首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insect disease vectors show diminished fecundity when infected with Plasmodium. This phenomenon has already been demonstrated in laboratory models such as Aedes aegypti, Anopheles gambiae and Anopheles stephensi. This study demonstrates several changes in physiological processes of A. aegypti occurring upon infection with Plasmodium gallinaceum, such as reduced ecdysteroid levels in hemolymph as well as altered expression patterns for genes involved in vitellogenesis, lipid transport and immune response. Furthermore, we could show that P. gallinaceum infected A. aegypti presented a reduction in reproductive fitness, accompanied by an activated innate immune response and increase in lipophorin expression, with the latter possibly representing a nutritional resource for Plasmodium sporozoites.  相似文献   

2.

Background

Mitochondria perform multiple roles in cell biology, acting as the site of aerobic energy-transducing pathways and as an important source of reactive oxygen species (ROS) that modulate redox metabolism.

Methodology/Principal Findings

We demonstrate that a novel member of the mitochondrial transporter protein family, Anopheles gambiae mitochondrial carrier 1 (AgMC1), is required to maintain mitochondrial membrane potential in mosquito midgut cells and modulates epithelial responses to Plasmodium infection. AgMC1 silencing reduces mitochondrial membrane potential, resulting in increased proton-leak and uncoupling of oxidative phosphorylation. These metabolic changes reduce midgut ROS generation and increase A. gambiae susceptibility to Plasmodium infection.

Conclusion

We provide direct experimental evidence indicating that ROS derived from mitochondria can modulate mosquito epithelial responses to Plasmodium infection.  相似文献   

3.

Background

OXR1 is an ancient gene, present in all eukaryotes examined so far that confers protection from oxidative stress by an unknown mechanism. The most highly conserved region of the gene is the carboxyl-terminal TLDc domain, which has been shown to be sufficient to prevent oxidative damage.

Methodology/Principal Findings

OXR1 has a complex genomic structure in the mosquito A. gambiae, and we confirm that multiple splice forms are expressed in adult females. Our studies revealed that OXR1 regulates the basal levels of catalase (CAT) and glutathione peroxidase (Gpx) expression, two enzymes involved in detoxification of hydrogen peroxide, giving new insight into the mechanism of action of OXR1. Gene silencing experiments indicate that the Jun Kinase (JNK) gene acts upstream of OXR1 and also regulates expression of CAT and GPx. Both OXR1 and JNK genes are required for adult female mosquitoes to survive chronic oxidative stress. OXR1 silencing decreases P. berghei oocyst formation. Unexpectedly, JNK silencing has the opposite effect and enhances Plasmodium infection in the mosquito, suggesting that JNK may also mediate some, yet to be defined, antiparasitic response.

Conclusion

The JNK pathway regulates OXR1 expression and OXR1, in turn, regulates expression of enzymes that detoxify reactive oxygen species (ROS) in Anopheles gambiae. OXR1 silencing decreases Plasmodium infection in the mosquito, while JNK silencing has the opposite effect and enhances infection.  相似文献   

4.

Background

The siRNA and piRNA pathways have been shown in insects to be essential for regulation of gene expression and defence against exogenous and endogenous genetic elements (viruses and transposable elements). The vast majority of endogenous small RNAs produced by the siRNA and piRNA pathways originate from repetitive or transposable elements (TE). In D. melanogaster, TE-derived endogenous siRNAs and piRNAs are involved in genome surveillance and maintenance of genome integrity. In the medically relevant malaria mosquito Anopheles gambiae TEs constitute 12-16% of the genome size. Genetic variations induced by TE activities are known to shape the genome landscape and to alter the fitness in An. gambiae.

Results

Here, using bioinformatics approaches we analyzed the small RNA data sets from 6 libraries formally reported in a previous study and examined the expression of the mixed germline/somatic siRNAs and piRNAs produced in adult An. gambiae females. We characterized a large population of TE-derived endogenous siRNAs and piRNAs, which constitutes 56-60% of the total siRNA and piRNA reads in the analysed libraries. Moreover, we identified a number of protein coding genes producing gene-specific siRNAs and piRNAs that were generally expressed at much lower levels than the TE-associated small RNAs. Detailed sequence analysis revealed that An. gambiae piRNAs were produced by both “ping-pong” dependent (TE-associated piRNAs) and independent mechanisms (genic piRNAs). Similarly to D. melanogaster, more than 90% of the detected piRNAs were produced from TE-associated clusters in An. gambiae. We also found that biotic stress as blood feeding and infection with Plasmodium parasite, the etiological agent of malaria, modulated the expression levels of the endogenous siRNAs and piRNAs in An. gambiae.

Conclusions

We identified a large and diverse set of the endogenously derived siRNAs and piRNAs that share common and distinct aspects of small RNA expression across insect species, and inferred their impact on TE and gene activity in An. gambiae. The TE-specific small RNAs produced by both the siRNA and piRNA pathways represent an important aspect of genome stability and genetic variation, which might have a strong impact on the evolution of the genome and vector competence in the malaria mosquitoes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1436-1) contains supplementary material, which is available to authorized users.  相似文献   

5.
6.
Gupta L  Noh JY  Jo YH  Oh SH  Kumar S  Noh MY  Lee YS  Cha SJ  Seo SJ  Kim I  Han YS  Barillas-Mury C 《PloS one》2010,5(11):e15410

Background

Apolipophorin-III (ApoLp-III) is known to play an important role in lipid transport and innate immunity in lepidopteran insects. However, there is no evidence of involvement of ApoLp-IIIs in the immune responses of dipteran insects such as Drosophila and mosquitoes.

Methodology/Principal Findings

We report the molecular and functional characterization of An. gambiae apolipophorin-III (AgApoLp-III). Mosquito ApoLp-IIIs have diverged extensively from those of lepidopteran insects; however, the predicted tertiary structure of AgApoLp-III is similar to that of Manduca sexta (tobacco hornworm). We found that AgApoLp-III mRNA expression is strongly induced in the midgut of An. gambiae (G3 strain) mosquitoes in response to Plasmodium berghei infection. Furthermore, immunofluorescence stainings revealed that high levels of AgApoLp-III protein accumulate in the cytoplasm of Plasmodium-invaded cells and AgApoLp-III silencing increases the intensity of P. berghei infection by five fold.

Conclusion

There are broad differences in the midgut epithelial responses to Plasmodium invasion between An. gambiae strains. In the G3 strain of An. gambiae AgApoLp-III participates in midgut epithelial defense responses that limit Plasmodium infection.  相似文献   

7.
8.

Background

Large scale sequencing of cDNA libraries can provide profiles of genes expressed in an organism under defined biological and environmental circumstances. We have analyzed sequences of 4541 Expressed Sequence Tags (ESTs) from 3 different cDNA libraries created from abdomens from Plasmodium infection-susceptible adult female Anopheles gambiae. These libraries were made from sugar fed (S), rat blood fed (RB), and P. berghei-infected (IRB) mosquitoes at 30 hours after the blood meal, when most parasites would be transforming ookinetes or very early oocysts.

Results

The S, RB and IRB libraries contained 1727, 1145 and 1669 high quality ESTs, respectively, averaging 455 nucleotides (nt) in length. They assembled into 1975 consensus sequences - 567 contigs and 1408 singletons. Functional annotation was performed to annotate probable molecular functions of the gene products and the biological processes in which they function. Genes represented at high frequency in one or more of the libraries were subjected to digital Northern analysis and results on expression of 5 verified by qRT-PCR.

Conclusion

13% of the 1965 ESTs showing identity to the A. gambiae genome sequence represent novel genes. These, together with untranslated regions (UTR) present on many of the ESTs, will inform further genome annotation. We have identified 23 genes encoding products likely to be involved in regulating the cellular oxidative environment and 25 insect immunity genes. We also identified 25 genes as being up or down regulated following blood feeding and/or feeding with P. berghei infected blood relative to their expression levels in sugar fed females.  相似文献   

9.
Thioester-containing protein 1 (TEP1) is a central component in the innate immune response of Anopheles gambiae to Plasmodium infection. Two classes of TEP1 alleles, TEP1*S and TEP1*R, are found in both laboratory strains and wild isolates, related by a greater or lesser susceptibility, respectively to both P. berghei and P. falciparum infection. We report the crystal structure of the full-length TEP1*S1 allele which, while similar to the previously determined structure of full-length TEP1*R1, displays flexibility in the N-terminal fragment comprising domains MG1-MG6. Amino acid differences between TEP1*R1 and TEP1*S1 are localized to the TED-MG8 domain interface that protects the thioester bond from hydrolysis and structural changes are apparent at this interface. As a consequence cleaved TEP1*S1 (TEP1*S1cut) is significantly more susceptible to hydrolysis of its intramolecular thioester bond than TEP1*R1cut. TEP1*S1cut is stabilized in solution by the heterodimeric LRIM1/APL1C complex, which preserves the thioester bond within TEP1*S1cut. These results suggest a mechanism by which selective pressure on the TEP1 gene results in functional variation that may influence the vector competence of A. gambiae towards Plasmodium infection.  相似文献   

10.
11.
12.
13.
Genetic variation in the mosquito Anopheles gambiae profoundly influences its ability to transmit malaria. Mosquito gut bacteria are shown to influence the outcome of infections with Plasmodium parasites and are also thought to exert a strong drive on genetic variation through natural selection; however, a link between antibacterial effects and genetic variation is yet to emerge. Here, we combined SNP genotyping and expression profiling with phenotypic analyses of candidate genes by RNAi-mediated silencing and 454 pyrosequencing to investigate this intricate biological system. We identified 138 An. gambiae genes to be genetically associated with the outcome of Serratia marcescens infection, including the peptidoglycan recognition receptor PGRPLC that triggers activation of the antibacterial IMD/REL2 pathway and the epidermal growth factor receptor EGFR. Silencing of three genes encoding type III fibronectin domain proteins (FN3Ds) increased the Serratia load and altered the gut microbiota composition in favor of Enterobacteriaceae. These data suggest that natural genetic variation in immune-related genes can shape the bacterial population structure of the mosquito gut with high specificity. Importantly, FN3D2 encodes a homolog of the hypervariable pattern recognition receptor Dscam, suggesting that pathogen-specific recognition may involve a broader family of immune factors. Additionally, we showed that silencing the gene encoding the gustatory receptor Gr9 that is also associated with the Serratia infection phenotype drastically increased Serratia levels. The Gr9 antibacterial activity appears to be related to mosquito feeding behavior and to mostly rely on changes of neuropeptide F expression, together suggesting a behavioral immune response following Serratia infection. Our findings reveal that the mosquito response to oral Serratia infection comprises both an epithelial and a behavioral immune component.  相似文献   

14.
The host specificity of blood parasites recovered from a survey of 527 birds in Cameroon and Gabon was examined at several levels within an evolutionary framework. Unique mitochondrial lineages of Haemoproteus were recovered from an average of 1.3 host species (maximum = 3) and 1.2 host families (maximum = 3) while lineages of Plasmodium were recovered from an average of 2.5 species (maximum = 27) and 1.6 families (maximum = 9). Averaged within genera, lineages of both Plasmodium and Haemoproteus were constrained in their host distribution relative to random expectations. However, while several individual lineages within both genera exhibited significant host constraint, host breadth varied widely among related lineages, particularly within the genus Plasmodium. Several lineages of Plasmodium exhibited extreme generalist host-parasitism strategies while other lineages appeared to have been constrained to certain host families over recent evolutionary history. Sequence data from two nuclear genes recovered from a limited sample of Plasmodium parasites indicated that, at the resolution of this study, inferences regarding host breadth were unlikely to be grossly affected by the use of parasite mitochondrial lineages as a proxy for biological species. The use of divergent host-parasitism strategies among closely related parasite lineages suggests that host range is a relatively labile character. Since host specificity may also influence parasite virulence, these results argue for considering the impact of haematozoa on avian hosts on a lineage-specific basis.  相似文献   

15.
The Toll and IMD pathways are known to be induced upon Plasmodium berghei and Plasmodium falciparum infection, respectively. It is unclear how Plasmodium or other pathogens in the blood meal and their invasion of the midgut epithelium would trigger the innate immune responses in immune cells, in particular hemocytes. Gap junctions, which can mediate both cell-to-cell and cell-to-extracellular communication, may participate in this signal transduction. This study examined whether innexins, gap junction proteins in insects, are involved in anti-Plasmodium responses in Anopheles gambiae. Inhibitor studies using carbenoxolone indicated that blocking innexons resulted in an increase in Plasmodium oocyst number and infection prevalence. This was accompanied by a decline in TEP1 levels in carbenoxolone-treated mosquitoes. Innexin AGAP001476 mRNA levels in midguts were induced during Plasmodium infection and a knockdown of AGAP001476, but not AGAP006241, caused an induction in oocyst number. Silencing AGAP001476 caused a concurrent increase in vitellogenin levels, a TEP1 inhibitor, in addition to a reduced level of TEP1-LRIM1-APL1C complex in hemolymph. Both vitellogenin and TEP1 are regulated by Cactus under the Toll pathway. Simultaneous knockdown of cactus and AGAP001476 failed to reverse the near refractoriness induced by the knockdown of cactus, suggesting that the AGAP001476-mediated anti-Plasmodium response is Cactus-dependent. These data demonstrate a critical role for innexin AGAP001476 in mediating innate immune responses against Plasmodium through Toll pathway in mosquitoes.  相似文献   

16.
The number of Anopheles gambiae and Anopheles arabiensis females that used each of the 33 sampled breeding sites in west Kenya was estimated by microsatellite markers and related statistics to test the hypothesis that conspecific females share aquatic sites. Totally, 166 An. gambiae and 168 An. arabiensis larvae were identified and were genotyped. The mean number of larvae per breeding site was 8.3 for An. gambiae and 8.4 for An. arabiensis. The likelihood method estimated that, for An. gambiae, the mean number of females that would have laid eggs per breeding site was 5.2 and ranged from 2 to 9, and for An. arabiensis, the mean was 5.0 with a range of 2–10. The clustering method estimated that the mean number of females laying eggs per breeding site was 6.8 for An. gambiae. The results provide molecular evidence that females of one or both species share breeding sites.  相似文献   

17.
Kajla MK  Shi L  Li B  Luckhart S  Li J  Paskewitz SM 《PloS one》2011,6(5):e19649

Background

Plasmodium requires an obligatory life stage in its mosquito host. The parasites encounter a number of insults while journeying through this host and have developed mechanisms to avoid host defenses. Lysozymes are a family of important antimicrobial immune effectors produced by mosquitoes in response to microbial challenge.

Methodology/Principal Findings

A mosquito lysozyme was identified as a protective agonist for Plasmodium. Immunohistochemical analyses demonstrated that Anopheles gambiae lysozyme c-1 binds to oocysts of Plasmodium berghei and Plasmodium falciparum at 2 and 5 days after infection. Similar results were observed with Anopheles stephensi and P. falciparum, suggesting wide occurrence of this phenomenon across parasite and vector species. Lysozyme c-1 did not bind to cultured ookinetes nor did recombinant lysozyme c-1 affect ookinete viability. dsRNA-mediated silencing of LYSC-1 in Anopheles gambiae significantly reduced the intensity and the prevalence of Plasmodium berghei infection. We conclude that this host antibacterial protein directly interacts with and facilitates development of Plasmodium oocysts within the mosquito.

Conclusions/Significance

This work identifies mosquito lysozyme c-1 as a positive mediator of Plasmodium development as its reduction reduces parasite load in the mosquito host. These findings improve our understanding of parasite development and provide a novel target to interrupt parasite transmission to human hosts.  相似文献   

18.
Skeletal muscle is a key organ of mammalian energy metabolism, and its mitochondria are multifunction organelles that are targets of dietary bioactive compounds. The goal of this work was to examine the regulation of mitochondrial dynamics, functionality and cell energy parameters using docosahexaenoic acid (DHA), epigallocatechin gallate (EGCG) and a combination of both in L6 myocytes. Compounds (at 25 μM) were incubated for 4 h. Cells cultured with DHA displayed less oxygen consumption with higher ADP/ATP ratio levels concomitant with downregulation of Cox and Ant1 gene expression. The disruption of energetic homeostasis by DHA, increases intracellular reactive oxygen species (ROS) levels and decreases mitochondrial membrane potential. The defence mechanism to counteract the excess of ROS production was by the upregulation of Ucp2, Ucp3 and MnSod gene expression. Moreover myocytes cultured with DHA had a higher mitochondrial mass with a higher proportion of large and elongated mitochondria, whereas the fission genes Drp1 and Fiss1 and the fusion gene Mfn2 were downregulated. In myocytes co-incubated with DHA and EGCG, ROS levels and the adenosine diphosphate (ADP)/adenosine triphosphate (ATP) ratio were similar to untreated myocytes and the decrease of oxygen consumption, higher mitochondrial mass and the overexpression of Ucp2 and Ucp3 genes were similar to the DHA-treated cells with also a higher amount of mitochondrial deoxyribonucleic acid (DNA), and reduced Drp1 and Fiss1 gene expression levels. In conclusion the addition of EGCG to DHA returned the cells to the control conditions in terms of mitochondrial morphology, energy and redox status, which were unbalanced in the DHA-treated myocytes.  相似文献   

19.
The ability of creatine to stimulate the respiration of rat heart mitochondria in vitro is reversibly affected by the concentration of inorganic phosphate. The rate of oxygen consumption due to post-ADP state-4 respiration in the presence of 20 mm creatine is reduced significantly when the potassium phosphate concentration is raised from 5 to 20 mm. State-3 respiration is reduced only by potassium phosphate concentrations higher than 20 mm. The rate of synthesis of creatine phosphate is also affected by phosphate concentration, and the apparent Km of the coupled reactions for ADP is significantly higher at 25 mm phosphate as compared to that at 5 mm phosphate. These observations are consistent with the hypothesis that inorganic phosphate acts as an effector molecule, regulating creatine phosphate synthesis by favoring the dissociation of mitochondrial creatine kinase from the mitochondrial membrane. Such regulation may be important in the case of cells undergoing partial or severe ischemia, where changes in phosphate concentration within this range have been reported.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号