首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intrinsic relationship between ventilation (VE) and carbon dioxide output (VCO2) is described by the modified alveolar ventilation equation VE = VCO2 k/PaCO2(1-VD/VT) where PaCO2 is the partial pressure of CO2 in the arterial blood and VD/VT is the dead space fraction of the tidal volume. Previous investigators have reported that high-intensity exercise uncouples VE from VCO2; however, they did not measure the PaCO2 and VD/VT components of the overall relationship. In an attempt to provide a more complete analysis of the effects of high-intensity exercise on the VE-VCO2 relationship, we undertook an investigation where five subjects volunteered to perform three steady-state tests (SS1, SS2, SS3) at 60 W. One week after SS1 each subject was required to perform repeated 1-min bouts of exercise corresponding to a work rate of approximately 140% of maximal oxygen uptake (VO2max). Two and 24 h later the subjects performed SS2 and SS3, respectively. This exercise intervention caused PaCO2 during SS2 and SS3 to be regulated (P less than 0.01) approximately 4 Torr below the control (SS1) value of 38.8 Torr. Additionally, significant alterations were noted for VCO2 with corresponding values of 1.15 (SS1), 1.10 (SS2), and 1.04 (SS3) l/min. No changes were noted in either VD/VT or VE. In summary, it seems reasonable to suggest that the disproportionate increase in VE with respect to VCO2 noted in earlier work does not reflect an uncoupling. Rather the slope of the VE-VCO2 relationship is increased in a predictable manner as described by the modified alveolar ventilation equation.  相似文献   

2.
We examined the effects of different modes of airway CO2 load on the ventilation-CO2 output (VE-VCO2) relationship during mild to moderate exercise. Four young and three older male subjects underwent incremental steady-state treadmill exercise while breathing a mixture of CO2 in O2 (CO2 loading) or 100% O2 with and without a large external dead space [DS loading and control (C), respectively]. During DS loading, the elevated arterial PCO2 (PaCO2) remained constant from rest to mild exercise and began to increase only at higher work rates. To achieve similar chemical drive, the same PaCO2 levels were established during CO2 loading by external PCO2 forcing. In the young group, CO2 loading resulted in a steepening of the VE-VCO2 relationship compared with C, whereas in the older group the reverse pattern was found. DS loading resulted in a consistent increase in the VE-VCO2 slope compared with C and CO2 loading [39.1 +/- 5.6 (mean +/- SD) vs. 24.9 +/- 5.0 and 26.7 +/- 4.4, respectively] in all subjects. The difference in potentiation of VE-VCO2 by CO2 and DS loading was not due to differences in mean chemical drive or changes in breathing pattern. Thus changes in the profile of airway CO2 influx may have an independent influence on ventilatory CO2-exercise interaction. Peripheral chemoreceptors mediation, although important, is not obligatory for this behavior.  相似文献   

3.
Five men performed an incremental exercise test following a normal, low and high carbohydrate dietary regimen over a 7-day period, to examine the influence of an altered carbohydrate energy intake on the relationship between the ventilation (VET) and lactate (LaT) thresholds. VET and LaT were determined from the ventilatory equivalents for O2 (VE.VO2(-1) and CO2 (VE.VCO2(-1) and the log-log transformation of the lactate (La) to power output relationship, respectively. The total duration of the incremental exercise test, carbon dioxide output (VCO2), respiratory exchange ratio, blood La values and arterialized venous partial pressure of CO2 (PCO2) were reduced, and VE.VCO2(-1), the slope of the VE-VCO2 relationship, blood beta-hydroxybutyrate and pH were increased during the low carbohydrate trial compared with the other conditions. Total plasma protein and Na+, K+, and Cl- were similar across conditions. LaT and VET were unaffected by the altered proportions of carbohydrate in the diets and occurred at a similar oxygen consumption (mean VO2 across trials was 1.98 L.min-1 for VET and 2.01 L.min-1 for LaT). A significant relationship (r = 0.86) was observed for the VO2 that represented individual VET and LaT values. The increased VE.VCO2(-1) and slope of the VE-VCO2 relationship could be accounted for by the lower PCO2. It is concluded that alterations in carbohydrate energy intake do not produce an uncoupling of VET and LaT as has been reported previously.  相似文献   

4.
Our objectives were to determine 1) the effects of increased respiratory dead space (VD) on the ventilatory response to exercise and 2) whether changes in the ventilatory response are due to changes in chemoreceptor feedback (rest to exercise) vs. changes in the feedforward exercise stimulus. Steady-state ventilation (VI) and arterial blood gas responses to mild or moderate hyperoxic exercise in goats were compared with and without increased VD. Responses were compared using a simple mathematical model with the following assumptions: 1) steady state, 2) linear CO2 chemoreceptor feedback, 3) linear feedforward exercise stimulus proportional to CO2 production (VCO2) and characterized by an exercise gain (Gex), and 4) additive exercise stimulus and CO2 feedback producing the system gain (Gsys = delta VI/delta VCO2). Model predictions at constant Gex [assuming VD-to-tidal volume (VT) ratio independent of VCO2] are that increased VD/VT will 1) increase arterial PCO2 (PaCO2) and VI at rest and 2) increase Gsys via changes in chemoreceptor feedback due to a small increase in the PaCO2 vs. VCO2 slope. Experimental results indicate that increased VD increased VD/VT, PaCO2, and VI at rest and increased Gsys during exercise. However, measurable changes in the PaCO2 vs. VCO2 slope occurred only at high VD/VT or running speeds. Gex was estimated at each VD for each goat by using the model in conjunction with experimental measurements. With 0.2 liter VD, Gex increased 40% (P less than 0.01); with 0.6 liter VD, Gex increased 110% between 0 and 2.4 km/h and 5% grade (P less than 0.01) but not between 2.4 and 4.8 km/h. Thus, Gex is increased by VD through a limited range. In goats, increases in Gsys with increased VD result from increases in both Gex and CO2 chemoreceptor feedback. These results are consistent with other experimental treatments that increase the exercise ventilatory response, maintaining constant relative PaCO2 regulation, and suggest that a common mechanism linked to resting ventilatory drive modulates Gex.  相似文献   

5.
Control of exercise hyperpnea during hypercapnia in humans   总被引:1,自引:0,他引:1  
Previous studies have yielded conflicting results on the ventilatory response to CO2 during muscular exercise. To obviate possible experimental errors contributing to such variability, we have examined the CO2-exercise interaction in terms of the ventilatory response to exercise under conditions of controlled hypercapnia. Eight healthy male volunteers underwent a sequence of 5-min incremental treadmill exercise runs from rest up to a maximum CO2 output (VCO2) of approximately 1.5 l . min-1 in four successive steps. The arterial PCO2 (PaCO2) at rest was stabilized at the control level or up to 14 Torr above control by adding 0-6% CO2 to the inspired air. Arterial isocapnia (SD = 1.2 Torr) throughout each exercise run was maintained by continual adjustment of the inspired PCO2. At all PaCO2 levels the response in total ventilation (VE) was linearly related to exercise VCO2. Hypercapnia resulted in corresponding increases in both the slope (S) and zero intercept (V0) of the VE-VCO2 curve; these being directly proportional to the rise in PaCO2 (means +/- SE: delta S/ delta PaCO2, 2.73 +/- 0.28 Torr-1; delta V0/ delta PaCO2, 1.67 +/- 0.18 l . min-1 . Torr-1). Thus the ventilatory response to concomitant hypercapnia and exercise was characterized by a synergistic (additive plus multiplicative) effect, suggesting a positive interaction between these stimuli. The increased exercise sensitivity in hypercapnia is qualitatively consistent with the hypothesis that VE is controlled to minimize the conflicting challenges due to chemical drive and the mechanical work of breathing (Poon, C. S. In: Modelling and Control of Breathing, New York: Elsevier, 1983, p. 189-196).  相似文献   

6.
The partial pressure of carbon dioxide in arterial blood is an important operator in the control of breathing, by actions on peripheral and central chemoreceptors. In experiments on man we must often assume that lung alveolar PCO2 equals arterial PCO2 and obtain estimates of the former derived from measurements in expired gas sampled at the mouth. This paper explores the potential errors of such estimates, which are magnified during exercise. We used a published model of the cardiopulmonary system to simulate various levels of exercise up to 300 W. We tested three methods of estimating mean alveolar PCO2 (PACO2) against the true value derived from a time average of the within-breath oscillation in steady-state exercise. We used both sinusoidal and square-wave ventilatory flow wave forms. Over the range 33-133 W end-tidal PCO2 (P(et)CO2) overestimated PACO2 progressively with increasing workload, by about 4 mmHg at 133 W with normal respiratory rate for that load. PCO2 by a graphical approximation technique (PgCO2; "graphical method") underestimated PACO2 by 1-2 mmHg. PCO2 from an experimentally obtained empirical equation (PnjCO2; "empirical method") overestimated PACO2 by 0.5-1.0 mmHg. Graphical and empirical methods were insensitive to alterations in cardiac output or respiratory rate. End-tidal PCO2 was markedly affected by respiratory rate during exercise, the overestimate of PACO2 increasing if respiratory rate was slowed. An increase in anatomical dead space with exercise tends to decrease the error in P(et)CO2 and increase the error in the graphical method. Changes in the proportion of each breath taken up by inspiration make no important difference, and changes in functional residual capacity, while important in principle, are too small to have any major effect on the estimates. Changes in overall alveolar ventilation which alter steady-state PACO2 over a range of 30-50 mmHg have no important effect. At heavy work loads (200-300 W), P(et)CO2 grossly overestimates by 6-9 mmHg. The graphical method progressively underestimates, by about 5 mmHg at 300 W. A simulated CO2 response (the relation between ventilation and increasing PCO2) performed at 100 W suggests that a response slope close to the true one can be obtained by using any of the three methods. The graphical method gave results closest to the true absolute values. Either graphical or empirical methods should be satisfactory for detecting experimentally produced changes in PACO2 during steady-state exercise, to make comparisons between different steady-state exercise loads, and to assess CO2 response in exercise.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The Hazinski method is an indirect, noninvasive, and maskless CO2-response test useful in infants or during sleep. It measures the classic CO2-response slope (i.e., delta VI/delta PCO2) divided by resting ventilation Sr = (VI'--VI')/(VI'.delta PCO2) between low (')- and high (')-inspired CO2 as the fractional increase of alveolar ventilation per Torr rise of PCO2. In steady states when CO2 excretion (VCO2') = VCO2', Hazinski CO2-response slope (Sr) may be computed from the alveolar exchange equation as Sr = (PACO2'--PICO2')/(PACO2'--PICO2') where PICO2 is inspired PCO2. To avoid use of a mask or mouthpiece, the subject breathes from a hood in which CO2 is mixed with inspired air and a transcutaneous CO2 electrode is used to estimate alveolar PCO2 (PACO2). To test the validity of this method, we compared the slopes measured simultaneously by the Hazinski and standard steady-state methods using a pneumotachograph, mask, and end-tidal, arterial, and four transcutaneous PCO2 samples in 15-min steady-state challenges at PICO2 23.5 +/- 4.5 and 37 +/- 4.1 Torr. Sr was computed using PACO2 and arterial PCO2 (PaCO2) as well as with the four skin PCO2 (PSCO2) values. After correction for apparatus dead space, the standard method was normalized to resting VI = 1, and its CO2 slope was designated directly measured normalized CO2 slope (Sx), permitting error to be calculated as Sr/Sx.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Compensation for inspiratory flow-resistive loading was compared during progressive hypercapnia and incremental exercise to determine the effect of changing the background ventilatory stimulus and to assess the influence of the interindividual variability of the unloaded CO2 response on evaluation of load compensation in normal subjects. During progressive hypercapnia, ventilatory response was incompletely defended with loading (mean unloaded delta VE/delta PCO2 = 3.02 +/- 2.29, loaded = 1.60 +/- 0.67 1.min-1.Torr-1 CO2, where VE is minute ventilation and PCO2 is CO2 partial pressure; P less than 0.01). Furthermore the degree of defense of ventilation with loading was inversely correlated with the magnitude of the unloaded CO2 response. During exercise, loading produced no depression in ventilatory response (mean delta VE/delta VCO2 unloaded = 20.5 +/- 1.9, loaded = 19.2 +/- 2.5 l.min-1.l-1.min-1 CO2 where VCO is CO2 production; P = NS), and no relationship was demonstrated between degree of defense of the exercise ventilatory response and the unloaded CO2 response. Differences in load compensation during CO2 rebreathing and exercise suggest the presence of independent ventilatory control mechanisms in these states. The type of background ventilatory stimulus should therefore be considered in load compensation assessment.  相似文献   

9.
Eight healthy volunteers performed gradational tests to exhaustion on a mechanically braked cycle ergometer, with and without the addition of an inspiratory resistive load. Mean slopes for linear ventilatory responses during loaded and unloaded exercise [change in minute ventilation per change in CO2 output (delta VE/delta VCO2)] measured below the anaerobic threshold were 24.1 +/- 1.3 (SE) = l/l of CO2 and 26.2 +/- 1.0 l/l of CO2, respectively (P greater than 0.10). During loaded exercise, decrements in VE, tidal volume, respiratory frequency, arterial O2 saturation, and increases in end-tidal CO2 tension were observed only when work loads exceeded 65% of the unloaded maximum. There was a significant correlation between the resting ventilatory response to hypercapnia delta VE/delta PCO2 and the ventilatory response to VCO2 during exercise (delta VE/delta VCO2; r = 0.88; P less than 0.05). The maximal inspiratory pressure generated during loading correlated with CO2 sensitivity at rest (r = 0.91; P less than 0.05) and with exercise ventilation (delta VE/delta VCO2; r = 0.83; P less than 0.05). Although resistive loading did not alter O2 uptake (VO2) or heart rate (HR) as a function of work load, maximal VO2, HR, and exercise tolerance were decreased to 90% of control values. We conclude that a modest inspiratory resistive load reduces maximum exercise capacity and that CO2 responsiveness may play a role in the control of breathing during exercise when airway resistance is artificially increased.  相似文献   

10.
In humans, arterial PCO2 (PaCO2) has been demonstrated to be regulated at or near resting levels in the steady state of moderate exercise (i.e., for work rates not associated with a sustained lactic acidosis). To determine how PaCO2 might be expected to behave under the nonsteady-state conditions of incremental exercise testing, the influence of the dynamic characteristics of the primary variables that determine PaCO2 was explored by means of computer modeling. We constructed a dynamic model that utilized previously reported experimental estimates for the kinetic response parameters of ventilation (VE) and CO2 output (VCO2). In response to incremental work rate forcings, the model yielded an increase in PaCO2, which reflected the disparity between the VE and VCO2 time constants; this hypercapnic condition was maintained despite VE and VCO2 both increasing linearly with respect to the input work rate profile. The degree of hypercapnia increased with the rate of the incremental forcing, reaching 9 Torr for a 50-W/min forcing. In conclusion, therefore, sustained increases in PaCO2 during nonsteady-state incremental exercise should be interpreted with caution, because this is the predicted response even in subjects with normal ventilatory control and lung function.  相似文献   

11.
Eight healthy young men underwent two separate steady-state incremental exercise runs within the aerobic range on a treadmill with alternating periods of breathing with no load (NL) and with an inspiratory resistive load (IRL) of approximately 12 cmH2O.1-1.s. End-tidal PCO2 was maintained constant throughout each run at the eucapnic or a constant hypercapnic level by adding 0-5% CO2 to the inspired O2. Hypercapnia caused a steepening, as well as upward shift, relative to the corresponding eucapnic ventilation-CO2 output (VE - VCO2) relationship in NL and IRL. Compared with NL, the VE - VCO2 slope was depressed by IRL, more so in hypercapnic [-19.0 +/- 3.4 (SE) %] than in eucapnic exercise (-6.0 +/- 2.0%), despite a similar increase in the slope of the occlusion pressure at 100 ms - VCO2 (P100 - VCO2) relationship under both conditions. The steady-state hypercapnic ventilatory response at rest was markedly depressed by IRL (-22.6 +/- 7.5%), with little increase in P100 response. For a given inspiratory load, breathing pattern responses to separate or combined hypercapnia and exercise were similar. During IRL, VE was achieved by a greater tidal volume (VT) and inspiratory duty cycle (TI/TT) along with a lower mean inspiratory flow (VT/TI). The increase in TI/TT was solely because of a prolongation of inspiratory time (TI) with little change in expiratory duration for any given VT. The ventilatory and breathing pattern responses to IRL during CO2 inhalation and exercise are in favor of conservation of respiratory work.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Nutritional intake plays an important role in determining metabolic and respiratory demands during both rest and exercise. This study examines the effects in normal subjects of 4 days of semistarvation with 440 kcal/day of intravenously infused dextrose followed by the infusion of 480 kcal/day of amino acids for 48 h on the metabolic and ventilatory response to exercise (1.25, 2.50, and 5.0 kg . m/s.). After 4 days of the dextrose infusion, arterial PCO2 (P less than 0.05), and the ventilatory equivalent for CO2 (VE/VCO2, P less than 0.05) were decreased at rest compared with control measurements made prior to the dextrose infusion. During all three levels of steady-state exercise, arterial PCO2 was significantly lower (P less than 0.05) than observed before the start of the dextrose infusion. The subsequent infusion of amino acids resulted in increases in O2 consumption (V02; P less than 0.05) and minute ventilation (VE; P less than 0.05), a decrease in arterial PCO2 (P less than 0.05), and little change in CO2 production (VCO2) at rest. During low levels of exercise, compared with the values obtained following the 4 days of dextrose infusion, there were larger increases in VE and VO2, whereas VCO2 changed little. Mechanical efficiency (kcal work/kcal energy utilized) during exercise increased after 4 days of dextrose and returned to near control levels with the amino acid infusion. The adaptive response characteristic of semistarvation with dextrose appears to be altered when isocaloric amounts of amino acids are subsequently administered for short periods.  相似文献   

13.
Influence of work rate on ventilatory and gas exchange kinetics   总被引:4,自引:0,他引:4  
A linear system has the property that the kinetics of response do not depend on the stimulus amplitude. We sought to determine whether the responses of O2 uptake (VO2), CO2 output (VCO2), and ventilation (VE) in the transition between loadless pedaling and higher work rates are linear in this respect. Four healthy subjects performed a total of 158 cycle ergometer tests in which 10 min of exercise followed unloaded pedaling. Each subject performed three to nine tests at each of seven work rates, spaced evenly below the maximum the subject could sustain. VO2, VCO2, and VE were measured breath by breath, and studies at the same work rate were time aligned and averaged. Computerized nonlinear regression techniques were used to fit a single exponential and two more complex expressions to each response time course. End-exercise blood lactate was determined at each work rate. Both VE and VO2 kinetics were markedly slower at work rates associated with sustained blood lactate elevations. A tendency was also detected for VO2 (but not VE) kinetics to be slower as work rate increased for exercise intensities not associated with lactic acidosis (P less than 0.01). VO2 kinetics at high work rates were well characterized by the addition of a slower exponential component to the faster component, which was seen at lower work rates. In contrast, VCO2 kinetics did not slow at the higher exercise intensities; this may be the result of the coincident influence of several sources of CO2 related to lactic acidosis. These findings provide guidance for interpretation of ventilatory and gas exchange kinetics.  相似文献   

14.
Five healthy young men underwent two separate steady-state incremental exercise runs within the aerobic range on a treadmill with alternating periods of breathing with no load (NL) and with a discontinuous inspiratory elastic load (IEL) of approximately 10 cmH2O/l. End-tidal PCO2 was maintained constant throughout each run at the eucapnic or a constant hypercapnic level by adding 0-5% CO2 to the inspired O2. Hypercapnia caused a steepening, as well as upward shift, relative to the corresponding eucapnic ventilation-CO2 output (VE-VCO2) relationship in NL and IEL. Compared with NL, the VE-VCO2 slope was depressed by IEL, more so in hypercapnic [-28.7 +/- 7.2 (SE) %] than in eucapnic exercise (-16.0 +/- 2.8%). The steady-state hypercapnic ventilatory response at rest was also markedly depressed (-32.1 +/- 11.2%). Occlusion pressure response was augmented in response to IEL during eucapnic exercise (88.7 +/- 13.3%) but not during CO2 inhalation at rest or during exercise. Breathing pattern characteristics were similar regardless of the type of stimulus input and the level of inspiratory load. Results are consistent with the notion that the control of VE and breathing pattern may both be influenced by a balance between the prevailing chemical drive and a propensity of the controller to reduce respiratory effort.  相似文献   

15.
To determine the relationship between hyperventilation and recovery of blood pH during recovery from a heavy exercise, short-term intense exercise (STIE) tests were performed after human subjects ingested 0.3 g.kg(-1) body mass of either NaHCO3 (Alk) or CaCO3 (Pla). Ventilation (VE)-CO2 output (VCO2) slopes during recovery following STIE were significantly lower in Alk than in Pla, indicating that hyperventilation is attenuated under the alkalotic condition. However, this reduction of the slope was the result of unchanged VE and a small increase in VCO2. A significant correlation between VE and blood pH was found during recovery in both conditions. While there was no difference between the VE-pH slopes in the two conditions, VE at the same pH was higher in Alk than in Pla. Furthermore, the values of pH during recovery in both conditions increased toward the preexercise levels of each condition. Thus, although VE-VCO2 slope was decreased under the alkalotic condition, this could not be explained by the ventilatory depression attributed to increase in blood pH. We speculate that hyperventilation after the end of STIE is determined by the VE-pH relationship that was set before STIE or the intensity of the exercise performed.  相似文献   

16.
gamma-Aminobutyric acid (GABA) content of the brain increases during hypoxia and hypercapnia and GABA by itself is a central ventilatory depressant and may depress metabolism as well. Therefore the effect of centrally administered GABA by ventriculocisternal perfusion on O2 consumption (VO2) and CO2 production (VCO2) was studied in pentobarbital-anesthetized dogs. GABA (30 mM) in mock cerebrospinal fluid (CSF) was perfused for 15 min at the rate of 1.0 ml/min followed by perfusion with mock CSF alone. Body temperature, perfusion pressure, and CSF pH were kept constant. Minute ventilation (VE) was kept constant mechanically. Under these conditions, VO2, VCO2, alveolar ventilation (VA), and relative pulmonary dead space volume (VD/VT) were measured. During perfusion with 30 mM GABA, mean VO2 (+/- SE) decreased from 96.5 +/- 3.3 to 81.9 +/- 5.1 ml/min, VCO2 from 72.1 +/- 3.8 to 60.7 +/- 3.0 ml/min, and VA from 1.7 +/- 0.1 to 1.3 +/- 0.1 l/min. VD/VT increased from 0.55 +/- 0.02 to 0.65 +/- 0.01. Perfusion with mock CSF alone restored these parameters to initial levels within 15 min. We conclude that centrally administered GABA depresses VO2 and VCO2. This reduction in metabolic function is independent of the central modulatory effects of GABA on respiration.  相似文献   

17.
To determine the acute action of cigarette smoking on cardiorespiratory function under stress, the immediate effects of cigarette smoking on the ventilatory, gas exchange, and cardiovascular responses to exercise were studied in nine healthy male subjects. Each subject performed an incremental exercise test to exhaustion on two separate days, one without smoking (control) and one after smoking 3 cigarettes/h for 5 h. The order of the two tests was randomized. Arterial blood gases and pH were measured during rest and all levels of exercise; CO blood levels confirmed the absorption of cigarette smoke. In addition, minute ventilation (VE), end-tidal PCO2 and PO2, O2 uptake (VO2), CO2 production, directly measured blood pressure, electrocardiogram, and heart rate (HR) were recorded every 30 s. The dead space-to-tidal volume ratio (VD/VT), maximal aerobic capacity (VO2max), and anaerobic threshold (AT) were determined from the gas exchange data. Cigarette smoking resulted in a significantly lower VO2max, AT, and VO2/HR (O2 pulse) and a significantly higher HR, pulse-pressure product, and pulse pressure (P less than 0.05) compared with the control. Additionally, a trend toward a higher VD/VT and arterial-end-tidal PCO2 difference was found during exercise after smoking. We conclude that cigarette smoking causes immediate detrimental effects on cardiovascular function during exercise, including tachycardia, increased pulse-pressure product, and impaired O2 delivery. The acute effects on respiratory function were less striking and primarily limited to abnormalities reflecting ventilation-perfusion mismatching.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Studies were performed to determine the effects of aging on the ventilatory responsiveness to two known respiratory stimulants, inhaled CO2 and exercise. Although explanation of the physiological mechanisms underlying development of exercise hyperpnea remains elusive, there is much circumstantial evidence that during exercise, however mediated, ventilation is coupled to CO2 production. Thus matched groups of young and elderly subjects were studied to determine the relationship between increasing ventilation and increasing CO2 production (VCO2) during steady-state exercise and the change in their minute ventilation in response to progressive hypercapnia during CO2 rebreathing. We found that the slope of the ventilatory response to hypercapnia was depressed in elderly subjects when compared with the younger control group (delta VE/delta PCO2 = 1.64 +/- 0.21 vs. 2.44 +/- 0.40 l X min-1 X mmHg-1, means +/- SE, respectively). In contrast, the slope of the relationship between ventilation and CO2 production during exercise in the elderly was greater than that of younger subjects (delta VE/delta VCO2 = 29.7 +/- 1.19 vs. 25.3 +/- 1.54, means +/- SE, respectively), as was minute ventilation at a single work load (50 W) (32.4 +/- 2.3 vs. 25.7 +/- 1.54 l/min, means +/- SE, respectively). This increased ventilation during exercise in the elderly was not produced by arterial O2 desaturation, and increased anaerobiasis did not play a role. Instead, the increased ventilation during exercise seems to compensate for increased inefficiency of gas exchange such that exercise remains essentially isocapnic. In conclusion, in the elderly the ventilatory response to hypercapnia is less than in young subjects, whereas the ventilatory response to exercise is greater.  相似文献   

19.
In 10 anesthetized, paralyzed, supine dogs, arterial blood gases and CO2 production (VCO2) were measured after 10-min runs of high-frequency ventilation (HFV) at three levels of mean airway pressure (Paw) (0, 5, and 10 cmH2O). HFV was delivered at frequencies (f) of 3, 6, and 9 Hz with a ventilator that generated known tidal volumes (VT) independent of respiratory system impedance. At each f, VT was adjusted at Paw of 0 cmH2O to obtain a eucapnia. As Paw was increased to 5 and 10 cmH2O, arterial PCO2 (PaCO2) increased and arterial PO2 (PaO2) decreased monotonically and significantly. The effect of Paw on PaCO2 and PaO2 was the same at 3, 6, and 9 Hz. Alveolar ventilation (VA), calculated from VCO2 and PaCO2, significantly decreased by 22.7 +/- 2.6 and 40.1 +/- 2.6% after Paw was increased to 5 and 10 cmH2O, respectively. By taking into account the changes in anatomic dead space (VD) with lung volume, VA at different levels of Paw fits the gas transport relationship for HFV derived previously: VA = 0.13 (VT/VD)1.2 VTf (J. Appl. Physiol. 60: 1025-1030, 1986). We conclude that increasing Paw and lung volume significantly decreases gas transport during HFV and that this effect is due to the concomitant increase of the volume of conducting airways.  相似文献   

20.
We examined the effects of dead space (VD) loading on breathing pattern during maximal incremental exercise in eight normal subjects. Addition of external VD was associated with a significant increase in tidal volume (VT) and decrease in respiratory frequency (f) at moderate and high levels of ventilation (VI); at a VI of 120 l/min, VT and f with added VD were 3.31 +/- 0.33 liters and 36.7 +/- 6.7 breaths/min, respectively, compared with 2.90 +/- 0.29 liters and 41.8 +/- 7.3 breaths/min without added VD. Because breathing pattern does not change with CO2 inhalation during heavy exercise (Gallagher et al. J. Appl. Physiol. 63: 238-244, 1987), the breathing pattern response to added VD is probably a consequence of alteration in the PCO2 time profile, possibly sensed by the carotid body and/or airway-pulmonary chemoreceptors. The increase in VT during heavy exercise with VD loading indicates that the tachypneic breathing pattern of heavy exercise is not due to mechanical limitation of maximum ventilatory capacity at high levels of VT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号