首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-(Benzyloxycarbonyl)-L-aspartyl-L-phenylalanine methyl ester (Z-AspPheOMe), a precursor of the synthetic sweetner asparatame, was synthesized from N-(benzyloxycarbolyl)-L-aspartic acid (Z-Asp) and L-phenylalanine methyl ester (PheOMe) with an immobilized thermolysin in various organic solvents. We found that in tert-amyl alcohol containing a small amount of water the immobilized enzyme showed a high activity comparble to that in ethyl acetate with quite a high stability. The immobilized enzyme was fully stable up to 70 degrees C in tert-amyl alcohol in the absence of the subatrate, and up to 50 degrees C in the presence of the substrate. The high stability in the presence of the substrate was found due to the fact that the release of calcium ions, the stabilizing factor of thermolysin, is suppressed.The substrate concentration dependence of the initial synthetic rate with the immobilized enzyme was quite different from that with the free enzyme in the biphasic system, in contrast to that in ethyl acetate. Finally, Z-AspPheOMe was continuously synthesized in a column reactor using 200 mM PheOMe and 120 mM Z-Asp as the substrate for over 300 h at 45 degrees C and a space velocity of 1 h(-1) without any loss of acivity. (c) 1994 John Wiley & Sons, Inc.  相似文献   

2.
N-(Benzyloxycarbonyl)-L-aspartyl-L-phenylalanine methyl ester (Z-AspPheOMe), a precursor of the aspartame, and N-(benzyloxycarbonyl)-L-phenylalanyl-Lphenylalanine methyl ester (Z-PhePheOMe) were synthesized from the respective amino acid derivatives with an immobilized thermolysin (EC 3.4.24.4) in ethyl acetate. Various factors affecting the synthesis of these dipeptide precursors were clarified. The initial synthetic rate was the highest at the water content of 3.5% for both reactions. The substrate concentration dependencies of the initial synthetic rate of Z-AspkPheOMe and Z-PhePheOMe with the immobilized enzyme in ethyl acetate were different from those in an aqueous buffer solution saturated with ethyl acetate but similar to those in the aqueous/organic biphasic system using the free enzyme. Particularly, the initial synthetic rate of Z-AspPhOMe increased in order higher than first order with respect to the concentration of L-phenylalanine methyl ester (PheOMe), whereas it decreased sharply with the concentration of N-(benzyloxycarbonyl)-L-aspartic acid (Z-Asp). Such kinetic behavior could be explained by regarding the inside of the immobilized enzyme as being a biphasic mode composed from the organic phase and aqueous phase where the enzymatic reaction takes place. The reaction in the aqueous/organic biphasic system using the free enzyme could be simulated by taking into consideration the partition of the substrate and the initial rate of synthesis in the aqueous buffer saturated with ethyl acetate. Based on this analysis, the rate of reaction with the immobilized enzyme in ethyl acetate could also be predicted. Z-AsPheOMe and Z-PhePheOMe were synthesized by the fed-batch method where the acid component of the substrate was intermittently added during the course of reaction and by the batch method. In the synthesis of Z-AspPheOMe, the synthetic rate and maximum yield of reaction as well as the stability of the immobilized enzyme were higher in the fed-batch reaction than those in the batch reaction. In the synthesis of Z-PhePheOMe, the results obtained by both methods were similar. (c) 1994 John Wiley & Sons, Inc.  相似文献   

3.
The integration of a charged membrane into a perstraction system for high selective separation is reported. A mixture of N-(benzyloxycarbonyl)-L-aspartic acid (ZA), L-phenylalanine methyl ester (PM), and N-(benzyloxycarbonyl)-L-aspartyl-L-phenylalanine methyl ester (ZAPM) was used as the model solution. The aqueous phase containing ZA, PM, and ZAPM was adjusted to pH 6 and was contacted with tert-amyl alcohol through a charged membrane. Seven different ion-exchange membranes and two different microfiltration membranes were tested for the separation system. Only ZAPM could permeate into the organic phase through SELEMION AMV and ASV. The separations between ZA and ZAPM and between PM and ZAPM were performed by biphasic extraction and electrostatic rejection, respectively. The permeabilities of ZAPM were higher than those of PM for all experiments using the ion-exchange membranes, although the molecular weight of ZAPM is larger than that of PM. The membrane that had a smaller pore size showed higher ZAPM selectivity. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 162-167, 1997.  相似文献   

4.
We studied kinetics of thermolysin-catalyzed peptide synthesis in an aqueous/organic biphasic system theoretically and experimentally. As a model reaction producing a condensation product having no dissociating groups, we used the synthesis of N-(benzyloxycarbonyl)-L-phenylalanyl-L-phenylalanine methyl ester (Z-Phe2OMe) from N-(benzyloxycarbonyl)-L-phenylalanine (Z-Phe) and L-phenylalanine methyl ester (PheOMe). Usually, ethyl acetate was used as the organic solvent. First we studied the kinetics of the synthesis of Z-Phe2OMe in a buffer solution saturated with ethyl acetate. Then, factors that may affect the kinetics in the biphasic system were examined. The course of Z-Phe2OMe synthesis in the biphasic system was explained by the rate equations obtained, using the partitions of substrate and product and non-enzymatic decomposition of PheOMe. In the biphasic reaction system, the rate of synthesis was lower for a wide range of pH due to the unfavorable partition of PheOMe in the aqueous phase, but yields were higher than in the buffer solution. The effects of the organic solvents on the rate of synthesis could also be explained by variations in the partition coefficient of PheOMe. Finally, we gave a way to predict the aqueous-phase pH change caused by partitioning of the substrate. The significance of the pH change was shown in connection with the reaction using the immobilized enzyme in an organic solvent.  相似文献   

5.
A new process for the simultaneous enzymic synthesis and purification of N-(benzyloxycarbonyl)- -aspartyl- -phenylalanine methyl ester (ZAPM), a precursor of aspartame, has been developed. The enzymic reaction between N-(benzyloxycarbonyl)- -aspartic acid (ZA) and -phenylalanine methyl ester (PM) was carried out in a biphasic hollow-fibre rector with an aqueous phase an a butyl acetate phase. The reaction took place in the aqueous phase and by maintaining the pH at 5, the product (ZAPM) was extracted into the organic phase. Product purity was greater than 90% and reasonable productivity could be achieved with this system.  相似文献   

6.
Summary N-(Benzyloxycarbonyl)-l-phenylalanyl-l-phenylalanine methyl ester was synthesized from N-(benzyloxycarbonyl)-l-phenylalanine and l-phenylalanine methyl ester in an aqueous solution (aqueous phasic reaction), in an aqueous/organic biphasic system (biphasic reaction), and in an organic solvent (organic phasic reaction) with immobilized thermolysin. In the aqueous phasic reaction with thermolysin immobilized on Amberlite XAD-7, the whole product was trapped inside the support; extraction with ethyl acetate was needed to recover the product, and the equilibrium yield was low (about 65%). With the biphasic and organic phasic reactions with ethyl acetate as an organic solvent, the yield was around 95%. Because of the high yield and feasibility of operation, repeated batch and continuous reactions were done in the biphasic and organic phasic systems, respectively. The half-lives of the activity for the immobilized enzyme used in the biphasic system at 40°C by repeated batch operation and in a plug flow reactor fed with substrate dissolved in ethyl acetate at 40°C and 30°C were estimated to be about 200 h (67 batches), 420 h, and 1100 h, respectively.  相似文献   

7.
We studied kinetics and the equilibrium relationship for the thermolysin-catalyzed synthesis of N-(benzyloxycarbonyl)-L-aspartyl-L-phenylalanine methyl ester (Z-Asp-PheOMe) from N-(benzyloxycarbonyl)-L-aspartic acid (Z-Asp) and L-phenylalanine methyl ester (PheOMe) in an aqueous-organic biphasic system. This is a model reaction giving a condensation product with dissociating groups. The kinetics for the synthesis of Z-Asp-PheOMe in aqueous solution saturated with ethyl acetate was expressed by a rate equation for the rapid-equilibrium random bireactant mechanism, and the reverse hydrolysis reaction was zero-order with respect to Z-Asp-PheOMe concentration. The courses of synthesis of Z-Asp-PheOMe in the biphasic system were well explained, by the rate equations obtained for the aqueous solution and by the partition of substrate and condensation product between the both phases. The rate of synthesis in the biphasic system was much lower than in aqueous solution due to the unfavorable partition of PheOMe in the aqueous phase. The equation for the equilibrium yield of Z-Asp-PheOMe in the biphasic system was derived assuming that only the non-ionized forms of the substrate and condensation product exist in the organic phase. It was found theoretically and experimentally that the yield of Z-Asp-PheOMe is maximum at the aqueous-phase pH of around 5, lower than for synthesis in aqueous solution. The effect of the organic solvent on the rate and equilibrium for the synthesis of Z-Asp-PheOMe could be explained by the variation in the partition coefficient. The effect of the partitioning of substrate on the aqueous-phase pH change was also shown.  相似文献   

8.
Transesterification of canola oil was carried out with methanol, ethanol, and various mixtures of methanol/ethanol, keeping the molar ratio of oil to alcohol 1:6 and using KOH as a catalyst. Mixtures of alcohol increased the rate of transesterification reaction and produced methyl as well as ethyl esters. The increased rate was result of better solubility of oil in reaction mixture due to better solvent properties of ethanol than methanol and equilibrium due to methanol. With 3:3 molar ratio of methanol to ethanol {MEE (3:3)} the amount of ethyl ester formed was 50% that of methyl ester. Properties (acid value, viscosity, density) of all esters including mixed esters were within the limits of ASTM standards. Lubricities of these esters are in the order: ethyl ester>methyl ethyl ester>methyl ester.  相似文献   

9.
The kinetic patterns and parameters of 12 alcoholic organic solvents of different classes inhibiting thermolysin-catalyzed synthesis of N-(benzyloxycarbonyl)-L-phenylalanyl-L-phenylalanine methyl ester (Z-Phe-Phe-OMe) in aqueous organic one-phase reaction system have been determined. All alcohols showed a linear mixed type inhibition. A kinetic model of inhibition is suggested. It was presumed that alcohols interact with substrate in the active site of thermolysin.  相似文献   

10.
Candida Krusei has a optimum growth temperature of 37°C on SASOL ethanol-isopropanol mixture. The organism was unable to grow on isopropanol, but oxidized it partially to acetone in the presence and absence of ethanol. Growth at 40°C in the alcohol mixture was slightly faster than at 30°C over an ethanol concentration range of 0.43 to 3.6% (v/v), although at both temperatures the growth rate declined continuously with increasing concentration. At an ethanol concentration greater than 3.6% (v/v), the mixture was much more inhibitory to growth at 40 and 30°C. The inhibitory effect was due to the ethanol rather than the isopropanol. Metabolites such as acetate, acetaldehyde, and ethyl acetate accumulated in the medium, but the degree of accumulation depended upon the temperature and alcohol mixture concentration. At 40°C, acetaldehyde and acetate accumulated to a greater extent than 30°C on a 4.0% (v/v) synthetic alcohol mixture and this may also cause the greater inhibition at this temperature. The alcohol mixture is unsuitable for single cell protein (SCP) production in batch culture because of the low cell densities observed at all alcohol concentrations.  相似文献   

11.
Two different immobilized chymotrypsin derivatives were used to synthesize kyotorphin, using N-benzoyl-L-tyrosine ethyl ester and L-arginine ethyl ester as substrates, in water-DMF media. The first was adsorbed onto Celite particles and the second was multipoint covalently attached into polyacrylamide gel. In all cases, the conversion of the carboxyl substrate was carried out in first-order reaction conditions. For the adsorbed enzyme, the reaction kinetics deviated from first-order likely due to a fast irreversible inactivation of enzyme during the reaction time even at low DMF concentration (15-20% v/v). The covalent attachment of enzyme resulted in elimination of irreversible activity loss by organic solvent up to 60% (v/v) of DMF. The catalytic activity of the covalent derivative was conserved as appropriate for performing a synthetic reaction up to 60% v/v of DMF (in comparison to 30% v/v for the adsorbed derivative), showing a clear improvement in its stability against reversible denaturation by this solvent. The selectivity of the synthetic reaction was slightly enhanced (from 40-50%) with the increase in DMF concentration to 80% v/v, but it was significantly improved (to 80%) when L-argininamide was used as nucleophile.  相似文献   

12.
A simple, rapid, and convenient procedure for silver nitrate impregnation of commercial precoated silica gel plates is described. Silica-gel plates (Silica gel 60, E. Merck) were sprayed with 40% silver nitrate in water, dried in air, and activated at 100°C for 30 min. Samples containing fatty acid methyl esters were applied as 0.5- to 1.0-cm streaks and developed with a solvent system of benzene:ethyl acetate (9:1, v/v). The plates were sprayed with 70% sulfuric acid saturated with potassium dichromate, and the spots were detected by careful heating at 120°C for 90 min. This procedure is useful for separation and isolation of various species of fatty acid methyl esters and for simple, rapid, and reproducible estimation of microgram quantities of materials by spectrodensitometry of the chromatogram.  相似文献   

13.
A proteinase isolated from Thermus RT41a was immobilized to controlled pore glass beads and was used in the free and immobilized forms for peptide synthesis. The observed maximum yield was the same in both cases. a number of dipeptides were produced from amino acid esters and amides. The best acyl components, from those tested, were found to be Ac-Phe-OEt and Bz-Ala-OMe. Tur-NH(2), Trp-NH(2), Leu-pNA, and Val-pNA were all reactive nucleophiles.The kinetically controlled synthesis of Bz-ala-Tyr-NH(2) was optimized by studying the effect of pH, temperature, solvent concentration, ionic strength, and nucleophile and acyl donor concentration, ionic strength, and nucleophile and acyl donor concentration on the maximum yield. The initial conditions used were 25 mM Bz-ala-OMe, 25 mM Tyr-NH(2), 70 degrees C, pH 8.0, and 10% v/v dimethylformamide (DMF). The optimum conditions were 90% v/v DMF using 80 mM bz-Ala-OMe and 615 mM Tyr-NH(2) at 40 degrees C and pH 10. These conditions increased the maximum conversion from 0.75% to 26% (of the original ester concentration). In a number of other cosolvents, the best peptide yields were observed with acetonitrile and ethyl acetate. In 90% acetonitrile similar yields were observed to those in 90% DMF under optimized conditions except that the acyl donor and nucleophile concentrations could be reduced to 25 mM and 100mM, respectively. The effect of the blocking group on the nucleophile was also investigated; -betaNA and -pNA as blocking groups improved the yields markedly. The blocking and leaving groups of the acyldonor had no effect on the dipeptide yield. (c) 1994 John Wiley & Sons, Inc.  相似文献   

14.
For several years we have been investigating combinations of chemicals for their ability to induce aneuploidy. Earlier published results indicated that combinations of certain chemicals showed a potentiation effect while other combinations did not. We have continued to explore this phenomenon and report additional findings in this communication. Combinations of ethyl acetate and methyl ethyl ketone showed a potentiation effect as did 1-methyl-2-pyrrolidinone-nocodazole combinations. Combinations that did not show a potentiation effect were 2-pyrrolidinone-nocodazole and 1-methyl-2-pyrrolidinone-ethyl acetate. We also found that nocodazole, which is a potent inducer of aneuploidy in yeast extract-peptone-dextrose (YEPD) medium but not in synthetic complete (SC) medium, showed a potentiation effect with ethyl acetate in SC medium. This effect in SC medium is similar to that previously reported for nocodazole with ethyl acetate in YEPD medium. When nocodazole was dissolved in 1-methyl-2-pyrrolidinone as a concentrated stock solution, a potentiation effect occurred even at low concentrations of the solvent.  相似文献   

15.
N-(Benzyloxycarbonyl)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate]-(2----3)-O-(2,4,6-tri-O-acetyl-beta-D - galactopyranosyl)-(1----3)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-O-(2-acetamido-4-O-acetyl-2- deoxy-alpha-D- galactopyranosyl)-(1----3)-L-serine benzyl ester was synthesized by using O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5- di-deoxy-D-glycero-alpha-D-galacto-2-nonulopyranosyl)onate]- (2----3)-O-(2,4,6- tri-O-acetyl-beta-D-galactopyranosyl)-(1----3)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-4-O-acetyl-2-azido-2-deoxy-a lpha- and -beta-D-galactopyranosyl trichloroacetimidate as a key glycotetraosyl donor which, upon reaction with N-(benzyloxycarbonyl)-L-serine benzyl ester, afforded a 44% yield of a mixture of the alpha- and beta-glycosides in the ratio of 2:5.  相似文献   

16.
The effects of organic solvents on the stabilities of bovine pancreas trypsin, chymotrypsin, carboxypeptidase A and porcine pancreas lipase were studied. Water-miscible solvents (ethanol, acetonitrile, 1,4-dioxane and dimethyl sulfoxide) and water-immiscible solvents (ethyl acetate and toluene) were used in 100 mM phosphate buffer (pH 7.0) or 100 mM Tris/HCl buffer (pH 7.0) in concentrations of 20–80% (v/v). All hydrolytic enzymes studied were inactivated by mixtures containing dimethyl sulfoxide at higher concentrations. Trypsin and carboxypeptidase A resisted solvent mixtures containing acetonitrile, 1,4-dioxane and ethanol. They preserved more than 80% of their starting activities during 20-min incubations. The activities of lipase and chymotrypsin decreased with increasing concentration of water-miscible polar organic solvents, but at higher concentrations (80%) 70–90% of the activity remained. In mixtures with water-immiscible solvents, the decrease in activity of carboxypeptidase A was pronounced. Trypsin and chymotrypsin underwent practically no loss in activity in the presence of toluene or ethyl acetate. In respect of stability, the polar solvent proved to be more favorable for lipase. These results suggest that the conformational stabilities of hydrolytic enzymes are highly dependent on the solvent-protein interactions and the enzyme structure.  相似文献   

17.
Biotransformation of alkyl and aryl carbonates: enantioselective hydrolysis   总被引:2,自引:0,他引:2  
Summary N-(Benzyloxycarbonyl)-l-asparty-l-phenylalanine methyl ester, the precursor of the synthetic sweetener aspartame, was continuously synthesized in an immobilized thermolysin plug-flow type reactor at 25° C with the substrates (N-benzyloxycarbonyl-l-aspartic acid and l-phenylalanine methyl ester) dissolved in ethyl acetate. The immobilized enzyme was quite stable in ethyl acetate containing 2.5% 0.01 M 2-(N-morpholino)ethanesulphonic acid-NaOH buffer, pH 6.0, and 20 mM CaCl2 with or without the substrate at 25° C. By periodically washing the column, we could conduct a continuous reaction for over 500 h with an average yield of 95% and a space velocity of 1.85 h –1.Offprint requests to: K. Nakanishi  相似文献   

18.
Nocodazole, ethyl acetate, acetone and methyl ethyl ketone all are known to induce aneuploidy. Treatment of yeast strain D61.M with mixtures containing ineffective low levels of nocodazole and ineffective low levels of these solvents was highly effective in inducing aneuploidy. Ineffective low levels of nocodazole mixed with ineffective low levels of methyl 2-benzimidazolecarbamate also gave elevated frequencies of aneuploidy. Dimethyl formamide, a solvent that does not induce aneuploidy, mixed with low levels of nocodazole gave no increase in aneuploidy frequency above those levels seen in controls.  相似文献   

19.
The conversion of ethanol to ethyl acetate has an advantage as a method of ethanol recovery since ethyl acetate is amenable to simple solvent extraction. The potential of Candida utilis in this conversion was studied. The kinetics of accumulation of ethanol and ethyl acetate in glucose-grown C. utilis showed that ester formation resulted from ethanol utilization under appropriate aeration and was inhibited by Fe(3+) supplementation. Candida utilis converted ethanol to ethyl acetate optimally at pH 5.0-7.0. The five-hour rate of ester production increased as the ethanol concentration increased to 10 g/L, and rapidly declined to zero at concentrations exceeding 35 g/L. Thus, C. utilis has potential to recover dilute ethanol in the form of ethyl acetate.  相似文献   

20.
Catalytic hydrogenation of 2,3,4,6-tetra-O-benzyl-1-O-[1-benzyl N-(benzyloxycarbonyl)-L-aspart-4-oyl]-alpha-D-glucopyranose (1alpha) in acetic acid-2-methoxyethanol gave 1-O-(L-beta-aspartyl)alpha-D-glucopyranose (2alpha) contaminated with 2-O-(L-alpha-aspartyl)-D-glucopyranose (8). Evidence that 8 was formed from the 1-oyl isomer of 1alpha, namely 2,3,4,6-tetra-O-benzyl-1-O-[4-benzyl N-(benzyloxycarbonyl)-L-aspart-1-oyl]-alpha-D-glucopyranose (7alpha), via 1 leads to 2 acyl migration, was obtained by submitting the deprotected D-glucosyl ester to successive N-acetylation, esterification, and O-acetylation; the final product was identified as a approximately 4:1 mixture of 2,3,4,6-tetra-O-acetyl-1-O-[1-methyl N-(acetyl)-L-aspart-4-oyl]-alpha-D-glucopyranose (4alpha) and 1,3,4,6-tetra-O-acetyl-2-O-[4-methyl N-(acetyl)-L-aspart-1-oyl]-D-glucopyranose (6) which were also prepared by definitive methods. On the other hand, deprotection of 1beta gave isomerically pure 2beta which was converted into the peracetylated ester derivative 4beta; an explanation for the differences in aglycon isomeric purity of 2alpha and 2beta is given. Hydrogenolysis of 7beta under the above conditions led to intermolecular transesterification with scission of the C-1 ester bond to give 1-(2-methoxyethyl) L-aspartic acid and D-glucose. Catalytic hydrogenation of 7alpha and 7beta, performed in the presence of trifluoroacetic acid, afforded 1-O-(L-alpha-aspartyl)-alpha- and -beta-D-glucopyranoside trifluoroacetate salts (11alpha and 11beta), respectively. The structure of 11beta was established by successive conversion into 2,3,4,6-tetra-O-acetyl-1-O-[4-methyl N-(acetyl)-L-aspart-1-oyl]-beta-D-glucopyranose (5beta) which was also prepared by definitive methods. Analogous treatment of 11alpha gave the N-acetyl derivative 12 which underwent 1 leads to 2 acyl migration during esterification with diazomethane to give the N-acetyl methyl ester derivative 10; acetylation of 10 afforded 6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号