首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fluorescent dye carboxyfluorescin diacetate succinimidyl ester (CFSE) classifies proliferating cell populations into groups according to the number of divisions each cell has undergone (i.e., its division class). The pulse labeling of cells with radioactive thymidine provides a means to determine the distribution of times of entry into the first cell division. We derive in analytic form the number of cells in each division class as a function of time using the cyton approach that utilizes independent stochastic distributions for the time to divide and the time to die. We confirm that our analytic form for the number of cells in each division class is consistent with the numerical solution of a set of delay differential equations representing the generalized Smith–Martin model with cell death rates depending on the division class. Choosing the distribution of time to the first division to fit thymidine labeling data for B cells stimulated in vitro with lipopolysaccharide (LPS) and either with or without interleukin-4 (IL-4), we fit CFSE data to determine the dependence of B cell kinetic parameters on the presence of IL-4. We find when IL-4 is present, a greater proportion of cells are recruited into division with a longer average time to first division. The most profound effect of the presence of IL-4 was decreased death rates for smaller division classes, which supports a role of IL-4 in the protection of B cells from apoptosis.  相似文献   

2.
The fluorescent dye carboxyfluorescein diacetate succinimidyl ester (CFSE) classifies proliferating cell populations into groups according to the number of divisions each cell has undergone (i.e., its division class). The pulse labeling of cells with radioactive thymidine provides a means to determine the distribution of times of entry into the first cell division. We derive in analytic form the number of cells in each division class as a function of time based on the distribution of times to the first division. Choosing the distribution of time to the first division to fit thymidine labeling data for T cells stimulated in vitro under different concentrations of IL-2, we fit CFSE data to determine the dependence of T cell kinetic parameters on the concentration of IL-2. As the concentration of IL-2 increases, the average cell cycle time is shortened, the death rate of cells is decreased, and a higher fraction of cells is recruited into division. We also find that if the average cell cycle time increases with division class then the qualify of our fit to the data improves.  相似文献   

3.
The division tracking dye, carboxyfluorescin diacetate succinimidyl ester (CFSE) is currently the most informative labeling technique for characterizing the division history of cells in the immune system. Gett and Hodgkin [Nat. Immunol. 1:239–244, 2000] have pioneered the quantitative analysis of CFSE data. We confirm and extend their data analysis approach using simple mathematical models. We employ the extended Gett and Hodgkin [Nat. Immunol. 1:239–244, 2000] method to estimate the time to first division, the fraction of cells recruited into division, the cell cycle time, and the average death rate from CFSE data on T cells stimulated under different concentrations of IL-2. The same data is also fitted with a simple mathematical model that we derived by reformulating the numerical model of Deenick et al. [J. Immunol. 170:4963–4972, 2003]. By a non-linear fitting procedure we estimate parameter values and confidence intervals to identify the parameters that are influenced by the IL-2 concentration. We obtain a significantly better fit to the data when we assume that the T cell death rate depends on the number of divisions cells have completed. We provide an outlook on future work that involves extending the Deenick et al. [J. Immunol. 170:4963–4972, 2003] model into the classical smith-martin model, and into a model with arbitrary probability distributions for death and division through subsequent divisions.  相似文献   

4.
The proper application of detailed deterministic cell kinetic models depends on the way in which cells are assigned their generation times. A method is presented for the determination of population generation time distributions from labelled mitoses experiments. the model assumes that the generation time of each new cell is a function of both the steady-state generation time distribution function of the population, and also the generation time frequency-function of the previous generation of cells. This approach is applied to two different cell types to successfully simulate extended labelled mitoses curves using a population balance model with constant maturation rates.  相似文献   

5.
The kinetics of growth of all the cells in a population is reflected in the shape of the size distribution of the population. To ascertain whether the kinetics of growth of the average individual cell is similar for different strains or growth conditions, we compared the shape of normalized size distributions obtained from steady-state populations. Significant differences in the size distributions were found, but these could be ascribed either to the precision achieved at division or to a constriction period which is long relative to the total cell cycle time. The remaining difference is quite small. Thus, without establishing the pattern itself, it is concluded that the basic course of growth is very similar for the various Escherichia coli strains examined and probably also for other rod-shaped bacteria. The effects of differences in culture technique (batch or chemostat culture), growth rate, and differences among strains were not found to influence the shape of the size distributions and hence the growth kinetics in a direct manner; small differences were found, but only when the precision at division or the fraction of constricted cells (long constriction period) were different as well.  相似文献   

6.
BACKGROUND: Carboxyfluorescein diacetate succinimidyl ester (CFSE) is currently used to investigate migration and proliferation of hemopoietic cells. In principle, CFSE is retained by the cells and is shared by the daughter cells at each division, resulting in multimodal flow cytometric CFSE histograms, with each cell generation clustering around half the fluorescence intensity of the previous one. However, intercell variability of CFSE loading results in overlapping peaks, thereby limiting its use with cancer cell lines. METHODS: We used IGROV1 ovarian cancer cells loaded with CFSE at the time of seeding; 24 h later cells were treated with an anticancer drug (topotecan). Potential pitfalls of the analysis were examined, and a procedure of evaluation of CFSE efflux was applied to fix the peak positions with good approximation in advance. Histograms were fitted by a series of gaussians, with each representing cells in a given generation. RESULTS: Effects of topotecan on IGROV1 cells were analyzed in terms of the time course of the percentage of cells that remained undivided or entered the second, third, and subsequent division cycles. A simple algorithm, which combined flow cytometric data with the absolute cell number independently measured by Coulter counter, provided an estimate of the 96-h outcome of the starting cell population by quantifying cells that remained undivided, those able to divide at least once, or those that had died. CONCLUSIONS: We assessed experimental and data analytic procedures for a CFSE-based measurement of antiproliferative activity of drugs in cancer cell lines. A quantitative level was achievable but required a strict procedure for control of the experimental data, which was not straightforward.  相似文献   

7.
Analysis of protein distribution in budding yeast   总被引:1,自引:0,他引:1  
Flow cytometry is a fast and sensitive method that allows monitoring of different cellular parameters on large samples of a population. Protein distributons give relevant information on growth dynamics, since they are related to the age distribution and depend on the law of growth of the population and the law of protein accumulation during the cell cycle. We analyzed protein distributions to evaluate alternative growth models for the budding yeast Saccharomyces cerevisiae and to monitor the changes in population dynamics that result from environmental modifications; such an analysis could potentially give parameters useful in the control of biotechnological processes. Theoretical protein distributions (taking into account the unequal division of yeast cells and the exponential law of protein accumulation during a cell cycle) quantitatively fit experimental distributions, once appropriate variability sources are introduced. Best fits are obtained when the protein threshold required for bud emergence increases at each new generation of parent cells.  相似文献   

8.

Background  

Quantifying cell division and death is central to many studies in the biological sciences. The fluorescent dye CFSE allows the tracking of cell division in vitro and in vivo and provides a rich source of information with which to test models of cell kinetics. Cell division and death have a stochastic component at the single-cell level, and the probabilities of these occurring in any given time interval may also undergo systematic variation at a population level. This gives rise to heterogeneity in proliferating cell populations. Branching processes provide a natural means of describing this behaviour.  相似文献   

9.
CFSE based tracking of the lymphocyte proliferation using flow cytometry is a powerful experimental technique in immunology allowing for the tracing of labelled cell populations over time in terms of the number of divisions cells undergone. Interpretation and understanding of such population data can be greatly improved through the use of mathematical modelling. We apply a heterogenous linear compartmental model, described by a system of ordinary differential equations similar to those proposed by Kendall. This model allows division number-dependent rates of cell proliferation and death and describes the rate of changes in the numbers of cells having undergone j divisions. The experimental data set that we specifically analyze specifies the following characteristics of the kinetics of PHA-induced human T lymphocyte proliferation assay in vitroL (1) the total number of live cells, (2) the total number of dead but not disintegrated cells and (3) the number of cells divided j times. Following the maximum likelihood approach for data fitting, we estimate the model parameters which, in particular, present the CTL birth- and death rate “functions”. It is the first study of CFSE labelling data which convincingly shows that the lymphocyte proliferation and death both in vitro and in vivo are division number dependent. For the first time, the confidence in the estimated parameter values is analyzed by comparing three major methods: the technique based on the variance–covariance matrix, the profile-likelihood-based approach and the bootstrap technique. We compare results and performance of these methods with respect to their robustness and computational cost. We show that for evaluating mathematical models of differing complexity the information-theoretic approach, based upon indicators measuring the information loss for a particular model (Kullback–Leibler information), provides a consistent basis. We specifically discuss methodological and computational difficulties in parameter identification with CFSE data, e.g. the loss of confidence in the parameter estimates starting around the sixth division. Overall, our study suggests that the heterogeneity inherent in cell kinetics should be explicitly incorporated into the structure of mathematical models.   相似文献   

10.
To efficiently capture sunlight for photosynthesis, leaves typically develop into a flat and thin structure. This development is driven by cell division and expansion, but the individual contribution of these processes is currently unknown, mainly because of the experimental difficulties to disentangle them in a developing organ, due to their tight interconnection. To circumvent this problem, we built a mathematic model that describes the possible division patterns and expansion rates for individual epidermal cells. This model was used to fit experimental data on cell numbers and sizes obtained over time intervals of 1 d throughout the development of the first leaf pair of Arabidopsis (Arabidopsis thaliana). The parameters were obtained by a derivative-free optimization method that minimizes the differences between the predicted and experimentally observed cell size distributions. The model allowed us to calculate probabilities for a cell to divide into guard or pavement cells, the maximum size at which it can divide, and its average cell division and expansion rates at each point during the leaf developmental process. Surprisingly, average cell cycle duration remained constant throughout leaf development, whereas no evidence for a maximum cell size threshold for cell division of pavement cells was found. Furthermore, the model predicted that neighboring cells of different sizes within the epidermis expand at distinctly different relative rates, which could be verified by direct observations. We conclude that cell division seems to occur independently from the status of cell expansion, whereas the cell cycle might act as a timer rather than as a size-regulated machinery.  相似文献   

11.
A method was developed to analyse and characterize FMF measurements of DNA content distribution, utilizing the discrete time kinetic (DTK) model for cell kinetics analysis. The DTK model determines the time sequence of the cell age distribution during the proliferation of a tumor cell population and simulates the distribution pattern of the DNA content of cells in each age compartment of the cell cycle. The cells in one age compartment are distributed and spread into several compartments of the DNA content distribution to allow for different rates of DNA synthesis and instrument dispersion effects. It is assumed that the DNA content of cells in each age compartment has a Gaussian distribution. Thus, for a given cell age distribution the DNA content distribution depends on two parameters of the cells in each age compartment: the average DNA content and its coefficient of variation. As the DTK model generates the best fit DNA content distribution to the FMF measurement data, it enables one to estimate specific values of these two parameters in each stage of the cell cycle and to determine the fraction of cells in each cycle phase. The method was utilized to fit FMf measurements of DNA content distributions and to analyse their relationship tothe cell kinetic parameters, namely cell loss rate, cell cycle times and grwoth graction of exponentially growing Chinese hamster ovary cells in vitro and, also, with a wide range of coeffficients of variation, of the L1210 ascites tumour during the growth period.  相似文献   

12.
A method was developed to analyse and characterize FMF measurements of DNA content distribution, utilizing the discrete time kinetic (DTK) model for cell kinetics analysis. The DTK model determines the time sequence of the cell age distribution during the proliferation of a tumor cell population and simulates the distribution pattern of the DNA content of cells in each age compartment of the cell cycle. The cells in one age compartment are distributed and spread into several compartments of the DNA content distribution to allow for different rates of DNA synthesis and instrument dispersion effects. It is assumed that the DNA content of cells in each age compartment has a Gaussian distribution. Thus, for a given cell age distribution the DNA content distribution depends on two parameters of the cells in each age compartment: the average DNA content and its coefficient of variation. As the DTK model generates the best fit DNA content distribution to the FMF measurement data, it enables one to estimate specific values of these two parameters in each stage of the cell cycle and to determine the fraction of cells in each cycle phase. The method was utilized to fit FMF measurements of DNA content distributions and to analyse their relationship to the cell kinetic parameters, namely cell loss rate, cell cycle times and growth fraction of exponentially growing Chinese hamster ovary cells in vitro and, also, with a wide range of coefficients of variation, of the L1210 ascites tumour during the growth period.  相似文献   

13.
A mathematical model is formulated for the development of a population of cells in which the individual members may grow and divide or die. A given cell is characterized by its age and volume, and these parameters are assumed to determine the rate of volume growth and the probability per unit time of division or death. The initial value problem is formulated, and it is shown that if cell growth rate is proportional to cell volume, then the volume distribution will not converge to a time-invariant shape without an added dispersive mechanism. Mathematical simplications which are possible for the special case of populations in the exponential phase or in the steady state are considered in some detail. Experimental volume distributions of mammalian cells in exponentially growing suspension cultures are analyzed, and growth rates and division probabilities are deduced. It is concluded that the cell volume growth rate is approximately proportional to cell volume and that the division probability increases with volume above a critical threshold. The effects on volume distribution of division into daughter cells of unequal volumes are examined in computer models.  相似文献   

14.
We present in this paper various links between individual and population cell growth. Deterministic models of the lag and subsequent growth of a bacterial population and their connection with stochastic models for the lag and subsequent generation times of individual cells are analysed. We derived the individual lag time distribution inherent in population growth models, which shows that the Baranyi model allows a wide range of shapes for individual lag time distribution. We demonstrate that individual cell lag time distributions cannot be retrieved from population growth data. We also present the results of our investigation on the effect of the mean and variance of the individual lag time and the initial cell number on the mean and variance of the population lag time. These relationships are analysed theoretically, and their consequence for predictive microbiology research is discussed.  相似文献   

15.
A discrete model is proposed describing the growth of cell populations with arbitrary frequency distributions of cycle durations. The model assumes that each cell divides into two cells at the end of its cycle, and that each new cell is assigned an individual cycle duration according to a probability distribution that can be arbitrarily defined. The increase in the cell number is calculated, either from the numbers of cells at earlier time points or from the initial conditions of the population, by a recurrence formula; it is also approximated by the optimal exponential function, whose parameters are determined by the initial conditions. The appropriate average cycle duration is shown not to be the arithmetic or geometric mean, but rather the solution to a more complex equation. Age distributions are calculated and compared with those found in the literature. The results of the model calculations are compared with computer simulations and with observed data on populations of the ciliate Tetrahymena geleii.  相似文献   

16.
Predicted steady-state cell size distributions for various growth models   总被引:2,自引:0,他引:2  
The question of how an individual bacterial cell grows during its life cycle remains controversial. In 1962 Collins and Richmond derived a very general expression relating the size distributions of newborn, dividing and extant cells in steady-state growth and their growth rate; it represents the most powerful framework currently available for the analysis of bacterial growth kinetics. The Collins-Richmond equation is in effect a statement of the conservation of cell numbers for populations in steady-state exponential growth. It has usually been used to calculate the growth rate from a measured cell size distribution under various assumptions regarding the dividing and newborn cell distributions, but can also be applied in reverse--to compute the theoretical cell size distribution from a specified growth law. This has the advantage that it is not limited to models in which growth rate is a deterministic function of cell size, such as in simple exponential or linear growth, but permits evaluation of far more sophisticated hypotheses. Here we employed this reverse approach to obtain theoretical cell size distributions for two exponential and six linear growth models. The former differ as to whether there exists in each cell a minimal size that does not contribute to growth, the latter as to when the presumptive doubling of the growth rate takes place: in the linear age models, it is taken to occur at a particular cell age, at a fixed time prior to division, or at division itself; in the linear size models, the growth rate is considered to double with a constant probability from cell birth, with a constant probability but only after the cell has reached a minimal size, or after the minimal size has been attained but with a probability that increases linearly with cell size. Each model contains a small number of adjustable parameters but no assumptions other than that all cells obey the same growth law. In the present article, the various growth laws are described and rigorous mathematical expressions developed to predict the size distribution of extant cells in steady-state exponential growth; in the following paper, these predictions are tested against high-quality experimental data.  相似文献   

17.
BACKGROUND: Telomeres shorten during DNA replication; extensive erosion of telomeres likely promotes replicative senescence and chromosomal instability. Telomere length in individual cells has been quantified by flow cytometric analysis of fluorescence in situ hybridization (flow-FISH). To determine the rate of telomere attrition (telomere erosion per cell division), we combined flow-FISH with dye dilution and DNA staining (flow-FISH-DDD) and measured telomere-specific fluorescence in proliferating cells identified by cell generation and cell cycle phase. METHODS: Peripheral blood mononuclear cells (PBMC) were stained with the cell division tracking dye carboxyfluorescein diacetate succinimidyl ester (CFSE), stimulated with phytohemagglutinin (PHA), grown for 5-6 days, hybridized with a telomere sequence-specific peptide nucleic acid fluorescent probe (PNA-Cy5), counterstained with DAPI, and analyzed by flow cytometry. The cell cycle distribution and cell division generations were respectively identified by analysis of DAPI emission and deconvolution of CFSE emission, and Cy5 emission was used to determine telomere-specific fluorescence, an indicator of telomere length, in each cell. RESULTS: In stimulated PBMC, in each cell cycle phase, the telomere-specific fluorescence diminished with increasing cell generation. The rate of decline of the telomere-specific fluorescence per cell generation did not significantly differ between cell cycle phases. CONCLUSIONS: Application of flow-FISH-DDD to measure mean telomere length and the rate of telomere attrition in proliferating cells may find use in studies of ageing and disease, the effects of telomere-modifying agents, and variability between individuals.  相似文献   

18.
This protocol outlines the carboxyfluorescein diacetate succinimidyl ester (CFSE) method for following the proliferation of human lymphocytes in vitro and mouse lymphocytes both in vitro and in vivo. The method relies on the ability of CFSE to covalently label long-lived intracellular molecules with the highly fluorescent dye, carboxyfluorescein. Following each cell division, the equal distribution of these fluorescent molecules to progeny cells results in a halving of the fluorescence of daughter cells. The CFSE labeling protocol described, which typically takes <1 h to perform, allows the detection of up to eight cell divisions before CFSE fluorescence is decreased to the background fluorescence of unlabeled cells. Protocols are outlined for labeling large and small numbers of human and mouse lymphocytes, labeling conditions being identified that minimize CFSE toxicity but maximize the number of cell divisions detected. An important feature of the technique is that division-dependent changes in the expression of cell-surface markers and intracellular proteins are easily quantified by flow cytometry.  相似文献   

19.
The duration of a morphological phase of the cell cycle is reflected in the steady state distribution of the sizes of cells in that phase. Relationships presented here provide a method for estimating the timing and variability of any cell cycle phase. It is shown that the mean size of cells initiating and finishing any phase can be estimated from (1) the frequency of cells exhibiting the distinguishing morphological or autoradiographic features of the phase; (2) the mean size of cells in the phase; and (3) their coefficient of variation. The calculations are based on a submodel of the Koch-Schaechter Growth Controlled Model which assumes that (i) the distribution of division sizes is Gaussian; (ii) there is no correlation in division sizes between successive generations; and (iii) every cell division gives rise to two daughter cells of equal size. The calculations should be useful for a wider range of models, however, because the extrapolation factors are not sensitive to the chosen model. Criteria are proposed to allow the user to check the method's applicability for any experimental case. The method also provides a more efficient test of the dependence of growth on cell size than does the Collins-Richmond method. This is because the method uses the mean and coefficient of variation of the size of the total population, in conjunction with those of the cells in a final phase of the cell cycle, to test potential growth laws. For Escherichia coli populations studied by electron microscopy, an exponential growth model provided much better agreement than did a linear growth model. The computer simulations were used to generate rules for three types of cell phases: those that end at cell division, those that start at cell division, and those totally contained within a single cell cycle. For the last type, additional criteria are proposed to establish if the phase is well enough contained for the formulae and graphs to be used. The most useful rule emerging from these computer studies is that the fraction of the cell cycle time occupied by a phase is the product of the frequency of the phase and the ratio of the mean size of cells in that phase to the mean size of all cells in the population. A further advantage of the techniques presented here is that they use the 'extant' distributions that were actually measured, and not hypothesized distributions nor the special distributions needed for Collins-Richmond method that can only be calculated from the observed distributions of dividing or newborn cells on the basis of an assumed growth law.  相似文献   

20.
Present phytoplankton models typically use a population-level (lumped) modeling (PLM) approach that assumes average properties of a population within a control volume. For modern biogeochemical models that formulate growth as a nonlinear function of the internal nutrient (e.g. Droop kinetics), this averaging assumption can introduce a significant error. Individual-based (agent-based) modeling (IBM) does not make the assumption of average properties and therefore constitutes a promising alternative for biogeochemical modeling. This paper explores the hypothesis that the cell quota (Droop) model, which predicts the population-average specific growth or cell division rate, based on the population-average nutrient cell quota, can be applied to individual algal cells and produce the same population-level results. Three models that translate the growth rate calculated using the cell quota model into discrete cell division events are evaluated, including a stochastic model based on the probability of cell division, a deterministic model based on the maturation velocity and fraction of the cell cycle completed (maturity fraction), and a deterministic model based on biomass (carbon) growth and cell size. The division models are integrated into an IBM framework (iAlgae), which combines a lumped system representation of a nutrient with an individual representation of algae. The IBM models are evaluated against a conventional PLM (because that is the traditional approach) and data from a number of steady and unsteady continuous (chemostat) and batch culture laboratory experiments. The stochastic IBM model fails the steady chemostat culture test, because it produces excessive numerical randomness. The deterministic cell cycle IBM model fails the batch culture test, because it has an abrupt drop in cell quota at division, which allows the cell quota to fall below the subsistence quota. The deterministic cell size IBM model reproduces the data and PLM results for all experiments and the model parameters (e.g. maximum specific growth rate, subsistence quota) are the same as those for the PLM. In addition, the model-predicted cell age, size (carbon) and volume distributions are consistent with those derived analytically and compare well to observations. The paper discusses and illustrates scenarios where intra-population variability in natural systems leads to differences between the IBM and PLM models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号