首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunization of nonautoimmune BALB/c mice with multimeric DWEYSVWLSN, a peptide mimotope of DNA, induces anti-DNA and other lupus-associated Abs. To further investigate the pathogenesis of the autoantibody response induced by peptide immunization, we generated hybridomas from peptide-immunized mice that bound peptide, dsDNA, cardiolipin, Sm/ribonucleoprotein (RNP), or some combination of these Ags. Analysis of 24 IgM Abs led to the identification of three groups of Abs: 1) Abs reactive with peptide alone, 2) anti-peptide Abs cross-reactive with one or more autoantigens, and 3) autoantibodies that do not bind to peptide. The gene families and particular VH-VL combinations used in those hybridomas binding DNA were similar to those used in the anti-DNA response in spontaneous murine lupus. Another similarity to the spontaneous anti-DNA response was the generation of arginines in the complementarity-determining region-3 of DNA-binding hybridomas. Interestingly, one Ab had the VH-VL combination present in the original R4A anti-DNA Ab used to select the DWEYSVWLSN peptide from a phage display library. Many of the heavy and light chains displayed evidence of somatic mutation, suggesting that they were made by Ag-activated B cells. Analysis of the Ab repertoire in peptide-induced autoimmunity may provide insights into the generation of anti-DNA Abs following exposure to foreign Ag. Furthermore, the recovery of an Ab with the heavy and light chain combination of the Ab originally used to isolate the immunizing peptide confirms the utility of phage display peptide libraries in generating true molecular mimics.  相似文献   

2.
3.
Clinical and experimental data indicate that spinal cord injury (SCI) elicits pathological T-cell responses. Implicit in these data, but poorly understood, is that B lymphocytes (B cells) also contribute to the delayed pathophysiology of spinal trauma. Here, for the first time, we show that experimental spinal contusion injury elicits chronic systemic and intraspinal B cell activation with the emergence of a B cell-dependent organ-specific and systemic autoimmune response. Specifically, using sera from spinal cord injured mice, immunoblots reveal oligoclonal IgG reactivity against multiple CNS proteins. We also show SCI-induced synthesis of autoantibodies that bind nuclear antigens including DNA and RNA. Elevated levels of anti-DNA antibodies are a distinguishing feature of systemic lupus erythematosus and, via their ability to cross-react with neuronal antigens, can cause neuropathology. We show a similar pathologic potential for the autoantibodies produced after SCI. Thus, mammalian SCI produces marked dysregulation of B cell function (i.e. autoimmunity) with pathological potential.  相似文献   

4.
Wang  Jiaqi  Li  Zeyu  Zhang  Jiawan 《BMC bioinformatics》2022,23(8):1-17
Background

Bioinformatics has gained much attention as a fast growing interdisciplinary field. Several attempts have been conducted to explore the field of bioinformatics by bibliometric analysis, however, such works did not elucidate the role of visualization in analysis, nor focus on the relationship between sub-topics of bioinformatics.

Results

First, the hotspot of bioinformatics has moderately shifted from traditional molecular biology to omics research, and the computational method has also shifted from mathematical model to data mining and machine learning. Second, DNA-related topics are bridge topics in bioinformatics research. These topics gradually connect various sub-topics that are relatively independent at first. Third, only a small part of topics we have obtained involves a number of computational methods, and the other topics focus more on biological aspects. Fourth, the proportion of computing-related topics hit a trough in the 1980s. During this period, the use of traditional calculation methods such as mathematical model declined in a large proportion while the new calculation methods such as machine learning have not been applied in a large scale. This proportion began to increase gradually after the 1990s. Fifth, although the proportion of computing-related topics is only slightly higher than the original, the connection between other topics and computing-related topics has become closer, which means the support of computational methods is becoming increasingly important for the research of bioinformatics.

Conclusions

The results of our analysis imply that research on bioinformatics is becoming more diversified and the ranking of computational methods in bioinformatics research is also gradually improving.

  相似文献   

5.
Mammalian immune responses are intended to eradicate microbial pathogens and thus protect individuals from the harmful effects of such infections. However, unresolved inflammation can be devastating to the host and cause tissue damage and organ malfunction. Immune responses can even mistakenly target self-antigens and mediate autoimmune inflammation. Consequently, a variety of cellular and molecular mechanisms have evolved to control the inflammatory responses, and many of these safeguards or triggers are perturbed in the setting of autoimmunity. In this review, we discuss the emerging roles of cellular non-coding RNAs, and in particular microRNAs (miRNAs), in the regulation of autoimmune inflammation. How miRNAs function to impact the onset, magnitude, and resolution of inflammatory responses and recent observations regarding links between miRNAs and specific autoimmune disorders will be addressed. Finally, the diagnostic and therapeutic relevance of miRNAs involved in autoimmunity will be considered. It is clear that, taken together, mammalian miRNAs are integral to the pathogenesis of mammalian autoimmune diseases and may be effective targets of next-generation therapeutics aimed at eradicating tissue inflammation.  相似文献   

6.
7.
Over half of the salmon consumed globally are farm-raised. The introduction of oil-adjuvanted vaccines into salmon aquaculture made large-scale production feasible by preventing infections. The vaccines that are given i.p. contain oil adjuvant such as mineral oil. However, in rodents, a single i.p. injection of adjuvant hydrocarbon oil induces lupus-like systemic autoimmune syndrome, characterized by autoantibodies, immune complex glomerulonephritis, and arthritis. In the present study, whether the farmed salmon that received oil-adjuvanted vaccine have autoimmune syndrome similar to adjuvant oil-injected rodents was examined. Sera and tissues were collected from vaccinated or unvaccinated Atlantic salmon (experimental, seven farms) and wild salmon. Autoantibodies (immunofluorescence, ELISA, and immunoprecipitation) and IgM levels (ELISA) in sera were measured. Kidneys and livers were examined for pathology. Autoantibodies were common in vaccinated fish vs unvaccinated controls and they reacted with salmon cells/Ags in addition to their reactivity with mammalian Ags. Diffuse nuclear/cytoplasmic staining was common in immunofluorescence but some had more specific patterns. Serum total IgM levels were also increased in vaccinated fish; however, the fold increase of autoantibodies was much more than that of total IgM. Sera from vaccinated fish immunoprecipitated ferritin and approximately 50% also reacted with other unique proteins. Thrombosis and granulomatous inflammation in liver, and immune-complex glomerulonephritis were common in vaccinated fish. Autoimmunity similar to the mouse model of adjuvant oil-induced lupus is common in vaccinated farmed Atlantic salmon. This may have a significant impact on production loss, disease of previously unknown etiology, and future strategies of vaccines and salmon farming.  相似文献   

8.
Systemic lupus erythematosus is a chronic autoimmune disease of complex clinical presentation and etiology and is likely influenced by numerous genetic and environmental factors. While a large number of susceptibility genes have been identified, the production of antibodies against a distinct subset of nuclear proteins remains a primary distinguishing characteristic in disease diagnosis. However, the utility of autoantibody biomarkers for disease sub-classification and grouping remains elusive, in part, because of the difficulty in large scale profiling using a uniform, quantitative platform. In the present study serological profiles of several known SLE antigens, including Sm-D3, RNP-A, RNP-70k, Ro52, Ro60, and La, as well as other cytokine and neuronal antigens were obtained using the luciferase immunoprecipitation systems (LIPS) approach. The resulting autoantibody profiles revealed that 88% of a pilot cohort and 98% of a second independent cohort segregated into one of two distinct clusters defined by autoantibodies against Sm/anti-RNP or Ro/La autoantigens, proteins often involved in RNA binding activities. The Sm/RNP cluster was associated with a higher prevalence of serositis in comparison to the Ro/La cluster (P = 0.0022). However, from the available clinical information, no other clinical characteristics were associated with either cluster. In contrast, evaluation of autoantibodies on an individual basis revealed an association between anti-Sm (P = 0.006), RNP-A (P = 0.018) and RNP-70k (P = 0.010) autoantibodies and mucocutaneous symptoms and between anti-RNP-70k and musculoskeletal manifestations (P = 0.059). Serologically active, but clinically quiescent disease also had a higher prevalence of anti-IFN-α autoantibodies. Based on our findings that most SLE patients belong to either a Sm/RNP or Ro/La autoantigen cluster, these results suggest the possibility that alterations in RNA-RNA-binding protein interactions may play a critical role in triggering and/or the pathogenesis of SLE.  相似文献   

9.
Much effort has been devoted in recent years to the events linking recognition and disposal of apoptotic cells to sustained immunity towards the antigens they contain. Programmed death via apoptosis indeed provides most of the raw material the immune system exploits to establish self tolerance, i.e. to learn how to distinguish between self constituents and foreign antigens, belonging to invading pathogens. In parallel, events occurring during cell death may enable a restricted array of molecules endowed with diverse structure, function and intracellular distribution to satisfy the requirement to evoke and maintain autoimmune responses. Dendritic cells (DCs), the most potent antigen presenting cells, appear to play a crucial role. Here we will discuss some of the constrains regulating the access of dying cells' antigens to DCs, as well as censorship mechanisms that prevent their maturation and the full explication of their antigen presenting function.  相似文献   

10.
The transient receptor potential vanilloid 1 (TRPV1) is primarily localized to sensory nerve fibers and is associated with the stimulation of pain and inflammation. TRPV1 knockout (TRPV1KO) mice show enhanced LPS-induced sepsis compared with wild type (WT). This implies that TRPV1 may have a key modulatory role in increasing the beneficial and reducing the harmful components in sepsis. We investigated immune and inflammatory mechanisms in a cecal ligation and puncture (CLP) model of sepsis over 24 h. CLP TRPV1KO mice exhibited significant hypothermia, hypotension, and organ dysfunction compared with CLP WT mice. Analysis of the inflammatory responses at the site of initial infection (peritoneal cavity) revealed that CLP TRPV1KO mice exhibited: 1) decreased mononuclear cell integrity associated with apoptosis, 2) decreased macrophage tachykinin NK(1)-dependent phagocytosis, 3) substantially decreased levels of nitrite (indicative of NO) and reactive oxygen species, 4) increased cytokine levels, and 5) decreased bacteria clearance when compared with CLP WT mice. Therefore, TRPV1 deletion is associated with impaired macrophage-associated defense mechanisms. Thus, TRPV1 acts to protect against the damaging impact of sepsis and may influence the transition from local to a systemic inflammatory state.  相似文献   

11.
The initial events predisposing to loss of tolerance in patients with systemic lupus erythematosus (SLE) are largely unknown, as are the events that precipitate the transition from preclinical to overt disease. We hypothesized that induction of murine SLE would require tipping the balance between tolerance and immunity in two ways: 1) an immunogen that could take advantage of apoptotic cells as a scaffold for epitope spread, and 2) an immune activator that would generate a strong and persistent T cell response to the inciting immunogen. We show that immunization of C57BL/6 and BALB/c mice with human beta(2)-glycoprotein I, an apoptotic cell-binding protein, in the presence of LPS induces a long-lived, potent response to beta(2)-glycoprotein I that results in epitope spread to multiple SLE autoantigens. SLE-specific autoantibodies emerged in a sequential manner that recapitulated the order seen in human SLE. Moreover, immunized mice developed overt glomerulonephritis closely resembling human lupus nephritis.  相似文献   

12.
In a large-scale analysis, the effects of DNA damage on the levels and localization of almost every protein in an organism have now been tracked in living cells. It is shown that that although many proteins change their position or concentration, they rarely do both.  相似文献   

13.
Antibodies against the proliferating cell nuclear antigen (PCNA) was first discovered in the sera of systemic lupus erythematosus (SLE) patients. However, the reactivity and specificity of anti-PCNA autoantibodies are still unclear. To investigate the property of anti-PCNA autoantibodies, we conducted an ELISA screening of the anti-PCNA autoantibodies in sera of SLE patients. Eighteen out of 191 SLE sera were found to be positive for anti-PCNA antibodies giving a frequency of nearly 10%. Among the positive sera, a sample with the highest titer of anti-PCNA autoantibody preferentially recognizes the wild-type PCNA as compared to the Y114A mutation which contains a single amino acid substitution at 114 and fails to form the toroidal structure. Moreover, the autoantibody purified from this serum identifies only the free PCNA in crude mammalian cell extracts but not other associated cellular components. This finding raises a possibility that immunostaining with the human anti-PCNA autoantibodies in previous studies might have only partially PCNAs in tissues.  相似文献   

14.
Recent evidence suggests that systemic autoimmunity and immunodeficiency are not separate entities, but rather are interconnected processes. Immunodeficiency results from distinct defects of the immune response and primarily presents as infections but also frequently with autoimmune features. Systemic autoimmunity is the combined effect of multiple genetic variations and infectious and immunoregulatory factors that result in dominant autoimmune manifestations, in addition to frequent and opportunistic infections. The overlap in disease manifestations and symptoms suggests that immunodeficiency should be considered in the presence of autoimmunity, and vice versa. In this review, we present the shared or similar aspects of immunodeficiency and autoimmunity using systemic lupus erythematosus as a paradigm and discuss the implications for clinical care.  相似文献   

15.
Role of cyclin kinase inhibitor p21 in systemic autoimmunity   总被引:5,自引:0,他引:5  
The cyclin kinase inhibitor protein p21 affects multiple processes relevant to the immune system, including cell cycle progression, replicative senescence, hemopoietic stem cell quiescence, and apoptosis. Therefore, malfunction of this protein may be a contributor to the pathogenesis of systemic autoimmunity. Here, we report that mixed background p21-deficient 129/Sv x C57BL/6 mice showed increased in vitro and in vivo T cell cycling and activation, moderate hypergammaglobulinemia and, at low penetrance, anti-chromatin autoantibodies. Homeostatic anti-self MHC/peptide ligand-induced proliferation of p21-deficient T cells was also enhanced. However, lymphoid organ enlargement was very mild, presumably due to increased apoptosis of the rapidly dividing cells. Moreover, the older p21-deficient mice had kidney pathology representing a similar, but slightly more advanced, state than that seen in the control mice. The timing and severity of the above serologic, cellular, and histologic manifestations in p21-deficient mice were unaffected by gender. Thus, p21 deficiency significantly enhances T cell activation and homeostatic proliferation, and can induce mild autoimmune manifestations at a low incidence without gender bias, but does not in itself generate the full spectrum of lupus-like disease.  相似文献   

16.
Celiac disease (CD) is an intestinal malabsorption characterized by intolerance to cereal proteins accompanied by immunological responses to dietary gliadins and tissue transglutaminase, an autoantigen located in the endomysium. Tissue transglutaminase belongs to the family of enzymes that catalyze protein cross-linking reactions and is constitutively expressed in many tissues as well as being activated during apoptosis. The role of gliadins in eliciting the immune response in CD and how transglutaminase is linked to the primary reaction are still unclear. In this work, we report the production and analysis of six phage Ab libraries from the peripheral and intestinal lymphocytes of three CD patients. We were able to isolate Abs to transglutaminase from all intestinal lymphocytes libraries but not from those obtained from peripheral lymphocytes. This is in contrast to Abs against gliadin, which could be obtained from all libraries, indicating that the humoral response against transglutaminase occurs at the local level, whereas that against gliadin occurs both peripherally and centrally. Abs from all three patients recognized the same transglutaminase epitopes with a bias toward the use of the V(H)5 Ab variable region family. The possible role of these anti-transglutaminase Abs in the onset of CD and associated autoimmune pathologies is discussed.  相似文献   

17.
We formulate a two-phase paradigm of autoimmunity associated with systemic lupus erythematosus, the archetypal autoimmune disease. The initial Toll-like receptor (TLR)-independent phase is mediated by dendritic cell uptake of apoptotic cell debris and associated nucleic acids, whereas the subsequent TLR-dependent phase serves an amplification function and is mediated by uptake of TLR ligands derived from self-antigens (principally nucleic acids) complexed with autoantibodies. Both phases depend on elaboration of type I interferons (IFNs), and therapeutic interruption of induction or activity of these cytokines in predisposed individuals might have a substantial mitigating effect in lupus and other autoimmune diseases.  相似文献   

18.
Many exogenous sources of stress can lead to cell death. In recent years, endogenous cellular sources of stress have also been identified, including the stress that arises from the accumulation of unfolded proteins within a cell's endoplasmic reticulum (ER). To counterbalance this type of ER stress, higher eukaryotic cells possess a three-pronged signal-transduction pathway termed the unfolded-protein response (UPR). This Review focuses on the role of the UPR in the mammalian immune system and how manipulation of this complex signalling pathway may be of therapeutic benefit in human disease.  相似文献   

19.
Patients with systemic autoimmune diseases usually produce high levels of antibodies to self-antigens (autoantigens). The repertoire of common autoantigens is remarkably limited, yet no readily understandable shared thread links these apparently diverse proteins. Using computer prediction algorithms, we have found that most nuclear systemic autoantigens are predicted to contain long regions of extreme structural disorder. Such disordered regions would generally make poor B cell epitopes and are predicted to be under-represented as potential T cell epitopes. Consideration of the potential role of protein disorder may give novel insights into the possible role of molecular mimicry in the pathogenesis of autoimmunity. The recognition of extreme autoantigen protein disorder has led us to an explicit model of epitope spreading that explains many of the paradoxical aspects of autoimmunity – in particular, the difficulty in identifying autoantigen-specific helper T cells that might collaborate with the B cells activated in systemic autoimmunity. The model also explains the experimentally observed breakdown of major histocompatibility complex (MHC) class specificity in peptides associated with the MHC II proteins of activated autoimmune B cells, and sheds light on the selection of particular T cell epitopes in autoimmunity. Finally, the model helps to rationalize the relative rarity of clinically significant autoimmunity despite the prevalence of low specificity/low avidity autoantibodies in normal individuals.  相似文献   

20.
Increased monocyte/macrophage (Mphi) apoptosis occurs in patients with systemic lupus erythematosus (SLE) and is mediated, at least in part, by an autoreactive CD4(+) T cell subset. Furthermore, autoreactive murine CD4(+) T cells that kill syngeneic Mphi in vitro induce a lupus-like disease in vivo. However, it is unclear whether increased Mphi apoptosis in SLE per se is sufficient to accelerate/promote autoimmunity. We have investigated whether increased Mphi apoptosis in vivo, induced by the administration of clodronate liposomes, can exacerbate the autoimmune phenotype in NZB x SWR (SNF(1)) lupus-prone mice, and induce autoantibody production in haplotype-matched BALB/c x DBA1 (DBF(1)) non-lupus-prone mice. Lupus-prone mice SNF(1) mice that were treated with clodronate liposomes, but not mice treated with vehicle, developed significant increases in autoantibodies to dsDNA, nucleosomes, and the idiotypically related family of nephritic Abs Id(LN)F(1), when compared with untreated SNF(1) mice. Furthermore, clodronate treatment hastened the onset of proteinuria and worsened SNF(1) lupus nephritis. When compared with vehicle-treated controls, clodronate-treated non-lupus-prone DBF(1) mice developed significantly higher levels of anti-nucleosome and Id(LN)F(1) Abs but did not develop lupus nephritis. We propose that Mphi apoptosis contributes to the pathogenesis of autoantibody formation and organ damage through both an increase in the apoptotic load and impairment in the clearance of apoptotic material. This study suggests that mechanisms that induce scavenger cell apoptosis, such as death induced by autoreactive cytotoxic T cells observed in SLE, could play a pathogenic role and contribute to the severity of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号