首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Mouse human-human heterohybridomas secreting human monoclonal antibodies (MoAb) against tetanus toxoid and hepatitis B virus surface antigen were effectively cultivated in a medium containing a serum substitute called GFS, a 55% to 70% ammonium sulphate fraction of serum from adult cattle. A perfusion culture system using a jar fermentor equipped with a cell sedimentation column with a double jacket was developed and applied to produce human MoAb. In this fermentor, maximum cell density of a heterohybridoma reached 1.2×107 cells/ml and MoAb was continuously accumulated at a constant rate for at least 40 days; this led to the production of more than one gram of human MoAb using a culture vessel with a 1-1 working volume.  相似文献   

2.
The rates of synthesis of peptidoglycan and protein during the division cycle of Escherichia coli were measured by the membrane elution technique using cells differentially labelled with N-acetylglucosamine and leucine. During the first part of the division cycle the ratio of the rates of protein and peptidoglycan synthesis was constant. The rate of peptidoglycan synthesis, relative to the rate of protein synthesis, increased during the latter part of the division cycle. These results support a simple, bipartite model of cell surface increase in rod-shaped cells. Prior to the start of constriction the cell surface increases only by lateral wall extension. After cell constriction starts, the cell surface increases by both lateral wall and pole growth. The increase in surface area is partitioned between the lateral wall and the pole so that the volume of the cell increases exponentially. No variation in cell density occurs, because the increase in surface allows a continuous exponential increase in cell volume that accommodates the exponential increase in cell mass. The results are consistent with the constant density of the growing cell and the surface stress model for the regulation of cell surface synthesis. In addition, the elution pattern suggests that the membrane elution method does work by having the cells effectively bound to the membrane by their poles.  相似文献   

3.
The flow-cytometric (FCM) analysis of bivariate DNA/lgG distributions has been conducted to study the cell cycle kinetics and monoclonal antibody (MAb) production during perfusion culture of hybridoma cells. Three different perfusion rates were employed to demonstrate the dependency of MAb synthesis and secretion on cell cycle and growth rate. The results showed that, during the rapid growth period of perfusion culture, the level of intracellular igG contents of hybridoma cells changed significantly at each perfusion rate, while the DNA histograms showing cell cycle phases were almost constant. Meanwhile, during the reduced growth period of perfusion culture, the fraction of cells in the S phase decreased, and the fraction cells in the G1/G0 phase increased with decreasing growth rate. The fraction of cells in the G2/M phase was relatively constant during the whole period of perfusion culture. Positive correlation was found between mean intracellular IgG contents and the specific MAb production rate, suggesting that the deletion of intracellular IgG contents by a flow cytometer could be used as a good indicator for the prediction of changes in specific MAb productivity following manipulation of the culture condition. (c) 1994 John Wiley & Sons, Inc.  相似文献   

4.
In the growing antenna and antennal lobe of the cockroach, Blaberus craniifer (Dictyoptera : Blaberidae), the sizes of the various components, when expressed as a function of developmental stage, follow biphasic exponential kinetics. From first to last nymphal stage, the growth rates are constant. They vary widely with components. In the preimaginal phase, between the last nymphal and adult stages, these rates are generally not maintained, with the exception of deutocerebral cell bodies and some glomeruli. The rate of growth of the antenna decreases, whereas it increases for most glomeruli and antennal lobe.The growth rate of each identified glomerulus is characterized by a specific constant. The growth rate of glomerulus 106, the adult male macroglomerulus, is the same in male and female nymphs. During the preimaginal phase, however, it slightly decreases in the female and greatly increases in the male, resulting in adult dimorphism. The distribution of growth rates in the glomerular population is Gaussian. The slowest and most rapidly growing glomeruli are gathered into 3 spatially separate groups. Only one of them (the group comprising the macroglomerulus), includes both rapid and slow growing glomeruli. Glomerular growth in volume paralles growth of the antenna, allowing estimates of the number of antennal neurons per glomerulus to be determined.  相似文献   

5.
Increase in cell mass during the division cycle of Escherichia coli B/rA.   总被引:7,自引:7,他引:0  
Increase in the mean cell mass of undivided cells was determined during the division cycle of Escherichia coli B/rA. Cell buoyant densities during the division cycle were determined after cells from an exponentially growing culture were separated by size. The buoyant densities of these cells were essentially independent of cell age, with a mean value of 1.094 g ml-1. Mean cell volume and buoyant density were also determined during synchronous growth in two different media, which provided doubling times of 40 and 25 min. Cell volume and mass increased linearly at both growth rates, as buoyant density did not vary significantly. The results are consistent with only one of the three major models of cell growth, linear growth, which specifies that the rate of increase in cell mass is constant throughout the division cycle.  相似文献   

6.
Previous experiments have shown that population average surface lgG content is correlated with the specific antibody production rates of batch hybridoma cultures. Therefore, surface associated lgG content of single hybridoma cells might indicate antibody secretion rates of individual cells. Moreover, the surface lgG content should reflect the pattern of secretion rates during the cell cycle. To probe for lgG secretion rates during the cellcycle, a double staining procedure has been developed allowing simultaneousflow cytometric analysis of surface lgG content and DNA content of murine hybridoma cells. Crosslinking of the surface associated immunofluorescence with the cell by paraformaldehyde fixation permits subsequent DNA staining without loss of immunofluorescence. The optimized protocol has been used to determine the pattern of the surface lgG fluorescence as a function of the cell cycle position. It is highest during the G2+M cell cycle phase and the experimental data are in excellent agreement with the previously predicted secretion pattern during the cell cycle. (c) 1995 John Wiley & Sons Inc.  相似文献   

7.
In searching for ways to manipulate heterogeneous hybridoma cell cultures (ATCC HB124) to obtain increased production of monoclonal antibodies (IgG2a), we have selected for a higher secreting but slower growing subpopulation using the level of fluorescent surface-associated antibodies and a fluorescence-activated cell sorter. Cell surface fluorescence was found to be correlated with specific antibody secretion rate over the short term but not with intracellular antibody content. Also, the specific secretion rate of a heterogeneous population of hybridoma cells grown in batch culture has been shown to be inversely correlated with an increase in either the initial cell concentration or the medium antibody concentration. Several experiments suggest that an upper limit exists for medium antibody concentration, above which antibody is degraded at the same rate at which it is produced. Should other cell lines behave similarly, strategies for overproduction of monoclonal antibodies suggested herein could be profitably used in industry.  相似文献   

8.
Generally, mammalian cells utilize glucose and glutamine as primary energy sources. To investigate the effect of energy sources on metabolic fluxes and antibody production, glucose- or glutamine-limited serum-free continuous culture of hybridoma 3A21 cells, which produce anti-ribonuclease A antibody, was carried out. The cell volume and dry cell weight were evaluated under various steady-state conditions. The specific consumption and production rates were evaluated on the basis of dry cell weight. On the basis of these results, the fluxes of the metabolic pathway were calculated. It was found that increasing the specific growth rate causes the specific ATP and antibody production rates to decrease. The fluxes between malate and pyruvate also decreased with the increase in specific growth rate. To increase the ATP production rate under steady-state conditions by the enhancement of fluxes between malate and pyruvate, the reduced metabolic fluxes were increased by an intermediate (pyruvate, malate, and citrate) addition. As a result, higher specific ATP and antibody production rates were achieved following the intermediate addition at a constant dilution rate.  相似文献   

9.
Cell cycle behavior in the marine Synechococcus strain WH8101 was examined in detail over a wide range of light- and nitrogen-limited growth rates. The presence of bimodal DNA frequency distributions under all conditions confirms that the overlapping rounds of DNA replication that characterize E. coli and other fast-growing prokaryotes are not present in this organism. Although chromosome replication time, C , was constrained to a fairly narrow range of values overall, it nevertheless did vary with growth rate and limiting factor. Light-limited cells growing at moderate rates had higher C values than did N-limited cells growing at comparable rates (by as much as a factor of 2). As these cells became light saturated, however, C decreased sharply to the level observed under N limitation. The post-replication period, D , decreased monotonically with growth rate under both light and N limitation, approaching a constant value at moderate to high growth rates. Average cell volume at the time of initiation of DNA replication was calculated from the values of C and D , combined with directly measured mean cell volume, and was found to be constant at all growth rates above ∼0.7 d−1. This pattern was confirmed by estimates of initiation volume based on flow cytometric light scatter measurements, and suggests that as has been found in other prokaryotic systems, cell mass may play an important role in regulating the timing of chromosome replication in cyanobacteria. Furthermore, because the magnitude of C + D influences average cell mass (given a constant mass at initiation), changes in these parameters (particularly C ) may be responsible for the previously reported nonlinear relationship between light-limited growth rate and both RNA cell−1 and average cell volume.  相似文献   

10.
The growth and production kinetics of a mouse hybridoma cell line and a human-mouse heterohybridoma were analyzed under conditions of reduced temperature and serum content. The mouse hybridoma P24 had a constant cell specific production rate and RNA content, while the heterohybridoma 3D6-LC4 showed growth associated production kinetics and an increased RNA content at higher growth rates. This behaviour of 3D6-LC4 cells can be explained by the unusual cell cycle kinetics of this line, which can be arrested in any phase under growth limiting conditions, so that a low growth rate does not result in a greater portion of high producing G1-phase cells. Substrate limitation changes the cell cycle distribution of this cell line to a greater extent than low temperature or serum content, which indicates that this stress factor exerts a greater physiological control than assumed.  相似文献   

11.
The capacity of membrane immunoglobulin A (IgA)-bearing B cells to respond to specific antigen in the absence of T cell influences has not been defined. A human-human hybridoma, constructed from an Epstein-Barr virus transformed tonsil B cell that secreted IgA anti-phosphorycholine (PC) and a human plasmacytoma cell, was utilized to examine this issue. The cloned hybridoma expressed membrane IgA and secreted IgA specific for PC. Stimulation of the hybridoma cells with PC conjugated to Sepharose beads (PC-Sepharose) but not glycine-conjugated Sepharose resulted in an increase in DNA synthesis. Affinity purified goat anti-human IgA bound to Sepharose also augmented DNA synthesis. Soluble PC did not increase DNA synthesis and inhibited the increase in DNA synthesis resulting from PC-Sepharose. IgA secretion was augmented in response to PC-Sepharose, as demonstrated by an increase in the number of Ig-secreting cells detected by a reverse hemolytic plaque assay and by quantitation of the IgA secreted per cell by enzyme-linked immunosorbent assay. Mitogen-stimulated T cell supernatants increased IgA secretion of the hybridoma cells but did not cause synergistic stimulation of the cells in the presence of PC-Sepharose. These data indicate that Sepharose-bound antigen was sufficient to induce proliferation and augment IgA secretion by this membrane IgA anti-PC-bearing hybridoma. The results suggest that cross-linking of membrane IgA by specific antigen may be a sufficient stimulus for proliferation and differentiation of B cells at this stage of maturation.  相似文献   

12.
A hybridoma cell line, AFP-27-P, was cultivated in continuous culture under glucose-limited conditions. The viable cell concentration, dead-cell concentration, and cell volume all varied with the dilution rate. A model previously developed for a nonproducing clone of the same cell line, AFP-27-NP, was extended to describe the behavior of the cells. The relationship between the specific growth rate and glucose concentration is described by a function similar to the Monod model. A threshold glucose concentration and a minimum specific growth rate are incorporated; the model is meaningful only at glucose concentration and a minimum specific growth rate are incorporated; the model is meaningful only at glucose concentrations and specific growth rates above these levels. The relationship between the death rate and the glucose concentration is described by an inverted Monod-type function. Furthermore, the yield coefficient based on glucose is constant in the lower range of specific growth rates and changes to a new constant value in the upper range of specific growth rates. No maintenance term for glucose consumption is used; in the plot of specific glucose consumption rate vs. specific growth rate, the line intercepts the specific growth rate at a value close to the minimum growth rate. The productivity of antibody as a function of the specific growth rate is described by a mixed type model with a noon-growth-associated term and a negative-growth-associated term. The values for the model parameters were determined from regression analysis of the steady state data.  相似文献   

13.
Cell volume distributions were determined electronically for steady-state cultures of Escherichia coli, Bacillus megaterium, Bacillus subtilis, and Salmonella typhimurium by use of a Coulter transducer-multichannel analyzer system of good resolution. All of the cell volume distributions had the same general shape, even though cultures were grown at widely different rates. Some results were independent of any particular growth model. Both the variability in the volumes of dividing cells and the fraction of constricted and unseparated doublet cells increased with growth rate. The greater separation to single cells at slow growth rates is in agreement with the general finding that filamentous and hyphal forms are greatly reduced in slowly growing chemostat cultures. The distributions were fitted equally well by simple models which assumed that cell growth was either linear or exponential throughout the entire cell cycle. It is concluded that methods of determining growth rate by analysis of distributions of bacterial volumes do not yet have sufficient resolution to distinguish between a variety of alternative models for growth of bacteria.  相似文献   

14.
Hybridomas are finding increased use for the production of a wide variety of monoclonal antibodies. Understanding the roles of physiological and environmental factors on the growth and metabolism of mammalian cells is a prerequisite for the development of rational scale-up procedures. An SP2/0-derived mouse hybridoma has been employed in the present work as a model system for hybridoma suspension culture. In preliminary shake flask studies to determine the effect of glucose and glutamine, it was found that the specific growth rate, the glucose and glutamine metabolic quotients, and the cumulative specific antibody production rate were independent of glucose concentration over the range commonly employed in cell cultures. Only the specific rate of glutamine uptake was found to depend on glutamine concentration. The cells were grown in continuous culture at constant pH and oxygen concentration at a variety of dilution rates. Specific substrate consumption rates and product formation rates were determined from the steady state concentrations. The specific glucose uptake rate deviated from the maintenance energy model(1) at low specific growth rates, probably due to changes in the metabolic pathways of the cells. Antibody production was not growth-associated; and higher specific antibody production rates were obtained at lower specific growth rates. The effect of pH on the metabolic quotients was also determined. An optimum in viable cell concentration was obtained between pH 7.1 and 7.4. The viable cell number and viability decreased dramatically at pH 6.8. At pH 7.7 the viable cell concentration initially decreased, but then recovered to values typical of pH 7.1-7.4. Higher specific nutrient consumption rates were found at the extreme pH values; however, glucose consumption was inhibited at low pH. The pH history also influenced the behavior at a given pH. Higher antibody metabolic quotients were obtained at the extreme pH values. Together with the effect of specific growth rate, this suggests higher antibody production under environmental or nutritional stress.  相似文献   

15.
Previously, we observed that CRL-8018 hybridoma cells were more sensitive to well-defined viscometric shear during the lag and stationary phases than during the exponential phase of batch cultures. Some potential hypotheses for explaining the increase in shear sensitivity are (1) nutrient limitations that result in a decrease in production of specific cellular components responsible for the mechanical strength of the cell, (2) nutrient limitations that lead to synchronization of the culture in a cell cycle phase that is more sensitive to shear, or (3) a link between cell growth and shear sensitivity, such that slowly growing cells are more sensitive to shear. Here, the duration of the exponential phase was increased with use of fed-batch, and the effect on shear sensitivity of the cultures was measured with a viscometric technique. Extension of exponential growth resulted in an increased period during which the cells were insensitive to shear. Additionally, the shear sensitivity of the cells was constant over a wide range of growth rates and metabolic yields in chemostat cultures. These observations suggest that as long as the cells are actively (exponentially) growing, their shear sensitivity does not depend on the growth rate or metabolic state of the cell as expressed by metabolic yields. Thus, hypothesis 3 above can be dismissed.  相似文献   

16.
Hybridomas are finding increased use for the production of a wide variety of monoclonal antibodies. Understanding the roles of physiological and environmental factors on the growth and metabolism of mammalian cells is a prerequisite for the development of rational scale-up procedures. An SP2/0-derived mouse hybridoma has been employed in the present work as a model system for hybridoma suspension culture. In preliminary shake flask studies to determine the effect of glucose and glutaminE, it was found that the specific growth rate, the glucose and glutamine metabolic quotients, and the cumulative specific antibody production rate were independent of glucose concentration over the range commonly employed in cell cultures. Only the specific rate of glutamine uptake was found to depend on glutamine concentration. The cells were grown in continuous culture at constant pH and oxygen concentration at a variety of dilution rates. Specific substrate consumption rates and product formation rates were determined from the steady state concentrations. The specific glucose uptake rate deviated from the maintenance energy model(1) at low specific growth rates, probably due to changes in the metabolic pathways of the cells. Antibody production was not growth-associated; and higher specific antibody production rates were obtained at lower specific growth rates. The effect of pH on the metabolic quotients was also determined. An optimum in viable cell concentration was obtained between pH 7.1 and 7.4. The viable cell number and viability decreased dramatically at pH 6.8. At pH 7.7 the viable cell concentration initially decreased, but then recovered to values typical of pH 7.1-7.4. Higher specific nutrient consumption rates were found at the extreme pH values; however, glucose consumption was inhibited at low pH. The pH history also influenced the behavior at a given pH. Higher antibody metabolic quotients were obtained at the extreme pH values. Together with the effect of specific growth rate, this suggests higher antibody production under environmental or nutritional stress.  相似文献   

17.
The rates of synthesis of peptidoglycan and protein during the division cycle of Salmonella typhimurium have been measured by using the membrane elution technique and differentially labeled diaminopimelic acid and leucine. The cells were labeled during unperturbed exponential growth and then bound to a nitrocellulose membrane by filtration. Newborn cells were eluted from the membrane with fresh medium. The radioactivity in the newborn cells in successive fractions was determined. As the cells are eluted from the membrane as a function of their cell cycle age at the time of labeling, the rate of incorporation of the different radioactive compounds as a function of cell cycle age can be determined. During the first part of the division cycle, the ratio of the rates of protein and peptidoglycan synthesis was constant. During the latter part of the division cycle, there was an increase in the rate of peptidoglycan synthesis relative to the rate of protein synthesis. These results support a simple, bipartite model of cell surface increase in rod-shaped cells. Before the start of constriction, the cell surface increased only by cylindrical extension. After cell constriction started, the cell surface increased by both cylinder and pole growth. The increase in surface area was partitioned between the cylinder and the pole so that the volume of the cell increased exponentially. No variation in cell density occurred because the increase in surface allowed a continuous exponential increase in cell volume that accommodated the exponential increase in cell mass. Protein was synthesized exponentially during the division cycle. The rate of cell surface increase was described by a complex equation which is neither linear nor exponential.  相似文献   

18.
19.
Because of the interest in understanding and optimizing secretion of proteins from mammalian cells, reliable and more reproducible methods are needed to monitor the external redox potential of animal cells in suspension culture. An improved off-line method was established that greatly reduces the typically long response time of redox electrodes in cell culture media and improves the standardization of redox probes. In addition, the dependence of medium redox potential on dissolved oxygen concentrations and pH was investigated using cell-free medium. Off-line as well as on-line redox potential measurements were then applied to spinner or bioreactor cultures of murine hybridoma cells. Serum containing or protein-free medium were used. The time dependence of the experimentally determined external redox potential was found to be affected not only by oxygen, pH, and medium composition. but to a significant extent by the rate of generation of reductants by hybridoma cells. The observed specific rate of medium reduction by generation of reductants (mV h–1 viable cell–1) decreased during exponential growth while cell number increased from 2×105 viable cells ml–1 to 3.5×106 viable cells ml–1. This rate, however, was essentially constant at –7.3 mV h–1±3.7 mV h–1 per 1010 viable cells during growth under conditions of constant dissolved oxygen tension and constant pH. Using these observations, the quantity of reductants synthesized and secreted into the medium by viable hybridoma cells was estimated to be approximately 1.3 mole h–1 per 1010 viable hybridoma cells. The time course of specific monoclonal antibody secretion rate did not correlate with changes in the external oxidation/reduction potential in either serum containing or protein-free medium.  相似文献   

20.
Membrane potential and the rate constants for anion self-exchange in dog, cat, and human red blood cells have been shown to vary with cell volume. For dog and cat red cells, the outward rate constants for SO4 and Cl increase while the inward rate constant for SO4 decreases as cells swell or shrink. These changes coincide with the membrane potential becoming more negative as a result of changes in cell volume. Human red cells exhibit a similar change in the rate constants for SO4 and Cl efflux in response to cell swelling, but shrunken cells exhibit a decreased rate constant for SO4 efflux and a more positive membrane potential. Hyperpolarization of shrunken dog and cat red cells is due to a volume-dependent rate constant for SO4 efflux and a more positive membrane potential. Hyperpolarization of shrunken dog and cat red cells is due to a volume-dependent increase in PNa. If this increase in PNa is prevented by ATP depletion or if the outward Na gradient is removed, the response to shrinking is identical to human red cells. These results suggest that the volume dependence of anion permeability may be secondary to changes in the anion equilibrium ratio which in red cells is reflected by the membrane potential. When the membrane potential and cell volume of human red cells were varied independently by a method involving pretreatment with nystatin, it was found that the rate of anion transport (for SO4 and Cl) does not vary with cell volume but rather with membrane potential (anion equilibrium ratio); that is, the rate constant for anion efflux is decreased and that for influx is increased as the membrane potential becomes more positive (internal anion concentration increases) while the opposite is true with membrane hyperpolarization (a fall in internal anion concentration).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号