首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The localization of the 36-kD polypeptide of Chlamydomonas reinhardtii induced by photoautotrophic growth on low CO2 concentrations (0.03% in air [v/v], low CO2-grown cells) has been investigated. This polypeptide was specifically localized to the chloroplast envelope membranes isolated from low CO2-grown cells and was not present in the chloroplast envelopes isolated from high (5% CO2 in air [v/v]) CO2-grown cells. The 36-kD protein does not show carbonic anhydrase activity and was not present on the plasma membranes isolated from low CO2-grown cells. This protein may, in part, account for the different inorganic carbon uptake characteristics observed in chloroplasts isolated from high and low CO2-grown cells of C. reinhardtii.  相似文献   

2.
To characterize envelope proteins encoded by the chloroplast genome, envelopes were isolated from Chlamydomonas reinhardtii cells labeled with [35S] sulfate while blocking synthesis by cytoplasmic ribosomes. One and two-dimensional gel electrophoresis of envelopes and fluorography revealed four highly labeled proteins. Two with masses of 29 and 30 kDa and pI 5.5 were absent from the stroma and thylakoid fractions, while the others at 54 kDa, pI 5.2 and 61 kDa, pI 5.4 were detected there in smaller amounts. The 29- and 30-kDa proteins were associated with outer envelope membranes separated from inner envelope membranes after chloroplast lysis in hypertonic solution. A 32-kDa protein not labeled by [35S]sulfate was found exclusively in the inner membrane fraction, suggesting the existence of a phosphate translocator in C. reinhardtii. To identify envelope proteins exposed on the chloroplast surface, isolated active chloroplasts were surface-labeled with 125I and lactoperoxidase. The 54-kDa, pI 5.2 protein as well as a protein corresponding to either of the 29- or 30-kDa proteins described above were among the labeled components. These results show that envelope proteins of C. reinhardtii are encoded by the chloroplast genome and two are located on the outer envelope membranes.  相似文献   

3.
Intracellular carbonic anhydrases (CA) in aquatic photosynthetic organisms are involved in the CO2-concentrating mechanism (CCM), which helps to overcome CO2 limitation in the environment. In the green alga Chlamydomonas reinhardtii, this CCM is initiated and maintained by the pH gradient created across the chloroplast thylakoid membranes by photosystem (PS) II-mediated electron transport. We show here that photosynthesis is stimulated by a novel, intracellular alpha-CA bound to the chloroplast thylakoids. It is associated with PSII on the lumenal side of the thylakoid membranes. We demonstrate that PSII in association with this lumenal CA operates to provide an ample flux of CO2 for carboxylation.  相似文献   

4.
Chen HC  Melis A 《Planta》2004,220(2):198-210
Recent work [H.-C. Chen et al. (2003) Planta 218:98-106] reported on the genomic, proteomic, phylogenetic and evolutionary aspects of a putative nuclear gene ( SulP) encoding a chloroplast sulfate permease in the model green alga Chlamydomonas reinhardtii. In this article, evidence is provided for the envelope localization of the SulP protein and its function in the uptake and assimilation of sulfate by the chloroplast. Localization of the SulP protein in the chloroplast envelope was concluded upon isolation of C. reinhardtii chloroplasts, followed by fractionation into envelope and thylakoid membranes and Western blotting of these fractions with specific polyclonal antibodies raised against the recombinant SulP protein. The function of the SulP protein was probed in antisense transformants of C. reinhardtii having lower expression levels of the SulP gene. Results showed that cellular sulfate uptake capacity was lowered as a consequence of attenuated SulP gene expression in the cell, directly affecting rates of de novo protein biosynthesis in the chloroplast. The antisense transformants exhibited phenotypes of sulfate-deprived cells, displaying slow rates of light-saturated oxygen evolution, low levels of Rubisco in the chloroplast and low steady-state levels of the photosystem-II D1 reaction-center protein. The role of the chloroplast sulfate transport in the uptake and assimilation of sulfate in C. reinhardtii is discussed along with its impact on the repair of photosystem-II from a frequently occurring photo-oxidative damage and potential use for the elucidation of the H(2)-evolution-related metabolism in this green alga.  相似文献   

5.
In Chlamydomonas reinhardtii mutants deficient in photosystem I because of inactivation of the chloroplast genes psaA or psaB, oxygen evolution from photosystem II occurs at significant rates and is coupled to a stimulation of oxygen uptake. Both activities can be simultaneously monitored by continuous mass spectrometry in the presence of (18)O(2). The light-driven O(2) exchange was shown to involve the plastoquinone pool as an electron carrier, but not cytochrome b(6)f. Photosystem II-dependent O(2) production and O(2) uptake were observed in isolated chloroplast fractions. Photosystem II-dependent oxygen exchange was insensitive to a variety of inhibitors (azide, carbon monoxide, cyanide, antimycin A, and salicylhydroxamic acid) and radical scavengers. It was, however, sensitive to propyl gallate. From inhibitors effects and electronic requirements of the O(2) uptake process, we conclude that an oxidase catalyzing oxidation of plastoquinol and reduction of oxygen to water is present in thylakoid membranes. From the sensitivity of flash-induced O(2) exchange to propyl gallate, we conclude that this oxidase is involved in chlororespiration. Clues to the identity of the protein implied in this process are given by pharmacological and immunological similarities with a protein (IMMUTANS) identified in Arabidopsis chloroplasts.  相似文献   

6.
Several chloroplast proteins were detected by immunoelectron microscopy within dense granules in cytoplasmic vacuoles in the alga Chlamydomonas reinhardtii Dangeard. Transfer from chloroplast to vacuoles of two major, pulse-labeled polypeptides, the large subunit of rubisco and the α subunit of ATPase, which are synthesized on chloroplast ribosomes, was demonstrated by the recovery of these polypeptides in vacuolar granules over a several-hour time period. The ultrastructure of cryofixed algal cells was examined to search for structures that would provide insight into the transfer of chloroplast proteins to vacuoles. Micrographs showed that the two membranes of the envelope were appressed, with no detectable intermembrane space, over most of the chloroplast surface. Protrusions of the outer membrane of the envelope were occasionally found that enclosed stroma, with particles similar in size to chloroplast ribosomes, but generally not thylakoid membranes. These observations suggest that chloroplast material, especially the stromal phase, was extruded from the chloroplast in membrane-bound structures, which then interacted with Golgi-derived vesicles for degradation of the contents by typical lysosomal activities. A protein normally targeted to vacuoles through the endomembrane system for incorporation into the cell wall was detected in Golgi structures and vacuolar granules but not the chloroplast.  相似文献   

7.
When Chlamydomonas reinhardtii cells are transferred to limiting CO2, one response is the induction of a CO2-concentrating mechanism (CCM) with components that remain to be identified. Characterization of membrane-associated proteins induced by this transfer revealed that synthesis of the 21-kD protein (LIP-21) was regulated at the level of translatable message abundance and correlated well with the induction of CCM activity. Phase partitioning of LIP-21 and the previously characterized LIP-36 showed that both appeared to be peripherally associated with membranes, which limits their potential to function as transporters of inorganic carbon. Ultrastructural changes that occur when cells are transferred to limiting CO2 were also examined to help form a model for the CCM or other aspects of adaptation to limiting CO2. Changes were observed in vacuolization, starch distribution, and mitochondrial location. The mitochondria relocated from within the cup of the chloroplast to between the chloroplast envelope and the plasma membrane. In addition, immunogold labeling demonstrated that LIP-21 was localized specifically to the peripheral mitochondria. These data suggest that mitochondria, although not previously incorporated into models for the CCM, may play an important role in the cell's adaptation to limiting CO2.  相似文献   

8.
9.
Lu YK  Stemler AJ 《Plant physiology》2002,128(2):643-649
One form of carbonic anhydrase (CA) has been observed in maize (Zea mays) thylakoids and photosystem II (PSII)-enriched membranes. Here, we show that an antibody produced against a thylakoid lumen-targeted CA found in Chlamydomonas reinhardtii reacts with a single 33-kD polypeptide in maize thylakoids. With immunoblot analysis, we found that this single polypeptide could be identified only in mesophyll thylakoids and derived PSII membranes, but not in bundle sheath thylakoids. Likewise, a CA activity assay confirmed a large amount of activity in mesophyll, but not in bundle sheath membranes. Immunoblot analysis and CA activity assay showed that the maximum CA can be obtained in the supernatant of the PSII-enriched membranes washed with 1 M CaCl(2), the same procedure used to remove all extrinsic lumenal proteins from PSII. Because this CA reacts with an antibody to lumen-directed CA in C. reinhardtii, and because it can be removed with 1 M CaCl(2) wash, we refer to it tentatively as extrinsic CA. This is to distinguish it from another form of CA activity tightly bound to PSII membranes that remains after CaCl(2) wash, which has been described previously. The function of extrinsic CA is not clear. It is unlikely to have the same function as the cytoplasmic CA, which has been proposed to increase the HCO(-)(3) concentration for phosphoenolpyruvate carboxylase and the C(4) pathway. We suggest that because the extrinsic CA is associated only with thylakoids doing linear electron flow, it could function to produce the CO(2) or HCO(-)(3) needed for PSII activity.  相似文献   

10.
We have characterized the subunit composition of the chloroplast ATP synthase from Chlamydomonas reinhardtii by means of a comparison of the polypeptide deficiencies in a mutant defective in photophosphorylation, with the polypeptide content in purified coupling factor (CF)1 and CF1.CF0 complexes. We could distinguish nine subunits in the enzyme, four of which were CF0 subunits. Further characterization of these subunits was undertaken by immunoblotting experiments, [14C]dicyclohexylcarbodiimide binding and analysis of their site of translation. In particular, we were able to show the presence of an as yet unidentified delta subunit in CF1 from C. reinhardtii. We have identified a 70-kDa peripheral membrane protein in the thylakoid membranes of C. reinhardtii, which is immunologically related to the beta subunit of CF1. We discuss its conceivable ATPase function with respect to the Ca2+-dependent ATPase activity previously reported in the thylakoid membranes from C. reinhardtii.  相似文献   

11.
In plants, lipids of the photosynthetic membrane are synthesized by parallel pathways associated with the endoplasmic reticulum (ER) and the chloroplast envelope membranes. Lipids derived from the two pathways are distinguished by their acyl‐constituents. Following this plant paradigm, the prevalent acyl composition of chloroplast lipids suggests that Chlamydomonas reinhardtii (Chlamydomonas) does not use the ER pathway; however, the Chlamydomonas genome encodes presumed plant orthologues of a chloroplast lipid transporter consisting of TGD (TRIGALACTOSYLDIACYLGLYCEROL) proteins that are required for ER‐to‐chloroplast lipid trafficking in plants. To resolve this conundrum, we identified a mutant of Chlamydomonas deleted in the TGD2 gene and characterized the respective protein, CrTGD2. Notably, the viability of the mutant was reduced, showing the importance of CrTGD2. Galactoglycerolipid metabolism was altered in the tgd2 mutant with monogalactosyldiacylglycerol (MGDG) synthase activity being strongly stimulated. We hypothesize this to be a result of phosphatidic acid accumulation in the chloroplast outer envelope membrane, the location of MGDG synthase in Chlamydomonas. Concomitantly, increased conversion of MGDG into triacylglycerol (TAG) was observed. This TAG accumulated in lipid droplets in the tgd2 mutant under normal growth conditions. Labeling kinetics indicate that Chlamydomonas can import lipid precursors from the ER, a process that is impaired in the tgd2 mutant.  相似文献   

12.
To investigate the biochemical response of freshwater green algae to elevated CO2 concentrations,Chlorella pyrenoidosa Chick and Chlamydomonas reinhardtii Dang cells were cultured at different CO2concentrations within the range 3-186 μmol/L and the biochemical composition, carbonic anhydrase (CA),and nitrate reductase activities of the cells were investigated. Chlorophylls (Chl), carotenoids, carbonhydrate,and protein contents were enhanced to varying extents with increasing CO2 concentration from 3-186μmol/L. The CO2 enrichment significantly increased the Chl a/Chl b ratio in Chlorella pyrenoidosa, but not in Chlamydomonas reinhardtii. The CO2 concentration had significant effects on CA and nitrate reductase activity. Elevating CO2 concentration to 186 μmol/L caused a decline in intracellular and extracellullar CA activity. Nitrate reductase activity, under either light or dark conditions, in C. reinhardtii and C. pyrenoidosa was also significantly decreased with CO2 enrichment. From this study, it can be concluded that CO2enrichment can affect biochemical composition, CA, and nitrate reductase activity, and that the biochemical response was species dependent.  相似文献   

13.
Intracellular carbonic anhydrase of Chlamydomonas reinhardtii.   总被引:3,自引:1,他引:2       下载免费PDF全文
An intracellular carbonic anhydrase (CA; EC 4.2.1.1) was purified to homogeneity from a mutant strain of Chlamydomonas reinhardtii (CW 92) lacking a cell wall. Intact cells were washed to remove periplasmic CA and were lysed and fractionated into soluble and membrane fractions by sedimentation. All of the CA activity sedimented with the membrane fraction and was dissociated by treatment with a buffer containing 200 mM KCI. Solubilized proteins were fractionated by ammonium sulfate precipitation, anionic exchange chromatography, and hydrophobic interaction chromatography. The resulting fraction had a specific activity of 1260 Wilbur-Anderson units/mg protein and was inhibited by acetazolamide (50% inhibition concentration, 12 nM). Final purification was accomplished by the specific absorption of the enzyme to a Centricon-10 microconcentrator filter. A single, 29.5-kD polypeptide was eluted from the filter with sodium dodecyl sulfate-polyacrylamide gel electrophoresis sample buffer, and a 1.5 M ammonium sulfate eluate contained CA activity. In comparison with human CA isoenzyme II, the N-terminal and internal amino acid sequences from the 29.5-kD polypeptide were 40% identical with the N-terminal region and 67% identical with an internal conserved region. Based on this evidence, we postulate that the 29.5-kD polypeptide is an internal CA in C. reinhardtii and that the enzyme is closely related to the alpha-type CAs observed in animal species.  相似文献   

14.
Chlamydomonas reinhardtii, a unicellular green alga, grows photoautotrophically at very low concentrations of inorganic carbon due to the presence of an inducible CO2-concentrating mechanism. During the induction of the CO2-concentrating mechanism at low-CO2 growth conditions, at least five polypeptides that are either absent or present in low amounts in cells grown on high-CO2 concentrations are induced. One of these induced polypeptides with a molecular mass of 36 kD, LIP-36, has been localized to the chloroplast envelope. The protein was purified and the partial internal amino acid sequences were obtained through lys-C digestion. Two cDNAs encoding LIP-36 have been cloned using degenerate primers based on the amino acid sequences. The two genes encoding LIP-36 are highly homologous in the coding region but are completely different in the 5'-end and 3'-end untranslated regions. The deduced protein sequences show strong homology to the mitochondrial carrier protein superfamily, suggesting that LIP-36 is a chloroplast carrier protein. The regulation of the expression of these two genes at high- and low-CO2 growth conditions is also different. Both genes were highly expressed under low-CO2 growth conditions, with the steady-state level of LIP-36 G1 mRNA more abundant. However, neither gene was expressed at high-CO2 growth conditions. The gene products of both clones expressed in Escherichia coli were recognized by an antibody raised against LIP-36, confirming that the two cDNAs indeed encode the C. reinhardtii chloroplast envelope carrier protein LIP-36.  相似文献   

15.
16.
来源于Pyrococcusfuriosus的耐高温α-淀粉酶是一种重要的酒精工业用酶,在植物中表达耐高温α-淀粉酶可以大大降低用植物秸秆生产酒精的成本。选择衣藻叶绿体基因组同源片段clpP-trnL-petB-chlL-rpl23-rpl2和壮观霉素抗性基因,构建了来源于Pyrococcusfuriosus的耐高温α-淀粉酶基因的衣藻叶绿体表达载体p64A。通过基因枪将其导入衣藻叶绿体中,经壮观霉素抗性(100mg/L)筛选,获得了9个抗性衣藻转化子。转化子经过抗性继代筛选后,经PCR、Southernblot检测分析及暗培养,证实耐高温α-淀粉酶基因已整合到衣藻叶绿体基因组中并得到表达。酶活性检测表明,转基因衣藻表达产物具有耐高温α-淀粉酶活性,每克鲜重衣藻最高达77.5u。实验结果证明在植物叶绿体中表达工业酶制剂是可行的。  相似文献   

17.
The competition between CO2 and O2 at the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase limits net CO2 fixation in photosynthesis. In the green alga Chlamydomonas reinhardtii, a mutation in the chloroplast large-subunit gene reduces the CO2/O2 specificity of the enzyme by 37% and causes valine-331 to be replaced by alanine. Revertant selection identified an intragenic suppressor mutation that increases the CO2/O2 specificity of the mutant enzyme by 33%. This second-site mutation causes threonine-342 to be replaced by isoleucine. The complementing amino acid substitutions flank a catalytically essential lysyl residue at position 334. It thus appears that a number of amino acid residues can influence the CO2/O2 specificity of this bifunctional enzyme. The well defined chloroplast genetics of C. reinhardtii allows the interactions of these residues to be investigated.  相似文献   

18.
Recent results obtained by electron microscopic and biochemical analyses of greening Chlamydomonas reinhardtii y1 suggest that localized expansion of the plastid envelope is involved in thylakoid biogenesis. Kinetic analyses of the assembly of light-harvesting complexes and development of photosynthetic function when degreened cells of the alga are exposed to light suggest that proteins integrate into membrane at the level of the envelope. Current information, therefore, supports the earlier conclussion that the chloroplast envelope is a major biogenic structure, from which thylakoid membranes emerge. Chloroplast development in Chlamydomonas provides unique opportunities to examine in detail the biogenesis of thylakoids.Abbreviations Rubisco ribulose bisphosphate carboxylase/oxygenase - CAB Chl a/b-binding (proteins) - Chlide chlorophyllide - LHC I light-harvesting complex of PS I - LHC II light-harvesting complex of PS II - Pchlide protochlorophyllide  相似文献   

19.
Assembly and asymmetric localization of the photosensory eyespot in the biflagellate, unicellular green alga Chlamydomonas reinhardtii requires coordinated organization of photoreceptors in the plasma membrane and pigment granule/thylakoid membrane layers in the chloroplast. min1 (mini-eyed) mutant cells contain abnormally small, disorganized eyespots in which the chloroplast envelope and plasma membrane are no longer apposed. The MIN1 gene, identified here by phenotypic rescue, encodes a protein with an N-terminal C2 domain and a C-terminal LysM domain separated by a transmembrane sequence. This novel domain architecture led to the hypothesis that MIN1 is in the plasma membrane or the chloroplast envelope, where membrane association of the C2 domain promotes proper eyespot organization. Mutation of conserved C2 domain loop residues disrupted association of the MIN1 C2 domain with the chloroplast envelope in moss cells but did not abolish eyespot assembly in Chlamydomonas. In min1 null cells, channelrhodopsin-1 (ChR1) photoreceptor levels were reduced, indicating a role for MIN1 in ChR1 expression and/or stability. However, ChR1 localization was only minimally disturbed during photoautotrophic growth of min1 cells, conditions under which the pigment granule layers are disorganized. The data are consistent with the hypothesis that neither MIN1 nor proper organization of the plastidic components of the eyespot is essential for localization of ChR1.  相似文献   

20.
Acclimation of the green alga Chlamydomonas reinhardtii to limiting environmental CO2 induced specific protein phosphorylation at the surface of photosynthetic thylakoid membranes. Four phosphopeptides were identified and sequenced by nanospray quadrupole TOF MS from the cells acclimating to limiting CO2. One phosphopeptide originated from a protein that has not been annotated. We found that this unknown expressed protein (UEP) was encoded in the genome of C. reinhardtii. Three other phosphorylated peptides belonged to Lci5 protein encoded by the low-CO2-inducible gene 5 (lci5). The phosphorylation sites were mapped in the tandem repeats of Lci5 ensuring phosphorylation of four serine and three threonine residues in the protein. Immunoblotting with Lci5-specific antibodies revealed that Lci5 was localized in chloroplast and confined to the stromal side of the thylakoid membranes. Phosphorylation of Lci5 and UEP occurred strictly at limiting CO2; it required reduction of electron carriers in the thylakoid membrane, but was not induced by light. Both proteins were phosphorylated in the low-CO2-exposed algal mutant deficient in the light-activated protein kinase Stt7. Phosphorylation of previously unknown basic proteins UEP and Lci5 by specific redox-dependent protein kinase(s) in the photosynthetic membranes reveals the early response of green algae to limitation in the environmental inorganic carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号