共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
Membrane Polypeptides associated with Photochemical Systems 总被引:9,自引:0,他引:9
WE wish to report a specific relationship between certain chloroplast membrane polypeptides and functional properties of the chloroplast usually associated with one or the other of the two photochemical systems (designated PSI and PSII). We have known this by the analysis of the chloroplast membrane polypeptides of the wild type strain of the unicellular green alga Chlamydomonas reinhardi and of mutant strains derived from it which have lost the capacity to carry out normal photosynthesis. These mutants have been characterized by the loss of particular membrane-bound components of the photosynthetic electron transport chain1,2. This relationship is supported by analysis of the membrane polypeptides obtained from chloroplast fractions of wild type C. reinhardi and spinach enriched for reactions characteristic of either PSI or PSII by fractionation of the membranes either with digitonin3,4 or ‘Triton X-100’5. 相似文献
4.
Posttranslational protein targeting requires chaperone assistance to direct insertion-competent proteins to integration pathways. Chloroplasts integrate nearly all thylakoid transmembrane proteins posttranslationally, but mechanisms in the stroma that assist their insertion remain largely undefined. Here, we investigated how the chloroplast chaperonin (Cpn60) facilitated the thylakoid integration of Plastidic type I signal peptidase 1 (Plsp1) using in vitro targeting assays. Cpn60 bound Plsp1 in the stroma. In isolated chloroplasts, the membrane integration of imported Plsp1 correlated with its dissociation from Cpn60. When the Plsp1 residues that interacted with Cpn60 were removed, Plsp1 did not integrate into the membrane. These results suggested Cpn60 was an intermediate in thylakoid targeting of Plsp1. In isolated thylakoids, the integration of Plsp1 decreased when Cpn60 was present in excess of cpSecA1, the stromal motor of the cpSec1 translocon that inserts unfolded Plsp1 into the thylakoid. An excess of cpSecA1 favored integration. Introducing Cpn60’s obligate substrate RbcL displaced Cpn60-bound Plsp1; then, the released Plsp1 exhibited increased accessibility to cpSec1. These in vitro targeting experiments support a model in which Cpn60 captures and then releases insertion-competent Plsp1, whereas cpSecA1 recognizes free Plsp1 for integration. Thylakoid transmembrane proteins in the stroma can interact with Cpn60 to shield themselves from the aqueous environment. 相似文献
5.
光合作用是地球上最重要的生命活动过程之一。近年来,围绕着光合机构运转的调节和控制问题,对叶绿体类囊体膜蛋白质的可逆磷酸化进行了广泛研究,发现类囊体膜蛋白质的磷酸化和去磷酸化是调控光合机构运转的步骤之一。现在已知,多种叶绿体类囊体收稿日期:1999-06-25作者简介:邹永龙(1974~),男,博士生;王国强(1939~),男,研究员。膜蛋白质都能进行可逆的磷酸化,这一反应参与了调节光合电子传递、光状态Ⅰ和状态Ⅱ的转换和编码光合机构的基因表达等。目前,研究人员将研究重点集中在捕光色素复合物Ⅱ(LH… 相似文献
6.
The binding of ferredoxin-NADP reductase to spinach chloroplast membranes was studied by washing the membranes with different media. Release of the enzyme from the thylakoids was greater in 0.75 millimolar EDTA but was not complete inasmuch as 20% the activity remained membrane-bound after three washes. 相似文献
7.
8.
《Biophysical journal》2020,118(11):2680-2693
Proteins in photosynthetic membranes can organize into patterned arrays that span the membrane’s lateral size. Attractions between proteins in different layers of a membrane stack can play a key role in this ordering, as was suggested by microscopy and fluorescence spectroscopy and demonstrated by computer simulations of a coarse-grained model. The architecture of thylakoid membranes, however, also provides opportunities for interlayer interactions that instead disfavor the high protein densities of ordered arrangements. Here, we explore the interplay between these opposing driving forces and, in particular, the phase transitions that emerge in the periodic geometry of stacked thylakoid membrane disks. We propose a lattice model that roughly accounts for proteins’ attraction within a layer and across the stromal gap, steric repulsion across the lumenal gap, and regulation of protein density by exchange with the stroma lamellae. Mean-field analysis and computer simulation reveal rich phase behavior for this simple model, featuring a broken-symmetry striped phase that is disrupted at both high and low extremes of chemical potential. The resulting sensitivity of microscopic protein arrangement to the thylakoid’s mesoscale vertical structure raises intriguing possibilities for regulation of photosynthetic function. 相似文献
9.
10.
11.
类囊体膜主要由膜脂、膜蛋白及一些光合色素等成分组成,它是植物进行光合作用的场所。低温能通过影响类囊体膜的结构而影响植物的光合作用。简述了类囊体膜的组成和功能,以及低温胁迫下类囊体膜脂及其脂肪酸组成的变化。简要介绍了膜脂与光抑制的关系,以及利用分子生物学手段研究三烯脂肪酸与植物抗冷性关系的相关进展。 相似文献
12.
Phytochrome Effects on the Relationship between Chlorophyll and Steady-State Levels of Thylakoid Polypeptides in Light-Grown Tobacco 总被引:1,自引:0,他引:1 下载免费PDF全文
The effects of phytochrome status on chlorophyll content and on steady-state levels of thylakoid proteins were investigated in green leaves of Nicotiana tabacum L. plants grown under white light. Far-red light given either as a pulse at the end of each photoperiod, or as a supplement to white light during the photoperiod, reduced chlorophyll content per unit area and per unit dry weight. These differences were also observed after resolving chlorophyll-containing polypeptides by gel electrophoresis. Chlorophyll a:b ratio was unchanged. Both Coomassie blue-stained gels and immunochemical analyses showed that, in contrast to the observations in etiolated barley (K Apel, K Kloppstech [1980] Planta 150: 426-430) and pea (J Bennett [1981] Eur J Biochem 118: 61-70) seedlings, and in etiolated tobacco leaves (this report), in fully deetiolated tobacco plants changes in chlorophyll content were not correlated with obvious changes in the steady-state levels of thylakoid proteins (e.g. light-harvesting, chlorophyll a/b-binding proteins). 相似文献
13.
Patrick D. Scheu Yun-Feng Liao Julia Bauer Holger Kneuper Thomas Basché Gottfried Unden Wolfgang Erker 《Journal of bacteriology》2010,192(13):3474-3483
DcuS is the membrane-integral sensor histidine kinase of the DcuSR two-component system in Escherichia coli that responds to extracellular C4-dicarboxylates. The oligomeric state of full-length DcuS was investigated in vitro and in living cells by chemical cross-linking and by fluorescence resonance energy transfer (FRET) spectroscopy. The FRET results were quantified by an improved method using background-free spectra of living cells for determining FRET efficiency (E) and donor fraction {fD = (donor)/[(donor) + (acceptor)]}. Functional fusions of cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) variants of green fluorescent protein to DcuS were used for in vivo FRET measurements. Based on noninteracting membrane proteins and perfectly interacting proteins (a CFP-YFP fusion), the results of FRET of cells coexpressing DcuS-CFP and DcuS-YFP were quantitatively evaluated. In living cells and after reconstitution of purified recombinant DcuS in proteoliposomes, DcuS was found as a dimer or higher oligomer, independent of the presence of an effector. Chemical cross-linking with disuccinimidyl suberate showed tetrameric, in addition to dimeric, DcuS in proteoliposomes and in membranes of bacteria, whereas purified DcuS in nondenaturing detergent was mainly monomeric. The presence and amount of tetrameric DcuS in vivo and in proteoliposomes was not dependent on the concentration of DcuS. Only membrane-embedded DcuS (present in the oligomeric state) is active in (auto)phosphorylation. Overall, the FRET and cross-linking data demonstrate the presence in living cells, in bacterial membranes, and in proteoliposomes of full-length DcuS protein in an oligomeric state, including a tetramer.The DcuSR (dicarboxylate uptake sensor and regulator) system of Escherichia coli is a typical two-component system consisting of a membranous sensor kinase (DcuS) and a cytoplasmic response regulator (DcuR) (11, 26, 48). DcuS responds to C4-dicarboxylates like fumarate, malate, or succinate (19). In the presence of the C4-dicarboxlates, the expression of the genes of anaerobic fumarate respiration (dcuB, fumB, and frdABCD) and of aerobic C4-dicarboxylate uptake (dctA) is activated. DcuS is a histidine protein kinase composed of two transmembrane helices with an intermittent sensory PAS domain in the periplasm (PASP) that was also termed the PDC domain (for PhoQ/DcuS/DctB/CitA domain or fold) (7, 20, 32, 48). The second transmembrane helix is followed by a cytoplasmic PAS domain (PASC) and the C-terminal transmitter domain. PASC functions in signal transfer from transmembrane helix 2 (TM2) to the kinase domain (9). The C-terminal part of the transmitter domain consists of a catalytic or HATPase (histidine kinase/ATPase) subdomain for autophosphorylation of DcuS (16). The N-terminal part of the transmitter contains two conserved α-helical regions, including a conserved His residue which is the site for autophosphorylation. The α-helices serve in dimerization and form a four-helix bundle in the kinase dimer (dimerization and histidine phosphotransfer [DHp] domain) (25, 35, 42, 44).The dimeric sensor kinases have been supposed to phosphorylate mutually, by the catalytic domain of one monomer, the His residue of the partner monomer (10). The oligomeric state of the membrane-bound sensor kinases EnvZ and VirA was also deduced from in vivo complementation studies (31, 46). In addition, signal transduction across the membrane and along cytoplasmic PAS domains appears to be a mechanical process requiring oligomeric proteins (9, 40). Therefore, His kinases are supposed to be dimeric in the functional state, but a higher oligomeric state has not been tested and is conceivable. Only a limited number of membrane-bound sensor kinases have been studied for their oligomerization in their membrane-bound state. Thus, the oligomeric state of the KdpD and TorS sensor kinases of E. coli have been shown to prevail in the detergent-solubilized state as oligomers, presumably dimers (14, 29). There was indirect information that functional DcuS is a dimer as well. Purified DcuS shows kinase activity only after reconstitution into liposomes, and phosphorylation is stimulated by C4-dicarboxylates (16, 19). Detergent-solubilized DcuS, on the other hand, shows no kinase activity, and it was assumed that reconstituted DcuS prevails as a dimer, whereas the inactivation of the detergent-solubilized form is due to monomerization. Recently, it was suggested that autophosphorylation in a sensor kinase of Thermotoga maritima proceeds by a cis mechanism on DHp and catalytic kinase domains within the same monomer (6). The sensor kinase is supposed to prevail as a dimer for reasons of signal transfer to the sensor domain, but the presence of cis phosphorylation principally brings into question the need for dimers for sensor kinase function.Overall, it appears that sensor kinases are oligomers for functional reasons. There is, however, no clear evidence for an oligomeric state of full-length sensor kinases in their membrane-embedded state. Moreover, the studies do not address the question of whether the sensor kinases are dimers or higher oligomers. Therefore, several aspects of the oligomeric state of sensor kinases in vivo in bacterial membranes, that is, before solubilization by detergent, are not clear. In this study, the oligomerization of full-length DcuS was examined in vivo in growing bacteria and in bacterial membranes and in vitro after isolation and reconstitution in liposomes by chemical cross-linking and fluorescence resonance energy transfer (FRET) spectroscopy. FRET techniques have been used widely to study intermolecular interactions of biological molecules (1, 4, 18, 21, 23, 34). The sensitivity of fluorescence allows experiments at low concentrations of native proteins, and genetically generated fusions of DcuS with fluorescent proteins ensure site-specific labeling of DcuS for noninvasive and nondestructive measurements in living cells. In particular, it was investigated whether dimers or higher oligomeric states can be detected for DcuS and whether the oligomerization state depends on function-related parameters. 相似文献
14.
Topography of the Protein Complexes of the Chloroplast Thylakoid Membrane : Studies of Photosystem II using Pronase Digestion and Chemical Labeling 下载免费PDF全文
The accessibility of various Photosystem II (PSII)-associated polypeptides to the protease pronase and the chemical modifier trinitrobenzene-sulfonic acid (TNBS) has been investigated. Three polypeptides with apparent molecular weight of 32, 21, and 16 kilodaltons, known to be associated with O2 evolution, are all resistant to pronase digestion and TNBS labeling in intact thylakoids. All the polypeptides in the isolated PSII preparation were labeled with TNBS while a different pattern of labeling was observed when the PSII complex was isolated from TNBS-modified thylakoids. Attempts to prepare PSII particles from pronase-treated thylakoids using the Triton X-100 solubilization method were unsuccessful. Pronase-treated thylakoids were probed with antisera against the chlorophyll proteins of PSII using immunoblotting techniques. This allowed for a positive identification of proteolytic fragments from the respective proteins. The results are discussed in relation to the transmembrane organization of PSII in spinach thylakoids. 相似文献
15.
Several neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases as well as nonneuropathic diseases such as type II diabetes and atrial amyloidosis are associated with aggregation of amyloid polypeptides into fibrillar structures, or plaques. In this study, we use molecular dynamics simulations to test the stability and orientation of membrane-embedded aggregates of the human islet amyloid polypeptide (hIAPP) implicated in type II diabetes. We find that in both monolayers and bilayers of dipalmitoylphosphatidylglycerol (DPPG) hIAPP trimers and tetramers remain inside the membranes and preserve their β-sheet secondary structure. Lipid bilayer-inserted hIAPP trimers and tetramers orient inside DPPG at 60° relative to the membrane/water interface and lead to water permeation and Na+ intrusion, consistent with ion-toxicity in islet β-cells. In particular, hIAPP trimers form a water-filled β-sandwich that induce water permeability comparable with channel-forming proteins, such as aquaporins and gramicidin-A. The predicted disruptive orientation is consistent with the amphiphilic properties of the hIAPP aggregates and could be probed by chiral sum frequency generation (SFG) spectroscopy, as predicted by the simulated SFG spectra. 相似文献
16.
Chetan Poojari Dequan Xiao Victor?S. Batista Birgit Strodel 《Biophysical journal》2013,105(10):2323-2332
Several neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases as well as nonneuropathic diseases such as type II diabetes and atrial amyloidosis are associated with aggregation of amyloid polypeptides into fibrillar structures, or plaques. In this study, we use molecular dynamics simulations to test the stability and orientation of membrane-embedded aggregates of the human islet amyloid polypeptide (hIAPP) implicated in type II diabetes. We find that in both monolayers and bilayers of dipalmitoylphosphatidylglycerol (DPPG) hIAPP trimers and tetramers remain inside the membranes and preserve their β-sheet secondary structure. Lipid bilayer-inserted hIAPP trimers and tetramers orient inside DPPG at 60° relative to the membrane/water interface and lead to water permeation and Na+ intrusion, consistent with ion-toxicity in islet β-cells. In particular, hIAPP trimers form a water-filled β-sandwich that induce water permeability comparable with channel-forming proteins, such as aquaporins and gramicidin-A. The predicted disruptive orientation is consistent with the amphiphilic properties of the hIAPP aggregates and could be probed by chiral sum frequency generation (SFG) spectroscopy, as predicted by the simulated SFG spectra. 相似文献
17.
Sebastian Falk Stephanie Ravaud Joachim Koch Irmgard Sinning 《The Journal of biological chemistry》2010,285(8):5954-5962
The YidC/Oxa1/Alb3 family of membrane proteins controls the insertion and assembly of membrane proteins in bacteria, mitochondria, and chloroplasts. Here we describe the molecular mechanisms underlying the interaction of Alb3 with the chloroplast signal recognition particle (cpSRP). The Alb3 C-terminal domain (A3CT) is intrinsically disordered and recruits cpSRP to the thylakoid membrane by a coupled binding and folding mechanism. Two conserved, positively charged motifs reminiscent of chromodomain interaction motifs in histone tails are identified in A3CT that are essential for the Alb3-cpSRP43 interaction. They are absent in the C-terminal domain of Alb4, which therefore does not interact with cpSRP43. Chromodomain 2 in cpSRP43 appears as a central binding platform that can interact simultaneously with A3CT and cpSRP54. The observed negative cooperativity of the two binding events provides the first insights into cargo release at the thylakoid membrane. Taken together, our data show how Alb3 participates in cpSRP-dependent membrane targeting, and our data provide a molecular explanation why Alb4 cannot compensate for the loss of Alb3. Oxa1 and YidC utilize their positively charged, C-terminal domains for ribosome interaction in co-translational targeting. Alb3 is adapted for the chloroplast-specific Alb3-cpSRP43 interaction in post-translational targeting by extending the spectrum of chromodomain interactions. 相似文献
18.
19.
The effects of crosslinking agent-DFDNB (difluoro dinitro benzene) on functions of chloroplast thylakoid membrane proteins were investigated. DFDNB inhibited activities of PSP and membrane-bound ATPase in chloroplasts. It decreased proton uptake of light-inducted chloroplast thylakoids and the relative value of fluorescence quenching of 9-aminoacridine, and inhibited the rate of fast electrogenic phase of absorption change at 515 nm in chloroplasts. In addition, the isolated CF1-ATPase was crosslinked with DFDNB. The pattern of polymers of crosslinked CF1-ATPase was observed on SDS-PAGE. 相似文献
20.
Comparison of the SDS-PAGE profiles of the spinach chloroplaststroma, thylakoid and envelope membranes shows that severalpolypeptides have the same electrophoretic mobility. To simplifythese somewhat complex electrophoretic profiles and to verifywhether the polypeptides having similar electrophoretic mobilityare identical, we used Triton X-114 phase partition to obtaina separation of the polypeptides according to their relativehydrophobicity. The stroma polypeptides partitioned essentiallyin the aqueous phase. About half of the thylakoid and envelopemembrane polypeptides were exclusively recovered in either oneof the two phases. Therefore, the phase partitioning of membranepolypeptides proved to be useful, as the organic phase containedtrue intrinsic polypeptides, while the aqueous phase was composedof peripheral ones and stroma components. Particularly interestingwas the release of the RubisCO large subunit known to copurifywith the envelope membranes. Additional experimental approacheswere used (immunology, proteosynthesis in organello) to furthercharacterize proteins which had apparent ambiguous phase partitioning.Here, we show that Triton X-l 14 is an excellent tool to unmaskpolypeptides having identical electrophoretic mobility but differentbehaviour towards this detergent; its use leads to a clarificationof the polypeptide SDS-PAGE profiles of chloroplast membranes. (Received April 2, 1990; Accepted August 28, 1990) 相似文献