首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
大豆蛋白磷酸化   总被引:7,自引:0,他引:7  
孙学斌  宋丹凤 《植物研究》2001,21(1):106-109
对大豆蛋白磷酸化的方法作了较为系统的归纳和总结, 以寻求大豆分离蛋白的最佳改性方式, 为充分利用大豆资源提供了新途径。  相似文献   

2.
大豆叶片质膜蛋白激酶的自身磷酸化反应   总被引:3,自引:0,他引:3  
利用Ferrell和Martin设计的测定印迹在PVDF膜上的蛋白激酶活性方法研究大豆叶片质膜蛋白激酶自身磷酸化反应活性,结果表明:与Mg-ATP相比,Mn-ATP是更有效的57kD蛋白激酶自身磷酸化反应底物;钙离子可以促进该激酶的自身磷酸化反应活性,而且EGTA可以显著降低它在SDS电泳中的迁移率,说明57kD蛋白激酶为依赖于钙的蛋白激酶;  相似文献   

3.
利用Ferrell和Martin(1991)设计的测定印迹在PVDF膜上的蛋白激酶活性方法研究大豆叶片质膜蛋白激酶自身磷酸化反应活性,结果表明:与Mg-ATP相比,Mn-ATP是更有效的57KD蛋白激酶自身磷酸化反应底物;钙离子可以促进该激酶的自身磷酸化反应活性,而且EGTA可以显著降低它在SDS电泳中的迁移率,说明57KD蛋白激酶为依赖于钙的蛋白激酶;预磷酸化反应实验证明57KD蛋白激酶具有多个自身磷酸化反应位点,其分子的自身磷酸化状态可调性暗示这一激酶可能具有重要的生理功能。  相似文献   

4.
磷酸化/脱磷酸化与细胞周期调控   总被引:1,自引:0,他引:1  
  相似文献   

5.
对磷酸化蛋白质组(phosphoproteome)进行系统深入的研究依赖于高重复性和特异性的磷酸化肽段富集与分离方法。目前发展了多种不同原理的磷酸化肽段富集方法,它们往往具有不同的选择性和特异性,因此,根据不同的研究目的选择最适合的富集方法显得尤为重要。本文综述了基于亲和色谱法(affinity chromatography)、免疫沉淀法(immunoprecipitation)、化学衍生法(chemical derivatization)、色谱法(chromatography)和其他新发展方法的磷酸化肽段富集方法,详细介绍了各自的优缺点及相关的优化与改进策略。此外,还简单介绍了磷酸化肽段富集与预分方法的不同组合的研究进展。  相似文献   

6.
蛋白质磷酸化修饰的研究进展   总被引:9,自引:0,他引:9  
蛋白质磷酸化是最常见、最重要的一种蛋白质翻译后修饰方式,它参与和调控生物体内的许多生命活动。通过蛋白质的磷酸化与去磷酸化,调控信号转导、基因表达、细胞周期等诸多细胞过程。随着蛋白质组学技术的发展和应用,蛋白质磷酸化的研究越来越受到广泛的重视。我们介绍了蛋白质磷酸化修饰的主要类型与功能、磷酸化蛋白质分析样品的富集及制备、磷酸化蛋白的鉴定及磷酸化位点的预测、蛋白分离后磷酸化蛋白的检测,及蛋白质磷酸化的分子机制,并综述了近年来国内外的主要相关研究进展。  相似文献   

7.
8.
植物蛋白质磷酸化的研究技术   总被引:1,自引:0,他引:1  
本文介绍植物蛋白质磷酸化研究的技术及其应用情况,并对这些技术的应用前景作了展望。  相似文献   

9.
蛋白质磷酸化是生物体内一种广泛存在的蛋白质翻译后修饰形式,这种氨基酸与磷酸基团共价连接的修饰模式对蛋白质结构和功能起到了重要调节作用.目前天然蛋白质中发现的可磷酸化位点主要有9种氨基酸残基,其中包括以磷酰胺连接的磷酸化组氨酸.虽然该磷酸化形式在原核生物与真核生物中都起到了重要的调节作用,但对于其生物学功能的研究长期存在技术困难.由于磷酸化组氨酸本身不同于其他磷酸化氨基酸的化学性质,如存在异构体、化学不稳定等,其在传统的研究方法中容易发生水解去磷酸化.随着现代生物化学与分子生物学技术的不断进步,人们针对含有磷酸化组氨酸的蛋白质构建了新的制备、分离与表征策略,本领域也因此开始迅速发展.本文从磷酸化组氨酸的化学结构入手,分析其两种异构体的主要理化性质与化学反应特性,并概述了基于此发展的新型化学生物学研究手段以及对于磷酸化组氨酸生物功能的研究进展.  相似文献   

10.
用蛋白质组学方法解析磷酸化蛋白质   总被引:1,自引:0,他引:1  
蛋白质磷酸化和去磷酸化这一可逆过程参与了高等真核生物细胞信号转导、细胞分化和细胞生长等重要过程,并与许多疾病、肿瘤的发生密切相关。蛋白质组学技术的不断发展和完善,可以更好、更多地识别和鉴定磷酸化蛋白质,为解析磷酸化蛋白质提供了可能。章综述了用于分离和鉴定磷酸化蛋白质的蛋白质组学方法。  相似文献   

11.
磷酸化蛋白质组学分析和定量技术的研究进展   总被引:2,自引:0,他引:2  
蛋白质的磷酸化是一种可逆性的蛋白质翻译后修饰,在生物体内起着极为重要的作用.近年来蛋白质翻译后修饰日益成为蛋白质组研究的热点之一.定量磷酸化蛋白质组学方法和技术的快速发展为研究蛋白质磷酸化时空动态变化,更好地了解生物学功能调节网络奠定了坚实的基础.作为蛋白质组学研究的一个重要组成部分,定量磷酸化蛋白质组学因其磷酸化蛋白质所具有的独特特征,在技术和方法研究方面将面临更为严峻的挑战.综述了磷酸化蛋白质组学定量的一些分析技术和方法的发展现状、优缺点以及未来的发展趋势.  相似文献   

12.
以大豆幼苗初生叶为材料研究了衰老过程中质膜蛋白激酶自磷酸化状态和催化活性的变化,结果发现质膜上一个57kD的蛋白激酶分子上有多个自磷酸化位点,而且自磷酸化反应能提高该酶催化组蛋白H1磷酸化的激酶活力。进一步的研究表明诱导衰老处理造成的57kD蛋白激酶自磷酸化状态的变化,可能对调节它在衰老过程中催化活性的变化起重要作用;而外源6-BA预处理则能够维持57kD蛋白激酶体内高自磷酸化状态,保持该激酶在衰老过程中的催化活力。对衰老和6-BA过程中质膜上39和47kD蛋白激酶自磷酸化状态变化的研究表明,这两种激酶可能参与大豆叶片对6-BA刺激信号的传导和/或应答反应过程。  相似文献   

13.
以小鼠断头脑缺血为模型,研究缺血小鼠脑内蛋白磷酸化脱磷酸化的改变,对缺血1min,5min,15min和30min及对照小鼠脑内蛋白磷酸化脱磷酸化的研究表明,有些磷蛋白如145kD,84kD,59kD和50kD 的磷酸化随缺血时间延长而减弱,还有些磷蛋白和如119kD,105kD,78kD,55kD的磷酸化随缺血时间延长而增加,对磷酸化程度变化显著的缺血15min小鼠脑内胞浆及膜上PKA、PKC、  相似文献   

14.
以小黑杨磷酸化蛋白质组为研究对象,用人工神经网络表达丝氨酸、苏氨酸等残基位点的磷酸化与氨基酸序列的结构特征之间的非线性关系,建立了BP人工神经网络模型,并用磷酸化数据对所建模型进行训练和分析,得适宜的结构为21×16∶8∶4,拟合准确度为90%,Acc、Sn、Sp、MCC分别为78%、89%、67%、0.57,对比分析结果表明,所建模型具有较强的预测能力。  相似文献   

15.
6—BA延缓大豆叶片衰老的作用与膜蛋白磷酸化状态的关系   总被引:5,自引:1,他引:5  
  相似文献   

16.
以小鼠断头脑缺血为模型,研究缺血小鼠脑内蛋白磷酸化脱磷酸化的改变。对缺血1min、5min、15min和30min及对照小鼠脑内蛋白磷酸化脱磷酸化的研究表明,有些磷蛋白如145kD、84kD、59kD和50kD的磷酸化随缺血时间延长而减弱,还有些磷蛋白如119kD、105kD、78kD和55kD的磷酸化随缺血时间延长而增加。对磷酸化程度变化显著的缺血15min小鼠脑内胞浆及膜上PKA、PKC、Ca~(2+)/CaMPK底物的磷酸化进行了研究,发现胞浆组分中与钙相关的PKC、Ca~(2+)/CaMPK底物磷酸化在缺血鼠脑中明显减弱。同时研究了脑内唯一依赖于Ca~(2+)/CaM的钙调神经磷酸酶(Calcineurin,CaN)底物的变化,发现缺血小鼠脑内CaN的某些底物磷酸化降低。  相似文献   

17.
肌球蛋白是肌原纤维粗丝的组成单位,由多条重链与多条轻链组成,被视为一种分子马达。在肌肉收缩、趋化性胞质分裂、胞引作用、膜泡运输以及信号传导等生理过程中起重要作用。目前肌球蛋白磷酸化是研究的一个热点,它对细胞的迁移、收缩、胞质分裂以及其他未知功能都有着至关重要的作用。肌球蛋白磷酸化分为重链的磷酸化与轻链的磷酸化。根据国内外的最新相关研究报道,分别从肌球蛋白的结构与功能、磷酸化的作用机制、磷酸化的生物学功能以及最新研究成果等方面,对肌球蛋白的磷酸化研究进展进行阐述。  相似文献   

18.
植物生理学教材中光合作用一章的光合磷酸化机理部分,是本章的重点和难点,每当讲到这个内容时,我们都感到很难把这个问题向学生讲请楚,因为现有的几套植物生理学教材在这方面的论述显得不够具体,而师范院校的植物生理学教材在这方面则编写得过份简单,学生总是反映教材中这部分内容不够详细,对光合磷酸化的机理不太明白。为了解决这一问题,我参考了现有的几套植物生理学教材,把有关光合磷酸化机理方面的内容作了比较、分析和归  相似文献   

19.
用蛋白质组学方法研究蛋白质酪氨酸磷酸化   总被引:1,自引:0,他引:1  
蛋白质的磷酸化与去磷酸化过程是生物体内普遍存在的信息传导调节方式,几乎涉及所有的生理及病理过程,其中酪氨酸残基的磷酸化作为较高级的进化形式和复杂的多细胞生命的特征表现得尤为突出和重要。但目前对酪氨酸磷酸化缺乏大规模和系统性的研究,近年发展起来的蛋白质组学为细胞和组织中的酪氨酸磷酸化蛋白质的系统研究提供了必要的技术。  相似文献   

20.
光合作用被称为"地球上最重要的化学反应",其二氧化碳同化是由还原辅酶II(NADPH)和腺三磷(ATP)来推动的。ATP主要来源于非循环光合磷酸化和循环光合磷酸化,但以往研究集中在前者。21世纪以来,随着测定技术的发展和多条与循环光合磷酸化有关的电子传递途径的发现,循环光合磷酸化的重要性和功能引起了极大地关注。该文作者结合自己实验室的相关的研究,围绕循环光合磷酸化的发现和重要性、同化力两个组分的比例与促进光合磷酸化提高光合作用的途径进行探讨,为进一步深入研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号