from 5 to 15 and was independent of sex, age, 1RM, training frequency, training type, training experience, BMI or muscle fiber cross-sectional area. The percentage of fast-twitch muscle fibers was inversely correlated with the number of repetitions completed (r = –0.38, P = 0.039). Participants achieving 5 to 8 repetitions (n = 10) had significantly more fast-twitch muscle fibers (57.5 ± 9.5 vs 44.4 ± 11.9%, P = 0.013) than those achieving 11–15 repetitions (n = 11). The remaining participants achieved 9 or 10 repetitions (n = 9) and on average had equal proportion of fast- and slow-twitch muscle fibers. In conclusion, the number of completed repetitions at 80% of 1RM is moderately correlated with muscle fiber composition.  相似文献   

3.
The flexed-arm hang (FAH) has been used to assess arm and shoulder girdle strength for 35 years despite little evidence to support its use. The purpose of this study was to determine what muscular fitness component, if any, was related to the FAH. The traditional overgrip chin-above-bar test and 5 different variations were compared with absolute strength (1 repetition maximum [1RM] lat pull down), relative strength (1RM.mass(-1)), and muscle endurance (repetitions to failure at 70% of the 1RM). Sixty college-age women volunteered for the study. Relationships were examined using Pearson Product Moment Correlation. No significant relationship was found between any of the FAH variations and absolute strength or muscle endurance; however, all FAH variations correlated significantly with relative strength (1RM.mass(-1)). The strongest relationship was with the undergrip FAH timed to 90 degrees of elbow extension (r = 0.72). Investigators concluded that the FAH is a test of weight-relative muscular strength and appears unrelated to absolute strength or muscle endurance.  相似文献   

4.
The purpose of this study was to develop a regression equation capable of accurately predicting a 1 repetition maximum bench press in collegiate women athletes. The findings of this study could benefit future women athletes by providing coaches and trainers with an easy method of determining maximum upper body strength in women athletes. Sixty-five University of Georgia NCAA Division 1 women athletes from 9 different sports were measured prior to the start of their season utilizing 2 repetition tests to fatigue (25 kg: REPS55; 31.8 kg: REPS70) and a 1 repetition maximum (1RM) bench press test in random order. Other independent variables that were used with a submaximal weight to predict 1RM were total body weight, lean body mass (LBM), height, and percent body fat. The variables of REPS70 and LBM were the best predictors of 1RM utilizing Pearson product correlations (r = 0.909, p = 0.000; r = 0.445, p = 0.000) and multiple regression results (R(2) = 0.834, p = 0.000) for this population. The results from this study indicate muscular endurance repetitions using an absolute weight of 31.8 kg in conjunction with LBM can be used to accurately predict 1RM bench press strength in collegiate women athletes.  相似文献   

5.
The purpose of this study was to assess lower-body muscular strength and work capacity after off-season resistance training and the efficacy of predicting maximal squat strength (1 repetition maximum [1RM]) from repetitions to fatigue. National Collegiate Athletic Association Division-II football players (n = 58) were divided into low-strength (LS, 1RM < 365 lb, n = 32) and high-strength (HS, 1RM ≥ 365 lb, n = 26) groups before training based on median 1RM squat performance. Maximal repetitions to failure (RTFs) were performed with a relative load of 70% of 1RM before training and 60, 70, 80, and 90% of 1RM after 12 weeks of a linear periodization resistance training program. As a team, 1RM squat (32 ± 27 lb), 70% RTF (4.5 ± 4.5 reps), and work capacity at 70% 1RM load (1,482 ± 1,181 lb reps) increased significantly after training. Likewise, training resulted in significant increases in 1RM, RTF at 70% 1RM, and work capacity (load × reps) in both LS (8 ± 33 lb, 3.9 ± 4.7 reps, 1,736 ± 1,521 lb reps, respectively) and HS (27 ± 21 lb, 4.9 ± 4.4 reps, 2,387 ± 1,767 lb reps, respectively), with no significant difference between groups. There was no relationship between the change in work capacity and the change in muscular strength for either the LS (r = 0.02) or HS (r = 0.06) group. Predicted 1RMs were best when RTFs were performed using 80% 1RM (5-17 RTFs), with an error of ±5% in 95% of the subjects. In conclusion, the changes in muscular strength associated with an off-season training program appear to have a positive influence on squat work capacity at 70% of 1RM and allow favorable prediction of 1RM using submaximal loads.  相似文献   

6.
The purpose of this study was to assess the effect of resistance training on upper-body muscular strength and the expression of work capacity and muscular endurance. In addition, a training-induced change in the relationship between muscular strength and endurance was assessed by testing changes in the accuracy of using endurance repetitions to predict 1 repetition maximum (1RM) bench press before and after training. College-aged men (n = 85) and women (n = 62) completed a 12-week linear periodization resistance training program. Before and after training, the subjects were assessed for 1RM and repetitions to fatigue (RTFs) with a submaximal load. After pretraining 1RM determination, the subjects were randomly assigned to perform RTFs at 65% 1RM (n = 74) or 90% 1RM (n = 73). Pretraining and posttraining RTFs were conducted at the same respective % 1RM. Work capacity was determined from repetition weight × RTF. After training, there was a significant increase in 1RM in both men (~14%) and women (~23%). Posttraining RTF was not different from pretraining RTF at 65 %1RM (18.2 ± 5.1 and 19.0 ± 6.0, respectively) but was significantly reduced in the 90% 1RM group (6.1 ± 3.6 vs. 4.5 ± 2.7, respectively). Likewise, there was a differential effect of training on the expression of work capacity, which increased in the 65 % 1RM group (123 ± 155 kg-reps) but decreased in the 90% 1RM group (-62 ± 208 kg-reps); the effect was independent of gender within each testing group. In conclusion, the changes in muscular strength associated with resistance training produced an increase in work capacity when tested with a 65 % 1RM load without a change in endurance. In contrast, both work capacity and endurance decreased when tested with 90% 1RM. Thus, the impact of strength training on work capacity and muscle endurance is specific to the load at which endurance testing is performed.  相似文献   

7.
The addition of aerobic exercise (AE) to a resistance exercise (RE) program (concurrent exercise, CE) can interfere with maximum muscle fiber growth achieved with RE. Further, CE appears to markedly affect the growth of myosin heavy chain (MHC) I, but not MHC IIa fibers. The mechanism responsible for this "interference" is unclear. Satellite cell (SC) responsiveness to exercise appears to influence muscle adaptation but has not yet been examined following acute concurrent exercise. Thus, we assessed the fiber-type-specific SC response to RE, AE, and CE exercise. Eight college-aged males completed the following two exercise trials: the RE trial, which consisted of unilateral leg extensions and presses (4 sets ≥ 10 repetitions: 75% 1 repetition maximum, RM); and the AE/CE trial, which included an identical RE protocol with the opposite leg, immediately followed by subjects cycling for 90 min (60% W(max)). Muscle biopsies were obtained from the vastus lateralis before and 4 days after each session. Samples were cross-sectioned, stained with antibodies against NCAM, Ki-67, and MHC I, counterstained with DAPI, and analyzed for SC density (SC per fiber), SC activation, and fiber type. SC density increased to a greater extent following RE (38 ± 10%), compared with CE (-6 ± 8%). Similarly, MHC I muscle fiber SC density displayed a greater increase following RE (46 ± 14%), compared with AE (-7 ± 17%) and CE (-8 ± 8%). Our data indicate that the SC response to RE is blunted when immediately followed by AE, at least in MHC I muscle fibers, and possibly MHC II fibers. This suggests that the physiological environment evoked by AE might attenuate the eventual addition of myonuclei important for maximum muscle fiber growth and consequent force-producing capacity.  相似文献   

8.
The purpose of the present study was to investigate the effect of short-term resistance training and detraining on shot put throwing performance. Eleven young healthy subjects with basic shot put skills participated in 14 weeks of resistance training, which was followed by 4 weeks of detraining. Shot put performance in four field tests was measured before (T1) and after (T2) resistance training and after detraining (T3). At the same time points, one repetition maximum (1RM) was measured in squat, bench press, and leg press. Fat-free mass (FFM) was determined with dual x-ray absorptiometry and muscle biopsies obtained from vastus lateralis for the determination of fiber type composition and cross-sectional area (CSA). 1RM strength increased 22-34% (p < 0.01) at T2 and decreased 4-5% (not significantly different) at T3. Shot put performance increased 6-12% (p < 0.05) after training and remained unaltered after detraining. FFM increased at T2 (p < 0.05) but remained unchanged between T2 and T3. Muscle fiber CSA increased 12-18% (p < 0.05) at T2. Type I muscle fiber CSA was not altered after detraining, but type IIa and IIx fiber CSA was reduced 10-12% (p < 0.05). The percentage of type IIx muscle fibers was reduced after training (T1 = 18.7 +/- 4, T2 = 10.4 +/- 1; p < 0.05), and it was increased at T3 compared with T2 (T3 = 13.7 +/- 1; p < 0.05). These results suggest that shot put performance remains unaltered after 4 weeks of complete detraining in moderately resistance-trained subjects. This might be linked to the concomitant reduction of muscle fiber CSA and increase in the percentage of type IIx muscle fibers.  相似文献   

9.
The effects of strength conditioning on skeletal muscle function and mass were determined in older men. Twelve healthy untrained volunteers (age range 60-72 yr) participated in a 12-wk strength training program (8 repetitions/set; 3 sets/day; 3 days/wk) at 80% of the one repetition maximum (1 RM) for extensors and flexors of both knee joints. They were evaluated before the program and after 6 and 12 wk of training. Weekly measurements of 1 RM showed a progressive increase in strength in extensors and flexors. By 12 wk extensor and flexor strength had increased 107.4 (P less than 0.0001) and 226.7% (P less than 0.0001), respectively. Isokinetic peak torque of extensors and flexors measured on a Cybex II dynamometer increased 10.0 and 18.5% (P less than 0.05) at 60 degrees/s and 16.7 and 14.7% (P less than 0.05) at 240 degrees/s. The torque-velocity relationship showed an upward displacement of the curve at the end of training, mainly in the slow-velocity high-torque region. Midthigh composition from computerized tomographic scans showed an increase (P less than 0.01) in total thigh area (4.8%), total muscle area (11.4%), and quadriceps area (9.3%). Biopsies of the vastus lateralis muscle revealed similar increases (P less than 0.001) in type I fiber area (33.5%) and type II fiber area (27.6%). Daily excretion of urinary 3-methyl-L-histidine increased with training (P less than 0.05) by an average 40.8%. Strength gains in older men were associated with significant muscle hypertrophy and an increase in myofibrillar protein turnover.  相似文献   

10.
11.
The purpose of this study was to present an equation that accurately predicts 1 repetition maximum (RM) over a wide range of repetitions to fatigue (RTF) for 4 different machine resistance exercises in postmenopausal women. Seventy trained women (age = 57.4 +/- 3.1 years) performed maximal and submaximal repetitions on leg press, bench press, rowing, and leg adduction machines at the conclusion of a 2-year training program. Maximal repetitions were performed on each exercise in the following ranges: 3-5RM, 6-10RM, 11-15RM, and 16-20RM. Special regard was taken to maintain the identical execution of each test (i.e., range of motion, starting angle, speed of movement). One cubic polynomial (w(i) [0.988-0.0000584 r(i)(3) + 0.00190 r(i)(2) + 0.0104 r(i),] where w(i) is the load of measurement I, and r(i) is the number of repetitions) accurately predicted 1RM from RTF with mean absolute differences between actual 1RM and predicted 1RM for the 4 exercises of 1.5-3.1% and with coefficients of variation of <3.3%. Equation accuracy was independent of the exercise type or the number of RTF. Thus, this study supported the validity of RTF to adequately estimate 1RM over a wide range of repetitions and within different exercises in trained, older female subjects.  相似文献   

12.
13.
The purpose of this study was to describe the physiological profile of responders (>20 mmol.kg(-1) dry weight [dw] increase in total intramuscular creatine monohydrate [Cr] + phosphorylated creatine [PCr]) versus nonresponders (<10 mmol.kg(-1) dw increase) to a 5-day Cr load (0.3 g.kg(-1).d(-1)) in 11 healthy men (mean age = 22.7 years). Pre-post 5-day cellular measures included total resting Cr content (Cr + PCr), fiber type composition, and fiber type cross-sectional area (CSA) determined from muscle biopsies of the vastus lateralis. Body mass, daily dietary intake, 24-hour urine outputs, urinary Cr and creatinine (CrN), and strength performance measures (1 repetition maximum [1RM] bench and leg press) were also assessed before and after the 5-day loading period. Results indicated that there were 3 levels of response to the 5-day supplementation: responders (R), quasi responders (QR), and nonresponders (NR) with mean changes in resting Cr + PCr of 29.5 mmol.kg(-1) dw (n = 3), 14.9 mmol.kg(-1) dw (n = 5), and 5.1 mmol.kg(-1) dw (n = 3), respectively. The results support a person-by-treatment interaction to acute Cr supplementation with R possessing a biological profile of lowest initial levels of Cr + PCr, greatest percentage of type II fibers, and greatest preload muscle fiber CSA and fat-free mass. Responders also showed improvement in 1RM leg press scores following the 5-day loading period. NR had higher preload levels of Cr + PCr, less type II muscle fibers, small preload muscle CSA, and lower fat-free mass and displayed no improvements in 1RM strength scores. The results suggest that to be considered a responder to acute oral supplementation, a favorable preexisting biological profile may determine the final extent to which an individual responds to supplementation. Physiologic profiles of nonresponders appear to be different and may limit their ability to uptake Cr. This may help partially explain the reported equivocal performance findings in the Cr supplementation literature.  相似文献   

14.
Skeletal muscle glycogen metabolism was investigated in eight male subjects during and after six sets of 70% one repetition maximum (1 RM, I-70) and 35% 1 RM (I-35) intensity weight-resistance leg extension exercise. Total force application to the machine lever arm was determined via a strain gauge and computer interfaced system and was equated between trials. Compared with the I-70 trial, the I-35 trial was characterized by almost double the repetitions (13 +/- 1 vs. 6 +/- 0) and half the peak concentric torque for each repetition (12.4 +/- 0.5 vs. 24.2 +/- 1.0 Nm). After the sixth set, muscle glycogen degradation was similar between I-70 and I-35 trials (47.0 +/- 6.6 and 46.6 +/- 6.0 mmol/kg wet wt, respectively), as was muscle lactate accumulation (13.8 +/- 0.7 and 16.7 +/- 4.2 mmol/kg wet wt, respectively). After 2 h of passive recovery without caloric intake, muscle glycogen increased by 22.2 +/- 6.8 and 14.2 +/- 2.5 mmol/kg wet wt in the I-70 and I-35 trials, respectively. Optical absorbance measurement of periodic acid-Schiff-stained muscle sections after the 2 h of recovery revealed larger absorbance increases in fast-twitch than in slow-twitch fibers (0.119 +/- 0.024 and 0.055 +/- 0.024, P = 0.02). Data indicated that when external work was constant, the absolute amount of muscle glycogenolysis was the same regardless of the intensity of resistance exercise. Nevertheless the rate of glycogenolysis during the I-70 trial was approximately double that of the I-35 trial.  相似文献   

15.
Repetitions to fatigue (RTF) using less than a 1 repetition maximum (1RM) load (RepWt) have been shown to be a good predictor of 1RM strength in men, but such information is scarce in women. The purpose of this study was to evaluate the accuracy of current prediction equations to estimate 1RM bench press performance and to determine whether resistance training changes the capability to predict 1RM from muscular endurance repetitions in young women. Members (n = 103) of a required wellness course were measured for 1RM bench press and RTF using randomly assigned percentages between 60% and 90% of the 1RM (RepWt) before and after 12 weeks of progressive resistance training. The %1RM used to perform RTF remained the same for each individual after training (75.6% +/- 10.3%) as before. One repetition maximum bench press increased significantly after training (28% +/- 21%). Although the change in the group average for RTF (0.6 +/- 6.1) was not significant, the correlation between pretraining and posttraining RTF was moderate (r = 0.66; p < 0.01), and individual differences in percentage change in RTF were substantial (27% +/- 99%). The percentage change in 1RM was not significantly related to initial 1RM (r = -0.05), but it was negatively related to the change in RTF (r = -0.40; p < 0.01). Prediction equations were more accurate in the pretraining and posttraining conditions, in which fewer than 10 RTF were used. Resistance training may alter the relationship between strength and muscle endurance across a wide range of RTF in young women without compromising the accuracy of predicting maximal strength.  相似文献   

16.
17.
Resistance exercise intensity is commonly prescribed as a percent of 1 repetition maximum (1RM). However, the relationship between percent 1RM and the number of repetitions allowed remains poorly studied, especially using free weight exercises. The purpose of this study was to determine the maximal number of repetitions that trained (T) and untrained (UT) men can perform during free weight exercises at various percentages of 1RM. Eight T and 8 UT men were tested for 1RM strength. Then, subjects performed 1 set to failure at 60, 80, and 90% of 1RM in the back squat, bench press, and arm curl in a randomized, balanced design. There was a significant (p < 0.05) intensity x exercise interaction. More repetitions were performed during the back squat than the bench press or arm curl at 60% 1RM for T and UT. At 80 and 90% 1RM, there were significant differences between the back squat and other exercises; however, differences were much less pronounced. No differences in number of repetitions performed at a given exercise intensity were noted between T and UT (except during bench press at 90% 1RM). In conclusion, the number of repetitions performed at a given percent of 1RM is influenced by the amount of muscle mass used during the exercise, as more repetitions can be performed during the back squat than either the bench press or arm curl. Training status of the individual has a minimal impact on the number of repetitions performed at relative exercise intensity.  相似文献   

18.
The purpose of this study was to investigate whole muscle and single muscle fiber adaptations in very old men in response to progressive resistance training (PRT). Six healthy independently living old men (82 +/- 1 yr; range 80-86 yr, 74 +/- 4 kg) resistance-trained the knee extensors (3 sets, 10 repetitions) at approximately 70% one repetition maximum 3 days/wk for 12 wk. Whole thigh muscle cross-sectional area (CSA) was assessed before and after PRT using computed tomography (CT). Muscle biopsies were obtained from the vastus lateralis before and after the PRT program. Isolated myosin heavy chain (MHC) I and IIa single muscle fibers (n = 267; 142 pre; 125 post) were studied for diameter, peak tension, shortening velocity, and power. An additional set of isolated single muscle fibers (n = 2,215; 1,202 pre; 1,013 post) was used to identify MHC distribution. One repetition maximum knee extensor strength increased (P < 0.05) 23 +/- 4 kg (56 +/- 4 to 79 +/- 7 kg; 41%). Muscle CSA increased (P < 0.05) 3 +/- 1 cm2 (120 +/- 7 to 123 +/- 7 cm2; 2.5%). Single muscle fiber contractile function and MHC distribution were unaltered with PRT. These data indicate limited muscle plasticity at the single-muscle fiber level with a resistance-training program among the very old. The minor increases in whole muscle CSA coupled with the static nature of the myocellular profile indicate that the strength gains were primarily neurological. These data contrast typical muscle responses to resistance training in young ( approximately 20 yr) and old ( approximately 70 yr) humans and indicate that the physiological regulation of muscle remodeling is adversely modified in the oldest old.  相似文献   

19.
This study investigated the reliability of the session rating of perceived exertion (RPE) scale to quantify exercise intensity during high-intensity (H), moderate-intensity (M), and low-intensity (L) resistance training. Nine men (24.7 +/- 3.8 years) and 10 women (22.1 +/- 2.6 years) performed each intensity twice. Each protocol consisted of 5 exercises: back squat, bench press, overhead press, biceps curl, and triceps pushdown. The H consisted of 1 set of 4-5 repetitions at 90% of the subject's 1 repetition maximum (1RM). The M consisted of 1 set of 10 repetitions at 70% 1RM, and the L consisted of 1 set of 15 repetitions at 50% 1RM. RPE was measured following the completion of each set and 30 minutes postexercise (session RPE). Session RPE was higher for the H than M and L exercise bouts (p < or = 0.05). Performing fewer repetitions at a higher intensity was perceived to be more difficult than performing more repetitions at a lower intensity. The intraclass correlation coefficient for the session RPE was 0.88. The session RPE is a reliable method to quantify various intensities of resistance training.  相似文献   

20.
The purpose of this study was to examine 10 weeks of creatine monohydrate (Cr) supplementation coupled with resistance training on body composition and strength in women trainees. Twenty-six subjects ingested Cr (n = 13) or a placebo (Pl) (n = 13) at a dose of 0.3 g.kg(-1) and 0.03 g.kg(-1) body mass for the initial 7 days and subsequent 9 weeks, respectively, while performing a resistance training program 4 days per week. Significant increases (p < 0.05) occurred in both groups for lean body mass and 1 repetition maximum (1RM) bench press and incline leg press. There was a significant main effect for training, but there was no significant difference in the total number of repetitions completed after 5 sets of multiple repetitions to exhaustion at 70% of 1RM for bench press and incline leg press for both groups or in the ability to perform a greater training volume (sets x repetitions x load) in the Cr vs. Pl groups over the 10 weeks. The results indicate that Cr supplementation combined with 10 weeks of concurrent resistance training may not improve strength or lean body mass greater than training only. These findings may be a result of nonresponders due to gender differences or a varying biological potential to uptake Cr within the muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号