首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We hypothesized that exercise training would lead to enhanced endothelium-dependent vasodilation in porcine pulmonary arteries. Pulmonary artery rings (2- to 3-mm OD) were obtained from female Yucatan miniature swine with surgically induced coronary artery occlusion (ameroid occluder). Exercise training was performed for 16 wk, and vasomotor responses were studied by using standard isometric techniques. Contractile responses to 80 mM KCl, isosmotic KCl (10-100 mM), and norepinephrine (10(-8) to 10(-4) M) did not differ between sedentary (Sed) and exercise-trained (Ex) pigs. Relaxation was assessed to endothelium-dependent and endothelium-independent vasodilators after norepinephrine contraction. Pulmonary arteries of Ex pigs exhibited greater maximal relaxation to ACh (61.9 +/- 3.5%) than did those of Sed pigs (52.3 +/- 3.9%; P < 0.05). Endothelium-independent relaxation to sodium nitroprusside did not differ. Inhibition of nitric oxide synthase significantly decreased acetylcholine-induced relaxation, with greater inhibition in arteries from Ex pigs (P < 0.05). Inhibition of cyclooxygenase enhanced relaxation to acetylcholine in arteries from Sed pigs. We conclude that exercise training enhances endothelium-dependent (ACh-mediated) vasorelaxation in pulmonary arteries by mechanisms of increased reliance on nitric oxide and reduced production of a prostanoid constrictor.  相似文献   

2.
The AMP-activated protein kinase (AMPK) cascade has been linked to many of the acute effects of exercise on skeletal muscle substrate metabolism, as well as to some of the chronic training-induced adaptations. We determined the effect of 3 wk of intensified training (HIT; 7 sessions of 8 x 5 min at 85% Vo2 peak) in skeletal muscle from well-trained athletes on AMPK responsiveness to exercise. Rates of whole body substrate oxidation were determined during a 90-min steady-state ride (SS) pre- and post-HIT. Muscle metabolites and AMPK signaling were determined from biopsies taken at rest and immediately after exercise during the first and seventh HIT sessions, performed at the same (absolute) pre-HIT work rate. HIT decreased rates of whole body carbohydrate oxidation (P < 0.05) and increased rates of fat oxidation (P < 0.05) during SS. Resting muscle glycogen and its utilization during intense exercise were unaffected by HIT. However, HIT induced a twofold decrease in muscle [lactate] (P < 0.05) and resulted in tighter metabolic regulation, i.e., attenuation of the decrease in the PCr/(PCr + Cr) ratio and of the increase in [AMPfree]/ATP. Resting activities of AMPKalpha1 and -alpha2 were similar post-HIT, with the magnitude of the rise in response to exercise similar pre- and post-HIT. AMPK phosphorylation at Thr172 on both the alpha1 and alpha2 subunits increased in response to exercise, with the magnitude of this rise being similar post-HIT. Acetyl-coenzyme A carboxylase-beta phosphorylation was similar at rest and, despite HIT-induced increases in whole body rates of fat oxidation, did not increase post-HIT. Our results indicate that, in well-trained individuals, short-term HIT improves metabolic control but does not blunt AMPK signaling in response to intense exercise.  相似文献   

3.
This investigation determined whether ingestion of a tolerable amount of medium-chain triglycerides (MCT; approximately 25 g) reduces the rate of muscle glycogen use during high-intensity exercise. On two occasions, seven well-trained men cycled for 30 min at 84% maximal O(2) uptake. Exactly 1 h before exercise, they ingested either 1) carbohydrate (CHO; 0.72 g sucrose/kg) or 2) MCT+CHO [0.36 g tricaprin (C10:0)/kg plus 0.72 g sucrose/kg]. The change in glycogen concentration was measured in biopsies taken from the vastus lateralis before and after exercise. Additionally, glycogen oxidation was calculated as the difference between total carbohydrate oxidation and the rate of glucose disappearance from plasma (R(d) glucose), as measured by stable isotope dilution techniques. The change in muscle glycogen concentration was not different during MCT+CHO and CHO (42.0 +/- 4.6 vs. 38.8 +/- 4.0 micromol glucosyl units/g wet wt). Furthermore, calculated glycogen oxidation was also similar (331 +/- 18 vs. 329 +/- 15 micromol. kg(-1). min(-1)). The coingestion of MCT+CHO did increase (P < 0.05) R(d) glucose at rest compared with CHO (26.9 +/- 1.5 vs. 20.7 +/- 0. 7 micromol.kg(-1). min(-1)), yet during exercise R(d) glucose was not different during the two trials. Therefore, the addition of a small amount of MCT to a preexercise CHO meal did not reduce muscle glycogen oxidation during high-intensity exercise, but it did increase glucose uptake at rest.  相似文献   

4.
A single session of exercise increases insulin sensitivity for hours and even days, and dietary carbohydrate ingested after exercise alters the magnitude and duration of this effect. Although increasing systemic fatty acid availability is associated with insulin resistance, it is uncertain whether increasing dietary fat availability after exercise alters the exercise-induced increase in insulin sensitivity. The purpose of this study was to determine whether adding fat calories to meals after exercise alters glucose tolerance the next day. Seven healthy men cycled 90 min at 66 +/- 2% peak oxygen uptake followed by a maximum of five high-intensity intervals. During the hours after exercise, subjects ingested three meals containing either low-fat (5% energy from fat) or high-fat (45% energy from fat) foods (Low-Fat and High-Fat groups, respectively). Each diet contained the same amount of carbohydrate and protein. An oral glucose tolerance test was performed the next morning. Muscle glycogen and intramuscular triglyceride (IMTG) concentrations were measured in muscle biopsy samples obtained immediately before exercise and the next morning. The day after exercise, muscle glycogen concentration was identical in High-Fat and Low-Fat (393 +/- 70 and 379 +/- 38 mmol/kg dry wt). At the same time, IMTG concentration was approximately 20% greater during High-Fat compared with Low-Fat (42.5 +/- 3.4 and 36.3 +/- 3.3 mmol/kg dry wt; P < 0.05). Despite the addition of approximately 165 g of fat to meals after exercise ( approximately 1,500 kcal) and a resultant elevation in IMTG concentration, glucose tolerance was identical in High-Fat and Low-Fat (composite index: 8.7 +/- 1.0 and 8.4 +/- 1.0). In summary, as long as meals ingested in the hours after exercise contain the same carbohydrate content, the addition of approximately 1500 kcal from fat to these meals did not alter muscle glycogen resynthesis or glucose tolerance the next day.  相似文献   

5.
Previous studies have shown increased fatigue in paralyzed muscle of spinal cord-injured (SCI) patients (Castro M, Apple D Jr, Hillegass E, and Dudley GA. Eur J Appl Physiol 80: 373-378, 1999; Gerrits H, Hopman MTE, Sargeant A, and de Haan A. Clin Physiol 21: 105-113, 2001). Our purpose was to determine whether the increased muscle fatigue could be due to a delayed rise in blood flow at the onset of exercise in SCI individuals. Isometric electrical stimulation was used to induce fatigue in the quadriceps femoris muscle of seven male, chronic (>1 yr postinjury), complete (American Spinal Injury Association, category A) SCI subjects. Cuff occlusion was used to elevate blood flow before electrical stimulation, and the magnitude of fatigue was compared with a control condition of electrical stimulation without prior cuff occlusion. Blood flow was measured in the femoral artery by Doppler ultrasound. Prior cuff occlusion increased blood flow in the first 30 s of stimulation compared with the No-Cuff condition (1,350 vs. 680 ml/min, respectively; P < 0.001), although blood flow at the end of stimulation was the same between conditions (1,260 +/- 140 vs. 1,160 +/- 370 ml/min, Cuff and No-Cuff condition, respectively; P = 0.511). Muscle fatigue was not significantly different between prior cuff occlusion and the control condition (32 +/- 13 vs. 35 +/- 10%; P = 0.670). In conclusion, increased muscle fatigue in SCI individuals is not associated with the prolonged time for blood flow to increase at the onset of exercise.  相似文献   

6.
There is evidence that increasing carbohydrate (CHO) availability during exercise by raising preexercise muscle glycogen levels attenuates the activation of AMPKalpha2 during exercise in humans. Similarly, increasing glucose levels decreases AMPKalpha2 activity in rat skeletal muscle in vitro. We examined the effect of CHO ingestion on skeletal muscle AMPK signaling during exercise in nine active male subjects who completed two 120-min bouts of cycling exercise at 65 +/- 1% V(O2 peak). In a randomized, counterbalanced order, subjects ingested either an 8% CHO solution or a placebo solution during exercise. Compared with the placebo trial, CHO ingestion significantly (P < 0.05) increased plasma glucose levels and tracer-determined glucose disappearance. Exercise-induced increases in muscle-calculated free AMP (17.7- vs. 11.8-fold), muscle lactate (3.3- vs. 1.8-fold), and plasma epinephrine were reduced by CHO ingestion. However, the exercise-induced increases in skeletal muscle AMPKalpha2 activity, AMPKalpha2 Thr(172) phosphorylation and acetyl-CoA Ser(222) phosphorylation, were essentially identical in the two trials. These findings indicate that AMPK activation in skeletal muscle during exercise in humans is not sensitive to changes in plasma glucose levels in the normal range. Furthermore, the rise in plasma epinephrine levels in response to exercise was greatly suppressed by CHO ingestion without altering AMPK signaling, raising the possibility that epinephrine does not directly control AMPK activity during muscle contraction under these conditions in vivo.  相似文献   

7.
8.
The purpose of this study was to determine whether an increase in pulmonary vascular filtration pressure affects net production of liquid within the lumen of the fetal lung. We studied 14 chronically catheterized fetal lambs [130 +/- 3 (SD) days gestation] before, during, and after a 4-h rapid (500 ml/h) intravenous infusion of isotonic saline. In seven fetuses we measured pulmonary arterial and left atrial pressures, lung lymph flow, and protein osmotic pressures in plasma and lymph. In eight lambs with a chronically implanted tracheal loop cannula, we measured the change in luminal lung liquid volume over time by progressive dilution of tracheally instilled 125I-albumin, which stays within the lung lumen. Saline infusion increased pulmonary vascular pressures by 2-3 mmHg and decreased the plasma-lymph difference in protein osmotic pressure by 1 mmHg. Lung lymph flow increased from 1.9 +/- 0.6 to 3.9 +/- 1.2 (SD) ml/h; net production of luminal lung liquid did not change (12 +/- 5 to 12 +/- 6 ml/h). Thus an increase in net fluid filtration pressure in the pulmonary circulation, which was sufficient to double lung lymph flow, had no significant effect on luminal lung liquid secretion in fetal sheep.  相似文献   

9.
The effect of repeated cimetidine ingestion on serum prolactin values was studied prospectively in 17 men with proven duodenal ulcers. These patients received 400 mg of cimetidine twice daily for 12 weeks but showed no alteration in their mean serum prolactin levels. Cimetidine-induced hyperprolactinaemia is not the explanation for the development of gynaecomastia in men exposed to this drug.  相似文献   

10.
11.
We employed an associative learning paradigm to test the hypothesis that exercise hyperpnea in humans arises from learned responses forged by prior experience. Twelve subjects undertook a "conditioning" and a "nonconditioning" session on separate days, with order of performance counterbalanced among subjects. In both sessions, subjects performed repeated bouts of 6 min of treadmill exercise, each separated by 5 min of rest. The only difference between sessions was that all the second-to-penultimate runs of the conditioning session were performed with added dead space in the breathing circuit. Cardiorespiratory responses during the first and last runs (the "control" and "test" runs) were compared for each session. Steady-state exercise end-tidal PCO(2) was significantly lower (P = 0.003) during test than during control runs for both sessions (dropping by 1.8 +/- 2 and 1.4 +/- 3 Torr during conditioning and nonconditioning sessions, respectively). This and all other test-control run differences tended to be greater during the first session performed regardless of session type. Our data provide no support for the hypothesis implicating associative learning processes in the ventilatory response to exercise in humans.  相似文献   

12.
Heat shock proteins (HSPs) are molecular chaperones which may act protective in cerebrovascular insults and peripheral diabetic neuropathy. We hypothesized that alpha-lipoic acid (LA), a natural thiol antioxidant, may enhance brain HSP response in diabetes. Rats with or without streptozotocin-induced diabetes were treated with LA or saline for 8 weeks. Half of the rats were subjected to exhaustive exercise to investigate HSP induction, and the brain tissue was analyzed. Diabetes increased constitutive HSC70 mRNA, and decreased HSP90 and glucose-regulated protein 75 (GRP75) mRNA without affecting protein levels. Exercise increased HSP90 protein and mRNA, and also GRP75 and heme oxygenase-1 (HO-1) mRNA only in non-diabetic animals. LA had no significant effect on brain HSPs, although LA increased HSC70 and HO-1 mRNA in diabetic animals and decreased HSC70 mRNA in non-diabetic animals. Eukaryotic translation elongation factor-2, essential for protein synthesis, was decreased by diabetes and suggesting a mechanism for the impaired HSP response related to translocation of the nascent chain during protein synthesis. LA supplementation does not offset the adverse effects of diabetes on brain HSP mRNA expression. Diabetes may impair HSP translation through elongation factors related to nascent chain translocation and subsequent responses to acute stress.  相似文献   

13.
Housed pigs are often exposed to elevated concentrations of atmospheric ammonia. This aerial pollutant is widely considered to be an environmental stressor that also predisposes to reduced growth rates and poor health, although evidence to support this view is limited. Hepatic gene expression is very responsive to stress and metabolic effects. Two batches of growing pigs were therefore exposed to a nominal concentration of atmospheric ammonia of either 5 ppm (low) or 20 ppm (high) from 4 weeks of age for 15 weeks. Growth rates were monitored. Samples of liver were taken after slaughter (at ∼19 weeks of age). Samples from the second batch were analysed for global gene expression using 23 K Affymetrix GeneChip porcine genome arrays. Samples from both batches were subsequently tested for five candidate genes using quantitative real-time PCR (qPCR). The array analysis failed to detect any significant changes in hepatic gene expression following chronic exposure to atmospheric ammonia. Animals clustered into two main groups but this was not related to the experimental treatment. There was also no difference in growth rates between groups. The qPCR analyses validated the array results by showing similar fold changes in gene expression to the arrays. They revealed a significant batch effect in expression of lipin 1 (LPIN1), Chemokine (C-X-C motif) ligand 14 (CXCL14), serine dehydratase (SDS) and hepcidin antimicrobial peptide (HAMP). Only CXCL14, a chemotactic cytokine for monocytes, was significantly down-regulated in response to ammonia. As chronic exposure to atmospheric ammonia did not have a clear influence on hepatic gene expression, this finding implies that 20 ppm of atmospheric ammonia did not pose a significant material risk to the health or metabolism of housed pigs.  相似文献   

14.
15.
The effect of endurance training on neuronal nitric oxide synthase (nNOS) content and distribution in muscle was investigated. Seven male subjects performed 6 wk of one-legged knee-extensor endurance training (protocol A). Muscle biopsies, obtained from vastus lateralis muscle in the untrained and the trained leg, were analyzed for nNOS protein and activity as well as immunohistochemical distribution of nNOS and endothelial nitric oxide synthase (eNOS). Muscle biopsies were also obtained from another seven male subjects before and after 6 wk of training by endurance running (protocol B) and analyzed for nNOS protein. No difference was found in the amount of nNOS protein in the untrained and the trained muscle either with protocol A or protocol B (P > 0.05). In protocol A, the activity of nNOS was 4.76 +/- 0.56 pmol. mg protein(-1). min(-1) in the control leg, and the level was not different in the trained leg (P > 0.05). nNOS was present in the sarcolemma and cytosol of type I and type II muscle fibers, and the qualitative distribution was similar in untrained and trained muscle. The number of eNOS immunoreactive structures and the number of capillaries per muscle fiber were higher (P < 0.05) after training than before. The present findings demonstrate that, in contrast to findings on animals, nNOS levels remain unaltered with endurance training in humans. Evidence is also provided that endurance training may increase the amount of eNOS, in parallel with an increase in capillaries in human muscle.  相似文献   

16.
17.
Postmenopausal women on estrogen replacementtherapy (ERT) regulate body core temperature at a lower baseline levelat rest in a thermoneutral environment. We conducted a series ofstudies to test whether, in a thermoneutral environment, chronic (2yr) oral ERT significantly alters baseline skin blood flow (SkBF) andcutaneous vascular conductance (CVC) and whether ERT alters maximal CVC(CVCmax) and SkBF inpostmenopausal women. In the first set of studies, forearm blood flow(FBF) was measured by venous-occlusion plethysmography in 24 postmenopausal women: 8 not taking exogenous hormone therapy (No HRTgroup), 8 on ERT, and 8 receiving combination of estrogen andprogesterone therapy, at rest and during prolonged (1 h) local heatingof the forearm at 42°C. Mean arterial pressure (MAP) was measuredby brachial auscultation before each set of FBF measurements tocalculate forearm vascular conductance (FVC = FBF/MAP). SkBF wasmeasured by laser-Doppler flowmetry (LDF), and CVC was calculated asLDF/MAP and standardized as%CVCmax. Baseline FVC,%CVCmax, and maximal FVC were notsignificantly different among the three groups of women. In the secondset of experiments, LDF in ERT and No HRT groups was measured at restin both thermoneutral and warm environments. %CVCmax was again notsignificantly different between ERT and No HRT groups at thermoneutralambient temperatures and increased similarly in the warm environment.Therefore, chronic exogenous ERT does not appear to influence eitherbaseline or maximal SkBF.

  相似文献   

18.
In our previous work, we routinely observed that a combined cocaine-exercise challenge results in an abnormally rapid muscle glycogen depletion and excessive blood lactacidosis. These phenomena occur simultaneously with a rapid rise in norepinephrine and in the absence of any rise in epinephrine. We postulated that norepinephrine may cause vasoconstriction of the muscle vasculature through activation of alpha-1 receptors during cocaine-exercise, thus inducing hypoxia and a concomitant rise in glycogenolysis and lactate accumulation. To test this hypothesis, rats were pretreated with the selective alpha-1-receptor antagonist prazosin (P) (0.1 mg/kg iv) or saline (S). Ten minutes later, the animals were treated with cocaine (-C) (5 mg/kg iv) or saline (-S) and run for 4 or 15 min at 22 m/min at 10% grade. In the S-S group, glycogen content of the white vastus lateralis muscle was unaffected by exercise at both time intervals, whereas in S-C rats glycogen was reduced by 47%. This effect of cocaine-exercise challenge was not attenuated by P. Similarly, blood lactate concentration in S-C rats was threefold higher than that of S-S after exercise, a response also not altered by pretreatment with P. On the basis of these observations, we conclude that the excessive glycogenolysis and lactacidosis observed during cocaine-exercise challenge is not the result of vasoconstriction secondary to norepinephrine activation of alpha-1 receptors.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号