首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Z. B. Zeng  C. C. Cockerham 《Genetics》1991,129(2):535-553
The variances of genetic variances within and between finite populations were systematically studied using a general multiple allele model with mutation in terms of identity by descent measures. We partitioned the genetic variances into components corresponding to genetic variances and covariances within and between loci. We also analyzed the sampling variance. Both transient and equilibrium results were derived exactly and the results can be used in diverse applications. For the genetic variance within populations, sigma 2 omega, the coefficient of variation can be very well approximated as [formula: see text] for a normal distribution of allelic effects, ignoring recurrent mutation in the absence of linkage, where m is the number of loci, N is the effective population size, theta 1(0) is the initial identity by descent measure of two genes within populations and t is the generation number. The first term is due to genic variance, the second due to linkage disequilibrium, and third due to sampling. In the short term, the variation is predominantly due to linkage disequilibrium and sampling; but in the long term it can be largely due to genic variance. At equilibrium with mutation [formula: see text] where u is the mutation rate. The genetic variance between populations is a parameter. Variance arises only among sample estimates due to finite sampling of populations and individuals. The coefficient of variation for sample gentic variance between populations, sigma 2b, can be generally approximated as [formula: see text] when the number of loci is large where S is the number of sampling populations.  相似文献   

2.
Stable isotope analysis (SIA) of wolf (Canis lupus) tissues can be used to estimate diet and intra-population diet variability when potential prey have distinct δ13C and δ15N values. We tested this technique using guard hairs collected from 44 wolves in 12 northwestern Montana packs, summer 2009. We used hierarchical Bayesian stable isotope mixing models to determine diet and scales of diet variation from δ13C and δ15N of wolves and potential prey, white-tailed deer (Odocoileus virginianus), mule deer (Odocoileus hemionus), elk (Cervus canadensis), moose (Alces alces), snowshoe hare (Lepus americanus), and other prey. As a check on SIA results, we conducted a separate diet analysis with temporally matched scats (i.e., collected in summer 2008) from 4 of the same packs. Wolves were centered on the ungulate prey in the isotope mixing space. Both methods revealed differences among pack diets and that wolves may consume moose in greater proportions than predicted by available biomass. Stable isotope analysis, and scat results were not entirely concordant; assumptions related to tissues of use in SIA, hair growth period in wolves, and scat sampling may have contributed to a mismatch between methods. Incorrect fractionation values, insufficient separation of prey in the isotope mixing space, choice of prior information in the Bayesian mixing models, and unexplained factors may have distorted diet estimates. However, the consistently high proportion of moose in pack diets suggests that increased population monitoring would benefit management of moose and wolves. Our results also support suggestions of other researchers that species-specific fractionation values should be used whenever possible, and that SIA may sometimes only provide indices of use for general groups of prey (e.g., large ungulates). © 2012 The Wildlife Society.  相似文献   

3.
Somers MJ  Graf JA  Szykman M  Slotow R  Gusset M 《Oecologia》2008,158(2):239-247
We analysed 25 years (1980–2004) of demographic data on a small re-introduced population of endangered African wild dogs (Lycaon pictus) in Hluhluwe-iMfolozi Park (HiP), South Africa, to describe population and pack dynamics. As small populations of cooperative breeders may be particularly prone to Allee effects, this extensive data set was used to test the prediction that, if Allee effects occur, aspects of reproductive success, individual survival and population growth should increase with pack and population size. The results suggest that behavioural aspects of wild dogs rather than ecological factors (i.e. competitors, prey and rainfall) primarily have been limiting the HiP wild dog population, particularly a low probability of finding suitable mates upon dispersal at low pack number (i.e. a mate-finding Allee effect). Wild dogs in HiP were not subject to component Allee effects at the pack level, most likely due to low interspecific competition and high prey availability. This suggests that aspects of the environment can mediate the strength of Allee effects. There was also no demographic Allee effect in the HiP wild dog population, as the population growth rate was significantly negatively related to population size, despite no apparent ecological resource limitation. Such negative density dependence at low numbers indicates that behavioural studies of the causal mechanisms potentially generating Allee effects in small populations can provide a key to understanding their dynamics. This study demonstrates how aspects of a species’ social behaviour can influence the vulnerability of small populations to extinction and illustrates the profound implications of sociality for endangered species’ recovery. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Quantifying diet is essential for understanding the functional role of species with regard to energy processing, transfer, and storage within ecosystems. Recently, variance structure in the stable isotope composition of consumer tissues has been touted as a robust tool for quantifying trophic niche width, a task that has previously proven difficult due to bias in direct dietary analyses and difficulties in integrating diet composition over time. We used carbon and nitrogen stable isotope analyses to examine trophic niche width of two sympatric aquatic snakes, banded watersnakes Nerodia fasciata and black swamp snakes Seminatrix pygaea inhabiting an isolated wetland where seasonal migrations of amphibian prey cause dramatic shifts in resource availability. Specifically, we characterized snake and prey isotope compositions through time, space, and ontogeny and examined isotope values in relation to prey availability and snake diets assessed by gut content analysis. We determined that prey cluster into functional groups based on similarity of isotopic composition and seasonal availability. Isotope variance structure indicated that the trophic niche width of the banded watersnake was broader (more generalist) than that of the black swamp snake. Banded watersnakes also exhibited seasonal variation in isotope composition, suggesting seasonal diet shifts that track amphibian prey availability. Conversely, black swamp snakes exhibited little seasonal variation but displayed strong ontogenetic shifts in carbon and nitrogen isotope composition that closely paralleled ontogenetic shifts in their primary prey, paedomorphic mole salamanders Ambystoma talpoideum. Although niche dimensions are often treated as static, our results demonstrate that seasonal shifts in niche dimensions can lead to changes in niche overlap between sympatric species. Such short‐term fluctuations in niche overlap can influence competitive interactions and consequently the composition and dynamics of communities and ecosystems.  相似文献   

5.
Factors linked with intraspecific variation in trophic diversity are still poorly understood in generalist species like the Montagu’s harrier (Circus pygargus) but may have important implications for conservation management at a wide scale. We described geographic patterns of Montagu’s harrier diet across Eurasia, gathering diet data from 30 studies in 41 areas from 11 countries. We grouped prey as invertebrates, reptiles, small mammals, large mammals, eggs, small birds and large birds, and calculated the contribution of each prey type to the diet (as % biomass) and Shannon’s Diversity Index for each study site. We analysed qualitative estimates of prey abundance in relation to latitude and longitude, then diet composition in relation to habitat of the study area and prey abundance estimates. Diet diversity of Montagu’s harriers increased from north to south, while abundance of all prey groups other than small mammals showed the opposite trends. Agricultural areas in northern latitudes seemed to hold high densities of small mammals, but low densities of alternative prey. Overall, birds were the main prey in most of Montagu’s harrier’s distribution range, although the relative importance of each prey type in the diet was significantly explained by its local abundance and habitat, confirming the opportunistic foraging strategy of this raptor species. Consumption of mammals was an exception to this trend, being negatively associated with the abundance of alternative prey, suggesting that this prey is not preferred. Trophic diversity in this species could be influenced by land-use changes through variations in the abundance and availability of prey, which could impact its population dynamics. This may be particularly important for northern populations of Montagu’s harriers breeding in agricultural habitats, where trophic diversity is already low.  相似文献   

6.
Inter-individual diet variation within populations is likely to have important ecological and evolutionary implications. The diet-fitness relationships at the individual level and the emerging population processes are, however, poorly understood for most avian predators inhabiting complex terrestrial ecosystems. In this study, we use an isotopic approach to assess the trophic ecology of nestlings in a long-lived raptor, the Bonelli’s eagle Aquila fasciata, and investigate whether nestling dietary breath and main prey consumption can affect the species’ reproductive performance at two spatial scales: territories within populations and populations over a large geographic area. At the territory level, those breeding pairs whose nestlings consumed similar diets to the overall population (i.e. moderate consumption of preferred prey, but complemented by alternative prey categories) or those disproportionally consuming preferred prey were more likely to fledge two chicks. An increase in the diet diversity, however, related negatively with productivity. The age and replacements of breeding pair members had also an influence on productivity, with more fledglings associated to adult pairs with few replacements, as expected in long-lived species. At the population level, mean productivity was higher in those population-years with lower dietary breadth and higher diet similarity among territories, which was related to an overall higher consumption of preferred prey. Thus, we revealed a correspondence in diet-fitness relationships at two spatial scales: territories and populations. We suggest that stable isotope analyses may be a powerful tool to monitor the diet of terrestrial avian predators on large spatio-temporal scales, which could serve to detect potential changes in the availability of those prey on which predators depend for breeding. We encourage ecologists and evolutionary and conservation biologists concerned with the multi-scale fitness consequences of inter-individual variation in resource use to employ similar stable isotope-based approaches, which can be successfully applied to complex ecosystems such as the Mediterranean.  相似文献   

7.
Sexual dimorphism in carnivores can result from, or induce, variations in diet and foraging behaviour between individuals of different sexes. Sex-driven behavioural changes in feeding habits may also result in a reduction in intraspecific competition for resources, avoiding dietary overlap by concentrating on different prey sizes/types. We therefore evaluated the variation in feeding habits of both males and females of an invasive and range expanding southern European carnivore, the Egyptian mongoose (Herpestes ichneumon), through gut content analysis of road or predator-control killed animals. The analysis of 59 gut samples, collected in Portugal, revealed that northwestern populations of mongooses prey mostly upon mammals [especially lagomorphs, percentage of biomass (PB) = 44%], reptiles (PB = 28%) and arthropods (PB = 2% but percentage of occurrence = 35%). However, females seem to focus mainly on reptiles (PB = 51%) and mammals (PB = 38%), whilst males consume mostly mammals (PB = 75%). The results suggest that this variation maybe a result of sexual dimorphism (since some variation is documented in a few Egyptian mongoose’s skull measures, namely condylobasal length and canine diameter), with males shifting their diets to prey from which they can obtain more energy. Females seem to be focused on predating lighter animals, probably females or juveniles, a fact that has important game management implications.  相似文献   

8.
Variability in resource use defines the width of a trophic niche occupied by a population. Intra-population variability in resource use may occur across hierarchical levels of population structure from individuals to subpopulations. Understanding how levels of population organization contribute to population niche width is critical to ecology and evolution. Here we describe a hierarchical stable isotope mixing model that can simultaneously estimate both the prey composition of a consumer diet and the diet variability among individuals and across levels of population organization. By explicitly estimating variance components for multiple scales, the model can deconstruct the niche width of a consumer population into relevant levels of population structure. We apply this new approach to stable isotope data from a population of gray wolves from coastal British Columbia, and show support for extensive intra-population niche variability among individuals, social groups, and geographically isolated subpopulations. The analytic method we describe improves mixing models by accounting for diet variability, and improves isotope niche width analysis by quantitatively assessing the contribution of levels of organization to the niche width of a population.  相似文献   

9.
Wolves in the Canadian Arctic Archipelago face several challenges to persistence: a harsh habitat, an unstable prey base, and potentially significant anthropogenic influences. These external factors, if combined with genetic constraints common to island populations, could be particularly difficult to withstand. To determine the genetic status of Arctic Island wolves, we used 14 microsatellite loci to estimate population variation and the extent of inter-island and island-mainland gene flow. All island populations were significantly less variable than mainland wolves; although inbreeding is currently insignificant, the two least variable populations, Banks and the High Arctic (Ellesmere and Devon Islands), showed genetic signatures of recent population declines. Recovery after a bottleneck appears to result, in large part, via recolonization from other islands. These extinction-recolonization dynamics, and the degree of similarity among island wolves revealed by Bayesian clustering, suggest that Arctic Island wolves function as a metapopulation. Persistence of the metapopulation may be supported by periodic migration from mainland populations, occurring primarily through two corridors: Baffin Island in the Eastern Arctic, and Victoria Island in the Western Arctic. This gene flow could be compromised or eliminated by loss—due to climatic warming or increased human activity—of sea ice in the Northwest Passage. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
In the African cyprinid, Barbus neumayeri, populations from hypoxic waters have larger gills than populations from well-oxygenated streams. Differences in trophic morphology and feeding performance between these populations suggest a reduction in feeding efficiency in large-gilled fish that may reflect spatial constraints of the gills. However, this variation may also reflect interdemic variation in diets. In this study, we describe patterns of variation in diet, gut morphology, and prey availability for populations of B. neumayeri from swamp (low-oxygen) and stream (high-oxygen) sites in Kibale National Park, Uganda. Our results indicate that B. neumayeri are omnivorous, feeding primarily on benthic prey items; however, diets differed among swamp and stream sites for certain prey types. The observed dietary differences do not provide direct support for predictions based on variation in trophic musculature; hard-bodied prey were more common in low-oxygen sites. Prey availability also differed among sites; in particular, insect abundance and richness was generally lower in the swamp sites. Gut length was longer in one of the four populations, but did not conform to expectations based on diet differences. Condition and growth rates did not differ between populations from hypoxic and well-oxygenated sites, despite observed differences in prey availability and diet, suggesting that B. neumayeri may be distributed in a way that equalizes fitness among populations in different habitats.  相似文献   

11.
An effective strategy to reintegrate biodiversity within otherwise intensively cultivated agroecosystems is to create set-aside and wildflower areas. It remains largely unknown, however, whether the ecological performance of an agroecosystem revitalized in this manner is comparable—from a species’ population biology perspective—to traditionally exploited farmland. To address this question we compared, during two successive years, the trophic ecology and breeding performance of an insectivorous, indicator passerine (the Stonechat Saxicola torquata) in a revitalized intensively cultivated farmland (RIC) and a traditional, extensively cultivated farmland (TEC) in southern Switzerland. The chicks' diet and prey abundance did not differ between the RIC and TEC, with orthopterans, caterpillars (Lepidoptera) and coleopterans predominating (approx. 80% of diet biomass). Although Stonechat pairs initiated more broods in TEC than in the RIC, reproductive success (number of fledglings/territory × year) did not differ significantly between the TEC and RIC. The chicks’ condition (body mass) was slightly better in TEC than in RIC, while no such effect could be shown for chick constitution (tarsus length) in either year. The inter-site (RIC vs. TEC) variation fell well within the inter-annual variation of breeding parameters, indicating that environmental stochasticity could be a greater determinant of reproductive output and young quality than agroecosystem type. Although in need of replication, these results suggest that incentives for setting aside farmland and creating wildflower areas within agroecosystems may not only enhance plant and invertebrate diversity, as has been demonstrated earlier, but can also support functioning populations of vertebrates situated at higher trophic levels along the food chain.  相似文献   

12.
Omnivory can have profound effects on the trophic dynamics of communities and ecosystems, as they may interact with multiple trophic levels simultaneously. Some species of large-bodied stoneflies may be viewed as omnivores rather than true carnivores even at later nymphal stages. We evaluated the seasonal change in the diet of stonefly predators by analyzing their stable isotope ratio, gut contents, physiological activity, and food availability. A two-source-based mixing model based on stable isotope analysis revealed that stoneflies shifted their diet between carnivory in summer and omnivory in winter—despite the higher availability of animal prey in winter. The gut content analysis showed that swift prey (mayflies) were consumed in the summer, whereas sluggish prey (Chironomidae) were consumed in the winter. The physiological activity of stoneflies also declined markedly in winter. These results suggest that, in winter, stoneflies foraged on a mixture of Chironomidae and algae. It appears that omnivory in some stream consumers is related to the seasonal change in temperature-dependent physiological activity, rather than prey availability.  相似文献   

13.
At St Kilda, Outer Hebrides, a large colony of great skuas Stercorarius skua feed extensively on one of the largest colonies of Leach’s storm-petrels Oceanodroma leucorhoa in Europe, but little is known about the dynamics of this predator–prey system. Recently published population estimates of storm-petrels make it possible to estimate the impact of skua predation for the first time. Although skuas in the southern hemisphere catch petrels attending breeding colonies at night, it is not known whether congeners in the northern hemisphere also forage during the hours of darkness. We found (using radio-transmitters) that skuas regularly forage at night and (using light intensifying equipment) observed them catching storm-petrels at night. However, skuas also foraged during daylight hours, and it is unknown whether they might also catch storm-petrels at sea. Data on diet composition reveals that the proportion of storm-petrels in skua diet declined between 1996 and 1997, but remained constant thereafter. Although a large proportion of the storm-petrel prey is likely to consist of non-breeders, numbers consumed suggest that breeders and an unknown quantity of transients may also been eaten. The numbers of storm-petrels eaten are not sustainable and may result in substantial long-term population declines. Under current conditions, maintenance of large populations of both Leach’s storm-petrels and great skuas at St Kilda appears to be mutually exclusive.  相似文献   

14.
Feeding selectivity and efficiency of young-of-the-year European perch and roach were compared under field and laboratory conditions. In laboratory experiments, the importance of prey evasiveness versus prey movement conspicuousness for fish selectivity was evaluated with respect to changing Cladocera/Copepoda prey ratio. Feeding efficiency was additionally investigated in relation to feeding time (5, 10, 20 min) and prey density (approx. 50, 200, 700 ind. L−1). In Říov Reservoir, the diet of both fish species was nearly exclusively composed of crustacean zooplankton. In roach, diet shifted from rotifers and bosminids in May, towards Daphnia sp. and Leptodora kindtii in June and July. Daphnia contributed almost exclusively to the roach diet since June, composing on average more than 94% of total prey. Cyclopoid copepods, occurred in the roach’s diet only on the first sampling date; later on both cyclopoid and calanoid copepods were completely absent. On the other hand, copepods played an important role in the diet of perch. In early and mid-June when their share in the zooplankton was particularly high, copepods contributed by more than 50% to the diet of perch. Although their contribution dropped with their decline in zooplankton in June/July, by the end of July they again comprised about one third of perch’s diet. In both fish species, the increase in numbers of cladocerans in their diet was related to increase in SL. In roach, the numbers of consumed prey were doubled every twenty days during the investigated period. In perch the increase was not so consistent, but significantly higher efficiency of perch was reported on three out of six sampling dates. In laboratory experiments, roach showed a distinct avoidance for copepods and a preference for cladocerans. Both prey categories were only fed non-selectively when they dominated the prey mixture. Perch selectivity was more diversified. Contrary to roach, perch were fed copepods non-selectively on a balanced prey ratio. Further, with an increasing share of Cladocera, a situation resembling that of roach and Copepoda was avoided. However, when the share of copepods in the prey mixture dropped below ten percent, they were consumed non-selectively and with their ongoing decline in the prey mixture their preference even increased. Feeding efficiency differed significantly between perch and roach when foraging on copepods exclusively or on a prey mixture where copepods predominated. In the short time feeding experiment (5 min) with copepods, perch consumed on average 5.9 times more prey than roach. Although roach increased their success with increasing time it was still 1.7 times greater than for perch in the long time feeding experiment (20 min). Total numbers of prey consumed were positively affected by prey density and feeding time. With increasing feeding time, the consumption rate generally declined. With a fourfold increase in feeding time, the numbers of consumed prey increased on average only two times. Only in roach feeding on copepods did the numbers of prey consumed per minute of feeding increase with increasing feeding time. However, the overall numbers were low. Differences in feeding selectivity and efficiency between perch and roach juveniles were found to be significant both in the field and laboratory experiments. In roach, selectivity was determined solely by prey evasiveness. By contrast, perch’s selectivity was influenced by prey movement conspicuousness; prey escape abilities did not play an important role. Perch were more efficient foragers on evasive prey, but its feeding efficiency for non-evasive prey was not lower than that of roach. According to our observations, we suggest feeding behaviour to be responsible for the roach’s inefficiency in capturing evasive copepods.  相似文献   

15.
In the sexually dimorphic swordtail characin (Corynopoma riisei, Gill), males are equipped with an opercular flag-ornament that has been suggested to function as a food-mimic since females bite at the ornament during courtship. However, virtually nothing is known about the diet in wild populations of this species. In this study, we first investigated composition of and variation in the diet of C. riisei across 18 different populations in Trinidad, using gut content analyses. We then related variation in gut content to habitat features of populations to investigate the potential link between environmental conditions and prey utilization. Our results showed that the dominating food type in the gut was various terrestrial invertebrates, both adults and larvae, but we also document substantial variation in prey types across populations. Furthermore, a canonical correlation analysis revealed a relationship between environmental characteristics and diet: populations from wider and more rapidly flowing streams with more canopy cover tended to have a diet based more on ants and mosquitoes while populations from narrow and slow flowing streams with little canopy cover tended to have a diet based more on springtails, mites and mayfly larvae. Our results add novel information on the ecology of this interesting fish and suggest the possibility of local adaptation reflecting differences in prey availability across natural populations.  相似文献   

16.
Long-term effective population size is expected, and has been shown, to correlate positively with various measures of population fitness. Here we examine the interacting effects of population size (as a surrogate for genetic factors) and prey consumption rates (as a surrogate for environmental quality) on fecundity in two sympatric species of wolf spider, Rabidosa punctulata and Rabidosa rabida. Population size was estimated in each of seven genetically isolated populations in each of 3 years using mark-recapture methods. Fecundity was estimated as the mean number of live offspring produced by ∼15 females sampled from each population of each species each year for 3 years. Prey consumption rates were estimated by sampling ∼300 spiders per population per year and assaying the proportion of spiders with prey. Larger populations have higher fecundity and more genetic diversity than smaller populations. Variation among populations in fecundity for a given year could be attributed most strongly to differences in population size, with variation in prey consumption rates and the interaction between population size and prey consumption playing smaller but still important roles. During the most stressful environmental conditions, the smallest populations of both species experienced disproportionately low-fecundity rates, more than doubling the estimated number of lethal equivalents during those years. The evidence presented in this paper for inbreeding-environment interactions at the population level and further evidence for a log-linear relationship between population size and fitness have important implications for conservation.  相似文献   

17.
How predators impact on prey population dynamics is still an unsolved issue for most wild predator–prey communities. When considering vertebrates, important concerns constrain a comprehensive understanding of the functioning of predator–prey relationships worldwide; e.g. studies simultaneously quantifying ‘functional’ and ‘numerical responses’ (i.e., the ‘total response’) are rare. The functional, the numerical, and the resulting total response (i.e., how the predator per capita intake, the population of predators and the total of prey eaten by the total predators vary with prey densities) are fundamental as they reveal the predator’s ability to regulate prey population dynamics. Here, we used a multi-spatio-temporal scale approach to simultaneously explore the functional and numerical responses of a territorial predator (Bonelli’s eagle Hieraaetus fasciatus) to its two main prey species (the rabbit Oryctolagus cuniculus and the red-legged partridge Alectoris rufa) during the breeding period in a Mediterranean system of south Spain. Bonelli’s eagle responded functionally, but not numerically, to rabbit/partridge density changes. Type II, non-regulatory, functional responses (typical of specialist predators) offered the best fitting models for both prey. In the absence of a numerical response, Bonelli’s eagle role as a regulating factor of rabbit and partridge populations seems to be weak in our study area. Simple (prey density-dependent) functional response models may well describe the short-term variation in a territorial predator’s consumption rate in complex ecosystems.  相似文献   

18.
Ants are prominent components of most terrestrial arthropod food webs, yet due to their highly variable diet, the role ants play in arthropod communities can be difficult to resolve. Stable isotope analysis is a promising method for determining the dietary history of an organism, and has the potential to advance our understanding of the food web ecology of social insects. However, some unique characteristics of eusocial organisms can complicate the application of this technique to the study of their trophic ecology. Using stable isotopes of N and C, we investigated levels of intraspecific variation both within and among colonies. We also examined the effect of a common preservation technique on δ15N and δ13C values. We discuss the implications of our results on experimental design and sampling methods for studies using stable isotopes to investigate the trophic ecology of social insects. Received 4 February 2005; revised 23 June 2005; accepted 4 July 2005.  相似文献   

19.
Ingram T  Stutz WE  Bolnick DI 《PloS one》2011,6(6):e20782
It has long been known that intraspecific variation impacts evolutionary processes, but only recently have its potential ecological effects received much attention. Theoretical models predict that genetic or phenotypic variance within species can alter interspecific interactions, and experiments have shown that genotypic diversity in clonal species can impact a wide range of ecological processes. To extend these studies to quantitative trait variation within populations, we experimentally manipulated the variance in body size of threespine stickleback in enclosures in a natural lake environment. We found that body size of stickleback in the lake is correlated with prey size and (to a lesser extent) composition, and that stickleback can exert top-down control on their benthic prey in enclosures. However, a six-fold contrast in body size variance had no effect on the degree of diet variation among individuals, or on the abundance or composition of benthic or pelagic prey. Interestingly, post-hoc analyses revealed suggestive correlations between the degree of diet variation and the strength of top-down control by stickleback. Our negative results indicate that, unless the correlation between morphology and diet is very strong, ecological variation among individuals may be largely decoupled from morphological variance. Consequently we should be cautious in our interpretation both of theoretical models that assume perfect correlations between morphology and diet, and of empirical studies that use morphological variation as a proxy for resource use diversity.  相似文献   

20.
Eastern mosquitofish (Gambusia holbrooki) are among the most widely introduced freshwater species globally. To gain a better understanding of feeding patterns in non‐native populations, and which local factors may influence them at the population level, we carried out gut content analysis on 163 specimens from nine invasive populations in Italy and Spain. Based on previous studies, we predicted that (a) mosquitofish are omnivores with a preference for detritus and cladocerans; (b) they display size‐ and population‐specific differences in gut morphologies and diet, with larger fish feeding more intensively over a wider range of prey items; and (c) some of the variation would be associated with differences in local environmental and climatic factors. Our results confirmed our first prediction, because mosquitofish fed on a variety of diet items, among which detritus and Cladocera dominated. However, not a single diet item was shared among all populations. Congruent with our second prediction, we further identified size‐ and population‐specific differences in the occurrence of some diet items and gut morphologies. However, observed patterns in dietary habits did not seem to be driven by the environmental and climatic variables we had quantified. The fairly variable diet likely aids invasion success and helps explain the ubiquity of invasive mosquitofish across Italy and Spain, as mosquitofish seem to be able to rely on whatever a local habitat provides. We further propose that size‐specific differences likely capture the substantial sexual size dimorphism (males are smaller than females), while population‐specific differences are likely the result of differences in local prey abundance. The lack of an influence of temperature on dietary habits suggests that mosquitofish feeding ecology may be less impacted by rising temperatures than other freshwater fish species. If true, then this suggests climate change‐induced effects may further exacerbate the competitive superiority of mosquitofish over native species in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号