首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vigorous proliferation of Ralstonia solanacearum OE1-1 in host intercellular spaces after the invasion of host plants is necessary for the virulence of this bacterium. A folate auxotroph, RM, in which a mini-Tn5 transposon was inserted into pabB encoding para-aminobenzoate synthase component I, lost its ability to vigorously proliferate in intercellular spaces along with its systemic infectivity and virulence after inoculation into roots and infiltration into leaves of tobacco plants. Complementation of RM with the pabB gene allowed the mutant to multiply in intercellular spaces and to cause disease. In tobacco plants that were pretreated with folate, RM was able to vigorously proliferate in the intercellular spaces and cause disease. Interestingly, when it was inoculated through cut stems, the mutant multiplied in the plants and was virulent. Moreover, the mutant multiplied well in stem fluids but not in intercellular fluids, suggesting that the folate concentration within intercellular spaces may be a limiting factor for bacterial proliferation. Therefore, folate biosynthesis contributes to the vigorous proliferation of bacteria in intercellular spaces and leads to systemic infectivity resulting in virulence.  相似文献   

2.
The mechanism of colonization of intercellular spaces by the soil‐borne and vascular plant‐pathogenic bacterium Ralstonia solanacearum strain OE1‐1 after invasion into host plants remains unclear. To analyse the behaviour of OE1‐1 cells in intercellular spaces, tomato leaves with the lower epidermis layers excised after infiltration with OE1‐1 were observed under a scanning electron microscope. OE1‐1 cells formed microcolonies on the surfaces of tomato cells adjacent to intercellular spaces, and then aggregated surrounded by an extracellular matrix, forming mature biofilm structures. Furthermore, OE1‐1 cells produced mushroom‐type biofilms when incubated in fluids of apoplasts including intercellular spaces, but not xylem fluids from tomato plants. This is the first report of biofilm formation by R. solanacearum on host plant cells after invasion into intercellular spaces and mushroom‐type biofilms produced by R. solanacearum in vitro. Sugar application led to enhanced biofilm formation by OE1‐1. Mutation of lecM encoding a lectin, RS‐IIL, which reportedly exhibits affinity for these sugars, led to a significant decrease in biofilm formation. Colonization in intercellular spaces was significantly decreased in the lecM mutant, leading to a loss of virulence on tomato plants. Complementation of the lecM mutant with native lecM resulted in the recovery of mushroom‐type biofilms and virulence on tomato plants. Together, our findings indicate that OE1‐1 produces mature biofilms on the surfaces of tomato cells after invasion into intercellular spaces. RS‐IIL may contribute to biofilm formation by OE1‐1, which is required for OE1‐1 virulence.  相似文献   

3.
4.
S W Ding  W X Li    R H Symons 《The EMBO journal》1995,14(23):5762-5772
We recently identified a new cucumovirus-specific gene (2b) which is encoded by RNA 2 of the cucumber mosaic cucumovirus (CMV) tripartite RNA genome and whose coding sequence overlaps the C-terminal 69 codons of ORF 2a encoding the RNA polymerase protein. We have now found that although a CMV mutant lacking ORF 2b accumulated in the inoculated cotyledons of cucumber plants, it was unable to spread systemically, demonstrating involvement of 2b in long distance movement. The same mutant infected tobacco systemically with a much reduced virulence and delayed appearance of symptoms, indicating that 2b may contribute to long distance movement in this host. Deletion of the overlapping C-terminal part of ORF 2a did not change infectivity of the mutant in either host species, ruling out 2a mutation as the reason for the change of phenotype. Further infectivity studies with mutants containing partial deletions in ORF 2b further supported the conclusion that 2b encodes a host-specific long distance movement function. Sequence analysis revealed that 2b may represent a novel naturally occurring hybrid gene important to the evolutionary formation of the cucumovirus group and that it could provide a genetic basis for the wide host range of these viruses.  相似文献   

5.
Water-soluble glucans (WSG) from a virulent isolate of Phytophthora capsici (PCAP-3) which were released during germination of cystospore markedly suppressed the elicitor-induced death of suspension-cultured cells of susceptible sweet pepper and tomato but not that of resistant pepper and tobacco. PCAP-3, its polygalacturonase (PGase)-deficient mutant (PCAP3-M16), and galacturonic acid non-utilizable mutant carrying the PGase (PCAP-1) activity could penetrate in epidermal cells of host leaves, but similarly caused a hypersensitive response (HR) on non-injured leaves of resistant host (sweet pepper). In the case of inoculation on press-injured leaves, however, both of the resistant and nonhost plant leaves became quite susceptible to PCAP-3similar to susceptible hosts, but not to PCAP3-M16 and PCAP-1. The results suggested that host-selectivity of P. capsici may be determined in the leaf epidermal cells where the suppressor glucans released during infection effectively suppressed the occurrence of hypersensitive reaction. Furthermore, during growth of the fungus in intercellular spaces of leaf tissues, PGase may contribute not only to the virulence experession but also the supply of initial nutrition for fungal growth in the intercellular space of host tissues.  相似文献   

6.
The tobacco etch potyvirus (TEV) polyprotein is proteolytically processed by three viral proteinases (NIa, HC-Pro, and P1). While the NIa and HC-Pro proteinases each provide multiple functions essential for viral infectivity, the role of the P1 proteinase beyond its autoproteolytic activity is understood poorly. To determine if P1 is necessary for genome amplification and/or virus movement from cell to cell, a mutant lacking the entire P1 coding region (delta P1 mutant) was produced with a modified TEV strain (TEV-GUS) expressing beta-glucuronidase (GUS) as a reporter, and its replication and movement phenotypes were assayed in tobacco protoplasts and plants. The delta P1 mutant accumulated in protoplasts to approximately 2 to 3% the level of parental TEV-GUS, indicating that the P1 protein may contribute to but is not strictly required for viral RNA amplification. The delta P1 mutant was capable of cell-to-cell and systemic (leaf-to-leaf) movement in plants but at reduced rates compared with parental virus. This is in contrast to the S256A mutant, which encodes a processing-defective P1 proteinase and which was nonviable in plants. Both delta P1 and S256A mutants were complemented by P1 proteinase expressed in a transgenic host. In transgenic protoplasts, genome amplification of the delta P1 mutant relative to parental virus was stimulated five- to sixfold. In transgenic plants, the level of accumulation of the delta P1 mutant was stimulated, although the rate of cell-to-cell movement was the same as in nontransgenic plants. Also, the S256A mutant was capable of replication and systemic infection in P1-expressing transgenic plants. These data suggest that, in addition to providing essential processing activity, the P1 proteinase functions in trans to stimulate genome amplification.  相似文献   

7.
SOME PROPERTIES OF FOUR STRAINS OF CUCUMBER MOSAIC VIRUS   总被引:1,自引:0,他引:1  
Different strains of cucumber mosaic virus differ in their host range, symptoms caused, virulence towards different plants, transmissibility by aphids, dilution end-point and thermal inactivation point.
There are seasonal variations in the susceptibility of some host species; French bean is apparently immune during the summer but during the winter produces countable local lesions suitable for quantitative assays.
Different host species differ in the ease with which cucumber mosaic virus is transmitted to and from them; systemic infection in beet rarely occurs unless the virus is introduced into young tissues. Inhibitors of infectivity in sap of sugar beet and Phytolacca sp. make mechanical transmission from these to other hosts difficult; the inhibitors interfere less with the infection of hosts in which they occur than with the infection of tobacco.
Cucumber mosaic virus has a low temperature coefficient of thermal inactivation and much infectivity is destroyed by heating at temperatures below the thermal inactivation point.
Myzus persicae (Sulz.) is a more efficient vector than M. ornatus Laing which is more efficient than Macrosiphum euphorbiae (Thomas); although individual aphids can cause more than one infection, most cease to be infective in feeding periods of from one to five minutes.  相似文献   

8.
9.
Type IV pili (T4P) are virulence factors in various pathogenic bacteria of animals and plants that play important roles in twitching motility, swimming motility, biofilm formation, and adhesion to host cells. Here, we genetically characterized functional roles of a putative T4P assembly protein TapV (Rsc1986 in reference strain GMI1000) and its homologue Rsp0189, which shares 58% amino acid identity with TapV, in Ralstonia solanacearum. Deletion of tapV, but not rsp0189, resulted in significantly impaired twitching motility, swimming motility, and adhesion to tomato roots, which are consistent as phenotypes of the pilA mutant (a known R. solanacearum T4P-deficient mutant). However, unlike the pilA mutant, the tapV mutant produced more biofilm than the wild-type strain. Our gene expression studies revealed that TapV, but not Rsp0189, is important for expression of a type III secretion system (T3SS, a pathogenicity determinant of R. solanacearum) both in vitro and in planta, but it is T4P independent. We further revealed that TapV affected the T3SS expression via the PhcA–TapV–PrhG–HrpB pathway, consistent with previous reports that PhcA positively regulates expression of pilA and prhG. Moreover, deletion of tapV, but not rsp0189, significantly impaired the ability to migrate into and colonize xylem vessels of host plants, but there was no alteration in intercellular proliferation of R. solanacearum in tobacco leaves, which is similar to the pilA mutant. The tapV mutant showed significantly impaired virulence in host plants. This is the first report on the impact of T4P components on the T3SS, providing novel insights into our understanding of various biological functions of T4P and the complex regulatory pathway of T3SS in R. solanacearum.  相似文献   

10.
[目的]研究Ⅲ型效应子GALAs对青枯菌OE1-1在不同寄主植物致病性上的影响。[方法]构建青枯菌OE1-1的多种GALA缺失突变体,通过根切和叶片注射等方法研究GALAs对青枯菌OE1-1致病力和细胞内增殖能力的影响。[结果]GALA多基因缺失突变体对寄主烟草的致病力减弱,在烟草体内细菌繁殖能力较野生型明显降低,但在寄主番茄上不影响其致病性。[结论]GALA效应子对青枯菌OE1-1在烟草植株致病性上展现协同作用。  相似文献   

11.
The studies focus on an ultrastructural analysis of the phenomenon of intercellular and systemic (vascular) transport of tobacco rattle virus (TRV) in tissues of the infected plants. TRV is a dangerous pathogen of cultivated and ornamental plants due to its wide range of plant hosts and continuous transmission by vectors—ectoparasitic nematodes. Two weeks after infection with the PSG strain of TRV, tobacco plants of the Samsun variety and potato plants of the Glada variety responded with spot surface necroses on inoculated leaf blades. Four weeks after the infection a typical systemic response was observed on tobacco and potato leaves, necroses on stems and lesions referred to as corky ringspot. Ultrastructural analysis revealed the presence of two types of TRV virions: capsidated and non-capsidated forms in tobacco and potato tissues. In the protoplast area, viral particles either occurred in a dispersed form or they formed organised inclusions of virions. We demonstrated for the first time the presence of non-capsidated-type TRV in the vicinity of and inside plasmodesmata. Capsidated particles of TRV were observed in intercellular spaces of the tissues of aboveground and underground organs. Expanded apoplast area was noted at the cell wall, with numerous dispersed non-capsidated-type TRV particles. These phenomena suggest active intercellular transport. Our ultrastructure studies showed for the first time that xylem can be a possible route of TRV systemic transport. We demonstrated that both capsidated and non-capsidated virions, of varied length, participate in long-distance transport. TRV virions were more often documented in xylem (tracheary elements and parenchyma) than in phloem. Non-capsidated TRV particles were observed inside tracheary elements in a dispersed form and in regular arrangements in potato and tobacco xylem. The presence of TRV virions inside the bordered pits was demonstrated in aboveground organs and in the root of the tested plants. We documented that both forms of TRV virions can be transported systemically via tracheary elements of xylem.  相似文献   

12.
Xanthomonas axonopodis pv. citri (Xac) is the phytopathogen responsible for citrus canker, one of the most devastating citrus diseases in the world. A broad range of pathogens is recognized by plants through so-called pathogen-associated molecular patterns (PAMPs), which are highly conserved fragments of pathogenic molecules. In plant pathogenic bacteria, lipopolisaccharyde (LPS) is considered a virulence factor and it is being recognized as a PAMP. The study of the participation of Xac LPS in citrus canker establishment could help to understand the molecular bases of this disease. In the present work we investigated the role of Xac LPS in bacterial virulence and in basal defense during the interaction with host and non host plants. We analyzed physiological features of Xac mutants in LPS biosynthesis genes (wzt and rfb303) and the effect of these mutations on the interaction with orange and tobacco plants. Xac mutants showed an increased sensitivity to external stresses and differences in bacterial motilities, in vivo and in vitro adhesion and biofilm formation. Changes in the expression levels of the LPS biosynthesis genes were observed in a medium that mimics the plant environment. Xacwzt exhibited reduced virulence in host plants compared to Xac wild-type and Xacrfb303. However, both mutant strains produced a lower increase in the expression levels of host plant defense-related genes respect to the parental strain. In addition, Xac LPS mutants were not able to generate HR during the incompatible interaction with tobacco plants. Our findings indicate that the structural modifications of Xac LPS impinge on other physiological attributes and lead to a reduction in bacterial virulence. On the other hand, Xac LPS has a role in the activation of basal defense in host and non host plants.  相似文献   

13.
Cauliflower mosaic virus (CaMV) transactivator/viroplasmin (Tav) is a multifunctional protein essential for basic replication of CaMV. It also plays a role in viral pathogenesis in crucifer and solanaceous host plants. Deletion mutagenesis revealed that N- and C-terminal parts of Tav are not essential for CaMV replication in transfected protoplasts. Two deletion mutants having only minimal defects in basic replication were infectious in turnips but only with highly attenuated virulence. This was shown to be due to delayed virus spread within the inoculated leaves and to the upper leaves. Unlike the wild-type virus, the mutant viruses successfully spread locally without inducing a host defense response in inoculated Datura stramonium leaves, but did not spread systemically. These results provide the first evidence that a Tav domain required for avirulence function in solanaceous plants is not essential for CaMV infectivity but has a role in viral virulence in susceptible hosts.  相似文献   

14.
Flagellin, a constituent of the flagellar filament, is a potent elicitor of hypersensitive cell death in plant cells. Flagellins of Pseudomonas syringae pvs. glycinea and tomato induce hypersensitive cell death in their non-host tobacco plants, whereas those of P. syringae pv. tabaci do not remarkably induce it in its host tobacco plants. However, the deduced amino acid sequences of flagellins from pvs. tabaci and glycinea are identical, indicating that post-translational modification of flagellins plays an important role in determining hypersensitive reaction (HR)-inducibility. To investigate genetically the role of modification of flagellin in HR-induction, biological and phytopathological phenotypes of a flagella-defective Delta fliC mutant and Delta fliC mutants complemented by the introduction of the flagellin gene (fliC) from different pathovars of P. syringae were investigated. The Delta fliC mutant of pv. tabaci lost flagella, motility, the ability to induce HR cell death in non-host tomato cells and virulence toward host tobacco plants, whereas all pv. tabaci complemented by the introduction of the fliC gene of pvs. tabaci, glycinea or tomato recovered all the abilities that the Delta fliC mutant had lost. These results indicate that post-translational modification of flagellins is strongly correlated with the ability to cause HR cell death.  相似文献   

15.
Cell-to-cell spread of tobacco mosaic virus (TMV) through plant intercellular connections, the plasmodesmata, is mediated by a specialized viral movement protein (MP). In vivo studies using transgenic tobacco plants showed that MP is phosphorylated at its C-terminus at amino acid residues Ser258, Thr261 and Ser265. When MP phosphorylation was mimicked by negatively charged amino acid substitutions, MP lost its ability to gate plasmodesmata. This effect on MP-plasmodesmata interactions was specific because other activities of MP, such as RNA binding and interaction with pectin methylesterases, were not affected. Furthermore, TMV encoding the MP mutant mimicking phosphorylation was unable to spread from cell to cell in inoculated tobacco plants. The regulatory effect of MP phosphorylation on plasmodesmal permeability was host dependent, occurring in tobacco but not in a more promiscuous Nicotiana benthamiana host. Thus, phosphorylation may represent a regulatory mechanism for controlling the TMV MP-plasmodesmata interactions in a host-dependent fashion.  相似文献   

16.
Previous studies with Paenibacillus lentimorbus B-30488” (hereafter referred as B-30488), a plant growth promoting rhizobacteria (PGPR) isolated from cow’s milk, revealed its capabilities to improve plant quality under normal and stress conditions. Present study investigates its potential as a biocontrol agent against an economically important virus, Cucumber mosaic virus (CMV), in Nicotiana tabacum cv. White Burley plants and delineates the physical, biophysical, biochemical and molecular perturbations due to the trilateral interactions of PGPR-host-CMV. Soil inoculation of B-30488 enhanced the plant vigor while significantly decreased the virulence and virus RNA accumulation by ~12 fold (91%) in systemic leaves of CMV infected tobacco plants as compared to the control ones. Histology of these leaves revealed the improved tissue’s health and least aging signs in B-30488 inoculated tobacco plants, with or without CMV infection, and showed lesser intercellular spaces between collenchyma cells, reduced amount of xyloglucans and pectins in connecting primary cells, and higher polyphenol accumulation in hypodermis layer extending to collenchyma cells. B-30488 inoculation has favorably maneuvered the essential biophysical (ion leakage and photosynthetic efficiency) and biochemical (sugar, proline, chlorophyll, malondialdehyde, acid phosphatase and alkaline phosphatase) attributes of tobacco plants to positively regulate and release the virus stress. Moreover, activities of defense related enzymes (ascorbate peroxidase, guaiacol peroxidase, superoxide dismutase and catalase) induced due to CMV-infection were ameliorated with inoculation of B-30488, suggesting systemic induced resistance mediated protection against CMV in tobacco. The quantitative RT-PCR analyses of the genes related to normal plant development, stress and pathogenesis also corroborate well with the biochemical data and revealed the regulation (either up or down) of these genes in favor of plant to combat the CMV mediated stress. These improvements led tobacco plant to produce more flowers and seeds with no negative impact on plant health. The present study may advocate the applicability of B-30488 for crop yield improvement in virus infested areas.  相似文献   

17.
In order to cause disease on plants, gram-negative phytopathogenic bacteria introduce numerous virulence factors into the host cell in order to render host tissue more hospitable for pathogen proliferation. The mode of action of such bacterial virulence factors and their interaction with host defense pathways remain poorly understood. avrRpt2, a gene from Pseudomonas syringae pv. tomato JL1065, has been shown to promote the virulence of heterologous P. syringae strains on Arabidopsis thaliana. However, the contribution of avrRpt2 to the virulence of JL1065 has not been examined previously. We show that a mutant derivative of JL1065 that carries a disruption in avrRpt2 is impaired in its ability to cause disease on tomato (Lycopersicon esculentum), indicating that avrRpt2 also acts as a virulence gene in its native strain on a natural host. The virulence activity of avrRpt2 was detectable on tomato lines that are defective in either ethylene perception or the accumulation of salicylic acid, but could not be detected on a tomato mutant insensitive to jasmonic acid. The enhanced virulence conferred by the expression of avrRpt2 in JL1065 was not associated with the suppression of several defense-related genes induced during the infection of tomato.  相似文献   

18.
Sensing and responding to environmental cues is a fundamental characteristic of bacterial physiology and virulence. Here we identify polyamines as novel environmental signals essential for virulence of Salmonella enterica serovar Typhimurium, a major intracellular pathogen and a model organism for studying typhoid fever. Central to its virulence are two major virulence loci Salmonella Pathogenicity Island 1 and 2 (SPI1 and SPI2). SPI1 promotes invasion of epithelial cells, whereas SPI2 enables S. Typhimurium to survive and proliferate within specialized compartments inside host cells. In this study, we show that an S. Typhimurium polyamine mutant is defective for invasion, intracellular survival, killing of the nematode Caenorhabditis elegans and systemic infection of the mouse model of typhoid fever. Virulence of the mutant could be restored by genetic complementation, and invasion and intracellular survival could, as well, be complemented by the addition of exogenous putrescine and spermidine to the bacterial cultures prior to infection. Interestingly, intracellular survival of the polyamine mutant was significantly enhanced above the wild type level by the addition of exogenous putrescine and spermidine to the bacterial cultures prior to infection, indicating that these polyamines function as an environmental signal that primes S. Typhimurium for intracellular survival. Accordingly, experiments addressed at elucidating the roles of these polyamines in infection revealed that expression of genes from both of the major virulence loci SPI1 and SPI2 responded to exogenous polyamines and was reduced in the polyamine mutant. Together our data demonstrate that putrescine and spermidine play a critical role in controlling virulence in S. Typhimurium most likely through stimulation of expression of essential virulence loci. Moreover, our data implicate these polyamines as key signals in S. Typhimurium virulence.  相似文献   

19.
The aerobic plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv) colonizes the intercellular spaces of pepper and tomato. One enzyme that might contribute to the successful proliferation of Xcv in the host is the iron-sulfur protein aconitase, which catalyzes the conversion of citrate to isocitrate in the tricarboxylic acid (TCA) cycle and might also sense reactive oxygen species (ROS) and changes in cellular iron levels. Xcv contains three putative aconitases, two of which, acnA and acnB, are encoded by a single chromosomal locus. The focus of this study is aconitase B (AcnB). acnB is co-transcribed with two genes, XCV1925 and XCV1926, encoding putative nucleic acid-binding proteins. In vitro growth of acnB mutants was like wild type, whereas in planta growth and symptom formation in pepper plants were impaired. While acnA, XCV1925 or XCV1926 mutants showed a wild-type phenotype with respect to bacterial growth and in planta symptom formation, proliferation of the acnB mutant in susceptible pepper plants was significantly impaired. Furthermore, the deletion of acnB led to reduced HR induction in resistant pepper plants and an increased susceptibility to the superoxide-generating compound menadione. As AcnB complemented the growth deficiency of an Escherichia coli aconitase mutant, it is likely to be an active aconitase. We therefore propose that optimal growth and survival of Xcv in pepper plants depends on AcnB, which might be required for the utilization of citrate as carbon source and could also help protect the bacterium against oxidative stress.  相似文献   

20.
Salmonella enterica serovar Typhimurium that lacks the DNA adenine methylase (Dam) ectopically expresses multiple genes that are preferentially expressed during infection, is attenuated for virulence, and confers heightened immunity in vaccinated hosts. The safety of dam mutant Salmonella vaccines was evaluated by screening within infected mice for isolates that have an increased capacity to cause disease relative to the attenuated parental strain. Since dam mutant strains are sensitive to the DNA base analog 2-aminopurine (2-AP), we screened for 2-AP-resistant (2-AP(r)) isolates in systemic tissues of mice infected with dam mutant Salmonella. Such 2-AP(r) derivatives were isolated following intraperitoneal but not oral administration and were shown to be competent for infectivity via intraperitoneal but not oral infection of na?ve mice. These 2-AP(r) derivatives were deficient in methyl-directed mismatch repair and were resistant to nitric oxide, yet they retained the bile-sensitive phenotype of the parental dam mutant strain. Additionally, introduction of a mutH null mutation into dam mutant cells suppressed the inherent defects in intraperitoneal infectivity and nitric oxide resistance, as well as overexpression of SpvB, an actin cytotoxin required for Salmonella systemic survival. These data suggest that restoration of intraperitoneal virulence of dam mutant strains is associated with deficiencies in methyl-directed mismatch repair that correlate with the production of systemically related virulence functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号