首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lethal toxin (LeTx) of Bacillus anthracis is the major virulence factor responsible for the death of infected animals and for cytolysis of cultured macrophages. Its catalytic component, LF, contains the characteristic zinc-binding motif of metalloproteases, it binds zinc and indirect evidence suggests that this hydrolytic activity is essential for LeTx cytotoxicity ( Limpel et al . 1994 ; Kochi et al . 1994 ). To identify substrates of LF, we have used the yeast two-hybrid system, employing an LF inactive mutant as bait. This approach has led to the identification of the MAP kinase kinases (MAPKKs) Mek1 and Mek2 as proteins capable of specific interaction with LF. LF cleaves Mek1 and Mek2 within their N-terminus in vitro and in vivo , hydrolysing a Pro8-Ile9 and a Pro10-Arg11 peptide bond in Mek1 and Mek2, respectively ( Vitale et al . 1998 ), similarly to that found with a different approach by Duesbery et al . (1998) . The removal of the amino terminus of MAPKKs eliminates the 'docking site' involved in the specific interaction with MAPKs and interferes with the phospho-activation of the MAPKs ERK1 and ERK2, which become phosphorylated in cultured macrophages following toxin challenge. We are currently investigating the relevance of MAPKKs cleavage for LeTx cytotoxicity and the consequences for the activity of the MAP pathway.  相似文献   

2.
3.
4.
Anthrax toxin produced by Bacillus anthracis is a tripartite toxin comprising of protective antigen (PA), lethal factor (LF) and edema factor (EF). PA is the receptor-binding component, which facilitates the entry of LF or EF into the cytosol. EF is a calmodulin-dependent adenylate cyclase that causes edema whereas LF is a zinc metalloprotease and leads to necrosis of macrophages. It is also important to note that the exact mechanism of LF action is still unclear. With this view in mind, in the present study, we investigated a proteome wide effect of anthrax lethal toxin (LT) on mouse macrophage cells (J774A.1). Proteome analysis of LT-treated and control macrophages revealed 41 differentially expressed protein spots, among which phosphoglycerate kinase I, enolase I, ATP synthase (beta subunit), tubulin beta2, gamma-actin, Hsp70, 14-3-3 zeta protein and tyrosine/tryptophan-3-monooxygenase were found to be down-regulated, while T-complex protein-1, vimentin, ERp29 and GRP78 were found to be up-regulated in the LT-treated macrophages. Analysis of up- and down-regulated proteins revealed that primarily the stress response and energy generation proteins play an important role in the LT-mediated macrophage cell death.  相似文献   

5.
Lethal factor (LF), along with its receptor-binding partner protective antigen (PA), forms lethal toxin (LT), a critical virulence factor for Bacillus anthracis. LF is a Zn(2+) protease that cleaves specific mitogen activated protein kinase kinases (MAPKKs), inactivating signal transduction intermediates required for normal immune function. Initial research emphasized the role of LT in attenuating pro-inflammatory responses by macrophages, the primary targets of infection. More recent studies have revealed that LT affects a broad range of immune cells. In addition to direct effects on macrophages and neutrophils, LT suppresses the costimulatory functions of dendritic cells, thereby impeding essential cross-talk between innate and adaptive immune responses. Moreover, LT acts directly on T and B lymphocytes, blocking antigen receptor-dependent proliferation, cytokine production and Ig production. In this manner, LT mounts a broad-based attack on host immunity, thus providing B. anthracis with multiple mechanisms for avoiding protective host responses.  相似文献   

6.
7.
The anthrax lethal factor (LF) is a Zn2+ endopeptidase specific for mitogen-activated protein kinase kinases (MAPKKs), which are cleaved within their N termini. Here, the proteolytic activity of LF has been investigated using novel chromogenic MAPKK-derived peptide substrates, which allowed us to determine the kinetic parameters of the reaction. LF displayed maximal proteolytic activity at the pH and temperature values of the cell cytosol, which is its site of action. LF undergoes substrate inhibition, in keeping with the non-productive binding geometry of the MAPPK-2 N terminus to LF.  相似文献   

8.
Anthrax lethal toxin produced by the bacterium Bacillus anthracis is the major cause of death in animals infected with anthrax. One component of this toxin, lethal factor (LF), inactivates members of the mitogen-activated protein kinase kinase or MEK family through proteolysis of their NH(2) termini. However, neither the substrate requirements for LF cleavage nor the mechanism by which proteolysis inactivates MEK have been demonstrated. By means of deletion mutant analysis and site-directed mutagenesis, we have identified an LFIR (LF interacting region) in the COOH-terminal kinase domain of MEK1 adjacent to the proline-rich region, which is essential for LF-mediated proteolysis of MEK. Point mutations in this region block proteolysis but do not alter the kinase activity of MEK. Similar mutations in MEK6 also prevent proteolysis, indicating that this region is functionally conserved among MEKs. In addition, NH(2)-terminal proteolysis of MEK1 by LF was found to reduce not only the affinity of MEK1 for its substrate mitogen-activated protein kinase but also its intrinsic kinase activity, indicating that the NH(2)-terminal end of MEK is important not only for substrate interaction but also for catalytic activity.  相似文献   

9.
Lethal toxin (LT) that composed by protective antigen and lethal factor (LF) is the major virulence factor of Bacillus anthracis. The treatments of LT in animals could reproduce most manifestations of B. anthracis infections that greatly improves our knowledge in LT-mediated pathogenesis and facilitates anthrax-related researches without having to directly contact the hazardous bacterium B. anthracis. The recombinant protein of LF (rLF), however, still lacks a simple purification method. Herein, we developed single-step nickel affinity purification of rLF with yield up to 3mg/l. By fusion to the leader sequence of outer membrane protein OmpA, rLF could easily be purified from the periplasm of Escherichia coli. To investigate whether the rLT is functional in our system, both wild type rLF and the catalytic mutant rLF that contains a single amino acid substitution at zinc-binding site (LF(E687A)), were subjected to macrophage cytotoxicity analysis. Our data showed that the rLT is fully functional, while the LF(E687A) fail to induce cell death of tested macrophage cells. These findings suggested that the purification protocol herein is a user-friendly method that allows researchers to obtain the functional rLF by single-step purification.  相似文献   

10.
The anthrax lethal factor (LF) is a Zn(2+)-endopeptidase specific for mitogen-activated protein kinase kinases (MAPKKs), which are cleaved within their N-terminal region. Much line of effort was carried out to elucidate the catalytic activity of LF for designing the inhibitor and to understand the cellular mechanism of its cytotoxicity. Current assay methods to analyze the LF activity have been based on a synthetic peptide, consisting of 15-20 residues around being cleaved. However, there are accumulating reports that the region distal to cleavage site is required for the LF-mediated proteolysis of substrate. In this study, we demonstrate the catalytic properties of LF, using the full-length native substrate, MEK. We described the catalytic properties of LF focused on the effects of the pH alteration, which was encountered during the endocytosis of lethal toxin, and of the requirement for metal ions. We present the first evidence that additional metal ions are required for the LF catalyzed hydrolysis of native substrate, and that the pH alteration causes a significant change of catalytic properties of LF.  相似文献   

11.
The virulent spore-forming bacterium Bacillus anthracis secretes anthrax toxin composed of protective antigen (PA), lethal factor (LF) and edema factor (EF). LF is a Zn-dependent metalloprotease that inactivates key signaling molecules, such as mitogen-activated protein kinase kinases (MAPKK), to ultimately cause cell death. We report here the identification of small molecule (nonpeptidic) inhibitors of LF. Using a two-stage screening assay, we determined the LF inhibitory properties of 19 compounds. Here, we describe six inhibitors on the basis of a pharmacophoric relationship determined using X-ray crystallographic data, molecular docking studies and three-dimensional (3D) database mining from the US National Cancer Institute (NCI) chemical repository. Three of these compounds have K(i) values in the 0.5-5 microM range and show competitive inhibition. These molecular scaffolds may be used to develop therapeutically viable inhibitors of LF.  相似文献   

12.
Joshi M  Ebalunode JO  Briggs JM 《Proteins》2009,75(2):323-335
The anthrax lethal factor is a zinc metalloprotease toxin secreted by Bacillus anthracis which cleaves at the N-terminal region of six mitogen activated protein kinase kinases (MEKs) in the cell. Additionally, it is known to cleave a nine residue peptide "LF10," 50-fold more efficiently than nine residues of MEK1. There is very little sequence similarity between the MEK N-termini, thus, it is unclear how the lethal factor can accommodate and cleave the diverse N-termini of the MEKs and whether there is a hierarchy in this interaction, as there is between LF10 and MEK1. To investigate this problem, we carried out multiple molecular dynamics simulations of the lethal factor with nine residues of each of the substrates. Our simulations reveal that like LF10, certain MEK substrates have residue compositions that favor beta-sheet formation with the lethal factor over others. The formation of this secondary structure maintains a catalytic conformation. Binding energetics using the MM-PBSA method was used to rank-order the substrates for their affinity to LF (K(M)). On the basis of the results, we conclude that the LF does not equally accommodate the MEK substrates and further predict that there will be differences between rates of cleavage among the nine residue MEK N-termini.  相似文献   

13.
Anthrax is caused by Gram positive bacterium Bacillus anthracis. Pathogenesis is result of production of three protein components, protective antigen (PA), lethal factor (LF), and edema factor (EF). PA in combination with LF (lethal toxin) is lethal to animals, while PA in combination with EF (edema toxin), causes edema. PA, LF, and EF are very thermolabile. Differential scanning calorimetry (DSC) was used to unravel the energetics of LF denaturation as a function of pH ranging from 7.8 to 5.5. Transition temperature (T(m)) of LF was found to be approximately equal to 42 degrees C and onset of denaturation occurs at approximately equal to 30 degrees C. The ratio of calorimetric to van't Hoff's enthalpy was nearly equal to unity at pH 7.0, indicative of presence of single structural domain in LF at pH 7.0, unlike PA which has been structurally observed to consist of 4 domains. It was found by cytotoxicity studies using J774A.1 macrophage like cells that LF was most stable at pH approximately 6.5. This paper reports for the first time the denaturation of LF at different pH values at 37 degrees C and tries to establish a correlation between denaturation and loss of LF activity at different pH values.  相似文献   

14.
This article reports the design of a bivalent protein ligand with dual use in therapy and diagnosis of anthrax caused by Bacillus anthracis. The ligand specifically binds to PA and thereby blocks the intracellular delivery of LF and EF toxins that, respectively, cause cell lysis and edema. The ligand is a chimeric scaffold with two PA-binding domains (called VWA) linked to an IgG-Fc frame. Molecular modeling and binding measurements reveal that the VWA-Fc dimer binds to PA with high affinity (K (D) = 0.2 nM). An in vitro bio-luminescence assay shows that VWA-Fc (at nanomolar concentration) protects mouse macrophages from lysis by PA/LF. In vivo studies demonstrate that VWA-Fc at low doses ( approximately 50 mug/animal) are able to rescue animals from lethal doses of PA/LF and B. anthracis spores. Finally, VWA-Fc is utilized as the capture molecule in the sensitive (down to 30 picomolar) detection of PA using surface plasmon resonance.  相似文献   

15.
Anthrax toxin: a tripartite lethal combination   总被引:12,自引:0,他引:12  
Anthrax is a severe bacterial infection that occurs when Bacillus anthracis spores gain access into the body and germinate in macrophages, causing septicemia and toxemia. Anthrax toxin is a binary A-B toxin composed of protective antigen (PA), lethal factor (LF), and edema factor (EF). PA mediates the entry of either LF or EF into the cytosol of host cells. LF is a zinc metalloprotease that inactivates mitogen-activated protein kinase kinase inducing cell death, and EF is an adenylyl cyclase impairing host defences. Inhibitors targeting different steps of toxin activity have recently been developed. Anthrax toxin has also been exploited as a therapeutic agent against cancer.  相似文献   

16.
17.
Mek is a dual-specificity kinase that activates the extracellular-signal-regulated (Erk) mitogen-activated protein (MAP) kinases upon agonist binding to receptors. The Erk MAP kinase cascade is involved in cell-fate determination in many organisms. In mammals, this pathway is proposed to regulate cell growth and differentiation. Genetic studies have shown that although a single mek gene is present in Caenorhabditis elegans, Drosophila and Xenopus, two mek homologs, Mek1 and Mek2, are present in the mammalian cascade. In the present study, we describe a mutant mouse line in which the mek1 gene has been disrupted by insertional mutagenesis. The null mutation was recessive lethal, as the homozygous mutant embryos died at 10.5 days of gestation. Histopathological analyses revealed a reduction in vascularization of the placenta that was due to a marked decrease of vascular endothelial cells in the labyrinthine region. The failure to establish a functional placenta probably explains the death of the mek1-/- embryos. Cell-migration assays indicated that mek1-/- fibroblasts could not be induced to migrate by fibronectin, although the levels of Mek2 protein and Erk activation were normal. Re-expression of Mek1 in the mutant mouse embryonic fibroblasts (MEFs) restored their ability to migrate. Our findings provide genetic evidence that establishes the unique role played by Mek1 in signal transduction. They also suggest that mek1 function is required for normal response to angiogenic signals that might promote vascularization of the labyrinthine region of the placenta.  相似文献   

18.
Lethal toxin, a key virulence factor produced by Bacillus anthracis, induces cell death, in part by disrupting numerous signaling pathways, in mouse macrophages. However, exposure to sublethal doses of lethal toxin allows some cells to survive. Because these pro-survival signaling events occur within a few hours after exposure to sublethal doses, we hypothesized that acute phase proteins might influence macrophage survival. Our data show that serum amyloid A (SAA) is produced in response to lethal toxin treatment. Moreover, pre-treatment of macrophages with exogenous SAA protected macrophages from lethal toxin-mediated death. Exogenous SAA activated the p38 mitogen activated protein kinase (MAP) kinase pathway, while lethal toxin mutants incapable of p38 activation were incapable of causing cell death. Chemical inhibition of the p38 activation pathway abrogated the protective effects of SAA. These data show that SAA affords protection against lethal toxin in mouse macrophages and link this response to the p38 pathway.  相似文献   

19.
The two exotoxins of Bacillus anthracis , the causative agent of anthrax, are the oedema toxin (PA–EF) and the lethal toxin (PA–LF). They exert their catalytic activities within the cytosol. The internalization process requires receptor-mediated endocytosis and passage through acidic vesicles. We investigated the translocation of EF and LF enzymatic moieties across the target cell membrane. By selective permeabilization of the plasma membrane with Clostridium perfringens delta-toxin, we observed free full-size lethal factor (LF) within the cytosol, resulting from specific translocation from early endosomes. In contrast, oedema factor (EF) remained associated with the membranes of vesicles.  相似文献   

20.
炭疽是由炭疽芽孢杆菌引起的严重威胁人类健康的传染病。炭疽毒素包括3种蛋白质成分:保护性抗原(PA)、致死因子(LF)和水肿因子(EF)。PA与LF形成致死毒素(LT),与EF形成水肿毒素(ET)。由于致死毒素(LT)在感染者损伤及死亡中发挥主要作用,因此在炭疽感染晚期单纯使用抗生素治疗难以发挥疗效,治疗性中和抗体成为目前最有效的炭疽治疗药物。目前国外获得的炭疽毒素抗体多为炭疽PA抗体,美国FDA已批准瑞西巴库(人源PA单抗)用于吸入性炭疽的治疗。一旦炭疽芽孢杆菌被人为改构或PA中和表位发生突变,针对PA单一表位的抗体将可能失效,因此针对LF的抗体将成为炭疽治疗的有效补充。目前国外已有的LF抗体多为鼠源抗体和嵌合抗体,而全人源抗体可以避免鼠源抗体免疫原性高等缺点。本研究首先用LF抗原免疫人抗体转基因小鼠,利用流式细胞仪从小鼠脾淋巴细胞中分选抗原特异的记忆B细胞,通过单细胞PCR方法快速获得两株具有结合活性的抗LF单抗1D7和2B9。瞬时转染Expi 293F细胞制备抗体,通过毒素中和实验(TNA)发现1D7和2B9在细胞模型中均显示较好的中和活性,并且与PA单抗联合使用时,表现出较好的协同作用。总之,本文利用转基因小鼠、流式分选技术和单细胞PCR技术的优势,快速筛选到全人源LF抗体,为快速筛选全人源单克隆抗体开辟了新的思路与方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号