首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously shown that HeLa cells express P2Y2 and P2Y6 receptors endogenously and determined the pathways by which the P2Y2 controls proliferation and Na+/K+ATPase activity. Our objective in this study was to investigate the hypothesis that P2Y6 also controls proliferation and Na+/K+ATPase activity; the pathways used in these actions were partially characterised. We found that P2Y6 activation controlled cell proliferation but not the activity of the Na+/K+ATPase. UDP activation of P2Y6 provoked: (a) an increase in free cytosolic calcium; (b) the activation of protein kinase C-alpha, -beta, -delta, -epsilon, and -zeta but not of PKC-iota and -eta; (c) the phosphorylation of the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2); (d) the expression of c-Fos protein. The P2Y6 induced cell proliferation was blocked by the mitogen-activated protein kinase kinase (MAPKK) inhibitor PD098059, thereby indicating that the ERK pathway mediates the mitogenic signalling of P2Y6. PKC and phosphoinositide 3-kinase (PI3K) inhibitors were tested at two different time points of ERK1/2 phosphorylation (10 and 60 min). The results suggest that novel PKCs and PI3K initiate the response but both conventional and atypical PKCs are required for the maintenance of the UDP-induced phosphorylation of ERK1/2. The induction of c-Fos was greatly diminished by conventional or atypical PKC-zeta inhibition, suggesting that it may be due to PKC-alpha/beta and -zeta activity. These observations demonstrate that UDP acts as a proliferative agent in HeLa cells activating multiple signalling pathways involving conventional, novel, and atypical PKCs, PI3K, and ERK. Of these pathways, conventional and atypical PKCs appear responsible for the induction of c-Fos, while ERK is responsible for cell proliferation and depends upon both novel and atypical PKCs and PI3K activities.  相似文献   

2.
Angiotensin II (Ang II) induces, through AT1, intracellular Ca(2+) increase in both normal and cancerous breast cells in primary culture (Greco et al., 2002 Cell Calcium 2:1-10). We here show that Ang II stimulated, in a dose-dependent manner, the 24 h-proliferation of breast cancer cells in primary culture, induced translocation of protein kinase C (PKC)-alpha, -beta1/2, and delta (but not -epsilon, -eta, -theta, -zeta, and -iota), and phosphorylated extracellular-regulated kinases 1 and 2 (ERK1/2). The proliferative effects of Ang II were blocked by the AT1 antagonist, losartan. Also epidermal growth factor (EGF) had mitogenic effects on serum-starved breast cancer cells since induced cell proliferation after 24 h and phosphorylation of ERK1/2. The Ang II-induced proliferation of breast cancer cells was reduced by (a) G?6976, an inhibitor of conventional PKC-alpha and -beta1, (b) AG1478, an inhibitor of the tyrosine kinase of the EGF receptor (EGFR), and (c) downregulation of 1,2-diacylglycerol-sensitive PKCs achieved by phorbol 12-myristate 13-acetate (PMA). A complete inhibition of the Ang II-induced cell proliferation was achieved using the inhibitor of the mitogen activated protein kinase kinase (MAPKK or MEK), PD098059, or using G?6976 together with AG1478. These results indicate that in human primary cultured breast cancer cells AT1 regulates mitogenic signaling pathways by two simultaneous mechanisms, one involving conventional PKCs and the other EGFR transactivation.  相似文献   

3.
Aim of the present paper was to investigate the signaling pathways of P2Y2 in rat thyroid PC Cl3 cell line and its effects on proliferation. This study demonstrates that P2Y2 activation provoked: (a) a cytosol-to-membrane translocation of PKC-alpha, -betaI and -epsilon; (b) the phosphorylation of the extra cellular signal-regulated kinases 1 and 2 (ERK1/2); (c) the expression of c-Fos protein; (d) no effects on the G1/S progression and overall cell proliferation. The P2Y2-stimulated ERK1/2 phosphorylation was: (a) completely blocked by PD098059, a mitogen-activated protein kinase (MEK) inhibitor or by W-7, a Ca2+-calmodulin (CaM) antagonist; (b) reduced by GF109203X, inhibitor of PKCs, or AG1478, inhibitor of EGFR tyrosine kinase, or LY294002/wortmannin, inhibitors of phosphoinositide 3-kinases, or cytochalasin D, inhibitor of actin microfilament bundles polymerization. The c-Fos induction was greatly diminished by Go6976 or PD098059, and completely abolished when combined. In conclusion, data indicate that the P2Y2-induced phosphorylation of ERK1/2 and the induction of c-Fos are due to the operation of CaM, with PKC, PI3K, EGFR and receptor endocytosis mechanisms endorsing the signalling. On the other hand, no mitogenic effects of P2Y2 are whatsoever noticed in PC Cl3 cells.  相似文献   

4.
We examined the signalling pathways responsible for the Ang II induction of growth in MCF-7 human breast cancer cells. Ang II in MCF-7 cells induced: (a) the translocation from the cytosol to membrane and nucleus of atypical protein kinase C-zeta (PKC-zeta) but not of PKC-alpha, -delta, - epsilon and -eta; (b) the expression of c-fos mRNA and protein; (c) the phosphorylation of the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2). All these effects were due to the activation of the Ang II type I receptor (AT1) since they were blocked by the AT1 antagonist losartan. The Ang II-stimulated ERK1/2 phosphorylation was blocked by (a) high doses of staurosporine, inhibitor of PKC-zeta, and by a synthetic myristoylated peptide with sequences based on the endogenous PKC-zeta pseudosubstrate region (zeta-PS); (b) PD098059, a mitogen-activated protein kinase kinase inhibitor (MAPKK/MEK); and, moreover, (c) the inhibitors of phosphoinositide 3-kinases (PI3K), LY294002 and wortmannin, thus indicating that PI3K may act upstream of ERK1/2. The Ang II-evoked c-fos induction was blocked only by high doses of staurosporine and by zeta-PS whilst PD098059, LY294002 and wortmannin were ineffective, thus indicating that c-fos induction is not due to ERK1/2 activity. When the epidermal growth factor-receptor (EGFR) tyrosine kinase activity was inhibited by the use of its inhibitor AG1478, Ang II was still able to induce ERK1/2 phosphorylation and c-fos expression, therefore proving that the transactivation of EGFR was not required for these Ang II effects in MCF-7 cells. The previously reported proliferation of MCF-7 cells induced by Ang II was blocked by PD098059 and by wortmannin in a dose-dependent manner, thereby indicating that in MCF-7 cells the PI3K and ERK pathways mediate the mitogenic signalling of AT1. Our results suggest that in MCF-7 cells Ang II activates multiple signalling pathways involving PKC-zeta, PI3K and MAPK; of these pathways only PKC-zeta appears responsible for the induction of c-fos.  相似文献   

5.
The effects of P2Y2 purinoceptor activation on c-Fos expression and the signaling pathways evoked by extracellular ATP/UTP in HeLa cells were investigated. We found that P2Y2 activation induced c-Fos protein and phosphorylated the extracellular signal-regulated kinases 1 and 2 (ERK1/2). The P2Y2-stimulated c-Fos induction was partly blocked (a) by U73122, a phospholipase C inhibitor, (b) by G?6976, a conventional PKC inhibitor, (c) by PD098059, a mitogen-activated protein kinase kinase inhibitor, and, moreover, (d) by the inhibitors of phosphoinositide 3-kinases (PI3K), LY294002 and wortmannin. When G?6976 and PD098059, or G?6976 and wortmannin, were combined there was a totally inhibition of P2Y2-induced c-Fos increase. Either U73122 or G?6976 did not inhibit ERK1/2 phosphorylation induced by ATP/UTP, while it was inhibited by LY294002 (or wortmannin) and by staurosporine. Additionally, wortmannin inhibited the cytosol-to-membrane translocation of PKC- epsilon induced by ATP/UTP. These data indicated that agonist-induced PI3K and downstream PKC- epsilon activation mediated the effect of ATP/UTP on ERK1/2 activation. To test the biological consequences of ERK1/2 activation, the effect of P2Y2 on cell functions were examined. P2Y2 stimulation increased cell proliferation and this effect was attenuated by PD098059 in a dose-dependent manner, thereby indicating that the ERK pathway mediates mitogenic signaling by P2Y2. In conclusion, the activation of conventional PKCs through P2Y2 receptor acts in concert with ERK and PI3K/PKC- epsilon pathways to induce c-Fos protein and HeLa cell proliferation.  相似文献   

6.
We studied the expression and the hormonal regulation of the PDS gene product, pendrin, which is, in thyrocytes, responsible for the iodide transport out of the cell. We show that PC Cl3 cells, a fully differentiated thyroid cell line, grown without TSH and insulin, express very low level of PDS mRNA; such expression is greatly increased after stimulation with insulin or TSH. (125)I pre-loaded cells showed an (125)I efflux accelerated in chloride-containing buffer with respect to chloride-free buffer, suggesting that this efflux is chloride dependent. By immunoblotting, pendrin was found in agonists-stimulated cells, whereas it was barely detectable in un-stimulated cells. An increase in both PDS mRNA and protein was also obtained using phorbol ester PMA, or using 8-Br-cAMP and forskolin. Stimulation with insulin (1 microg/ml; 0-40 min) provoked the cytosol-to-membrane translocation of pendrin and a decrease of intracellular I(-) content in (125)I pre-loaded cells. Insulin- or PMA-treated cells also showed a cytosol-to-membrane translocation of PKC-delta and -epsilon. Inhibition of both PKC-delta and -epsilon activities by GF109203X blocked pendrin translocation, whilst the inhibition of PKA did not. The selective inhibition of PKC-delta by rottlerin did not affect the insulin-provoked translocation of pendrin whilst it was inhibited by a PKC-epsilon translocation inhibitor peptide and also by PKC-epsilon downregulation using the small interfering RNA, thus indicating that such translocation was due to PKC-epsilon activity. In conclusion, our study demonstrates that, in PC Cl3 cells, pendrin expression and localisation are regulated by insulin and influenced by a PKC-epsilon-dependent intracellular pathway.  相似文献   

7.
Airway smooth muscle (ASM) hyperplasia is a characteristic feature of the asthmatic airway, but the underlying mechanisms that induce ASM hyperplasia remain unknown. Because transforming growth factor (TGF)-beta is a potent regulator of ASM cell proliferation, we determined its expression and mitogenic signaling pathways in ASM cells. We obtained ASM cells by laser capture microdissection of bronchial biopsies and found that ASM cells from asthmatic patients expressed TGF-beta1 mRNA and protein to a greater extent than nonasthmatic individuals using real-time RT-PCR and immunohistochemistry, respectively. TGF-beta1 stimulated the growth of nonconfluent and confluent ASM cells either in the presence or absence of serum in a time- and concentration-dependent manner. The mitogenic activity of TGF-beta1 on ASM cells was inhibited by selective inhibitors of TGF-beta receptor I kinase (SD-208), phosphatidylinositol 3-kinase (PI3K, LY-294002), ERK (PD-98059), JNK (SP-600125), and NF-kappaB (AS-602868). On the other hand, p38 MAPK inhibitor (SB-203580) augmented TGF-beta1-induced proliferation. To study role of the Smads, we transduced ASM cells with an adenovirus vector-expressing Smad4, Smad7, or dominant-negative Smad3 and found no involvement of these Smads in TGF-beta1-induced proliferation. Dexamethasone caused a dose-dependent inhibition in TGF-beta1-induced proliferation. Our findings suggest that TGF-beta1 may act in an autocrine fashion to induce ASM hyperplasia, mediated by its receptor and several kinases including PI3K, ERK, and JNK, whereas p38 MAPK is a negative regulator. NF-kappaB is also involved in the TGF-beta1 mitogenic signaling, but Smad pathway does not appear important.  相似文献   

8.
In this work, we have evaluated the effect of the new discovered peptide obestatin on cell proliferation in primary cultures of human retinal epithelial cells (hRPE cells). The results showed that this peptide induced, in a dose-dependent manner, cell proliferation by MEK/ERK 1/2 phosphorylation. A sequential analysis of the obestatin transmembrane signaling pathway showed that the ERK 1/2 activity is partially blocked after preincubation of the cells with pertussis toxin (PTX), as well as by wortmannin (an inhibitor of PI3K), claphostin C (an inhibitor of PKC), and PP2 (which inhibits the non receptor tyrosine kinase Src). Upon administration of obestatin, the intracellular levels of phospho-PKCepsilon-, theta-, and micro-isoenzymes rise with different time courses, from which PKCepsilon might be responsible for ERK 1/2 response. Based on the experimental data, a signaling pathway involving the consecutive activation of Gi, PI3K, novel PKC (probably PKCepsilon), and Src for ERK 1/2 activation is proposed. These results incorporate a new mitogenic factor to the group of factors that regulate proliferation of hRPE cells.  相似文献   

9.
10.
We have studied the expression of mRNA encoding all known protein kinase C (PKC) isozymes (alpha, beta, gamma, delta, epsilon, zeta, and eta) in murine tumor cell lines that exemplify hemopoietic cells arrested at different stages of development as well as in normal hemopoietic cells. We demonstrate that some of the isozymes, PKC-alpha, -beta, and -eta, are differentially expressed in different lineages. PKC-alpha and -beta generally are not detectable in myeloid cell lines, where PKC-delta is the predominant isoform. Both PKC-alpha and -beta are abundant in most T and B lymphocytic lines, but steady state levels of PKC-beta mRNA are lowest in plasma cell tumors, which exemplify the terminally differentiated B lymphocyte. In contrast, the levels of PKC-alpha mRNA remain high in plasma cell tumors, and a novel, 2.5-kb PKC-alpha mRNA gains prominence. PKC-eta mRNA is the major PKC isoform expressed in T lymphocytes, but it also is highly abundant in some myeloid lines. PKC-delta is expressed at high levels in all the lines we studied, whereas PKC-epsilon and -zeta are found in most cells but only at rather low levels. Analysis of myeloid clones derived from bipotential B lineage progenitor cell lines suggests that the B cell phenotype is associated with the expression of PKC-alpha. The close correlation of protein levels with mRNA levels indicates that PKC expression in hemopoietic cells is mainly regulated at the level of mRNA. The lineage- and differentiation stage-specific patterns of PKC-isozyme expression presented here suggest the involvement of specific PKC isozymes in differentiation as well as lineage determination of hemopoietic cells.  相似文献   

11.
In this study, we examined the role of specific protein kinase C (PKC) isoforms in the differentiation of PC12 cells in response to nerve growth factor (NGF) and epidermal growth factor (EGF). PC12 cells express PKC-alpha, -beta, -gamma, -delta, -epsilon, -mu, and -zeta. For PKC-delta, -epsilon, and -zeta, NGF and EGF exerted differential effects on translocation. Unlike overexpression of PKC-alpha and -delta, overexpression of PKC-epsilon caused enhanced neurite outgrowth in response to NGF. In the PKC-epsilon-overexpressing cells, EGF also dramatically induced neurite outgrowth, arrested cell proliferation, and induced a sustained phosphorylation of mitogen-activated protein kinase (MAPK), in contrast to its mitogenic effects on control cells or cells overexpressing PKC-alpha and -delta. The induction of neurite outgrowth by EGF was inhibited by the MAPK kinase inhibitor PD95098. In cells overexpressing a PKC-epsilon dominant negative mutant, NGF induced reduced neurite outgrowth and a more transient phosphorylation of MAPK than in controls. Our results suggest an important role for PKC-epsilon in neurite outgrowth in PC12 cells, probably via activation of the MAPK pathway.  相似文献   

12.
It has been shown that IGF-1-induced pancreatic beta-cell proliferation is glucose-dependent; however, the mechanisms responsible for this glucose dependence are not known. Adenoviral mediated expression of constitutively active phosphatidylinositol 3-kinase (PI3K) in the pancreatic beta-cells, INS-1, suggested that PI3K was not necessary for glucose-induced beta-cell proliferation but was required for IGF-1-induced mitogenesis. Examination of the signaling components downstream of PI3K, 3-phosphoinositide-dependent kinase 1, protein kinase B (PKB), glycogen synthase kinase-3, and p70-kDa-S6-kinase (p70(S6K)), suggested that a major part of glucose-dependent beta-cell proliferation requires activation of mammalian target of rapamycin/p70(S6K), independent of phosphoinositide-dependent kinase 1/PKB activation. Adenoviral expression of the kinase-dead form of PKB in INS-1 cells decreased IGF-1-induced beta-cell proliferation. However, a surprisingly similar decrease was also observed in adenoviral wild type and constitutively active PKB-infected cells. Upon analysis of extracellular signal-regulated protein kinase 1 and 2 (ERK1/ERK2), an increase in ERK1/ERK2 phosphorylation activation by glucose and IGF-1 was observed in kinase-dead PKB-infected cells, but this phosphorylation activation was inhibited in the constitutively active PKB-infected cells. Hence, there is a requirement for the activation of both ERK1/ERK2 and mammalian target of rapamycin/p70(S6K) signal transduction pathways for a full commitment to glucose-induced pancreatic beta-cell mitogenesis. However, for IGF-1-induced activation, these pathways must be carefully balanced, because chronic activation of one (PI3K/PKB) can lead to dampening of the other (ERK1/2), reducing the mitogenic response.  相似文献   

13.
The neu differentiation factors/heregulins (HRGs) comprise a family of polypeptide growth factors that activate p185(erbB-2) through direct binding to either erbB-3 or erbB-4 receptor tyrosine kinases. We have previously shown that HRG-beta is mitogenic for various human mammary epithelial cell lines that coexpress c-erbB-2 and c-erbB-3. Phosphatidylinositol 3-kinase (PI3K) is activated by p185(erbB-2) /erbB-3 heterodimers in cells stimulated by HRG, and PI3K is constitutively activated by p185(erbB-2) /erbB-3 in breast carcinoma cells that overexpress c-erbB-2. To better understand the relative abilities of HRGs, epidermal growth factor (EGF), or insulin to activate PI3K under normal physiological conditions, we compared the levels of recruitment of the 85-kDa regulatory subunit of PI3K when activated by the type I (erbB) or type II [insulin-like growth factor (IGF)] receptor tyrosine kinases in two different nontransformed human mammary epithelial cell lines. The nontransformed H16N-2 cells isolated from normal tissue express EGFR, p185(erbB-2), and erbB-3, and are highly responsive to the mitogenic effects of HRG-beta as well as to the combination of EGF and insulin in serum-free culture. We measured the stoichiometry of p85 recruited by tyrosine-phosphorylated proteins induced in H16N-2 cells by either the alpha or the beta isoform of HRG. HRG-beta was greater than 10-fold more potent in inducing p85 recruitment than was the less biologically active HRG-alpha isoform. HRG-beta was also a more potent inducer of p85 recruited by tyrosine-phosphorylated proteins than was either EGF, insulin, or EGF and insulin combined. Furthermore, erbB-3 principally mediated the direct recruitment of p85 in cells stimulated by HRG or EGF, indicating that, in addition to the high-level activation of PI3K by p185(erbB-2) / erbB-3, EGFR/erbB-3 heterodimer interaction is essential for the weak but significant level of PI3K activated by EGF in cells that express normal EGFR levels. Studies using the PI3K inhibitor wortmannin also indicated that PI3K activation was required for the proliferation of H16N-2 cells induced by either HRG-beta or EGF and insulin in serum-free culture. Finally, HRG-beta was also an especially potent inducer of PI3K in the nontransformed MCF-10A cells, which were derived spontaneously from normal reduction mammoplasty tissue. These data show, for the first time, a side-by-side quantitative comparison of the relative degree of PI3K activated by different growth factors in nontransformed growth factor-dependent cells under precisely defined conditions in culture.  相似文献   

14.
We investigated the distribution of protein kinase C (PKC) isoforms in the subcellular fractions (P1, 1,000-g pellet; P2, 10,000-g pellet; P3, 100,000-g pellet; S, 100,000-g supernatant) of rat forebrain after ischemia or reperfusion by immunoblotting. PKC-delta and -epsilon isoforms were predominant in the P2 (synaptosome-rich) fraction, whereas PKC-alpha, -beta, -gamma, -epsilon, and -zeta isoforms were rich in the S (cytosolic) fraction. With time of ischemia (5-30 min), PKC-alpha, -beta, and -gamma translocated to the P2 and P3 fractions, whereas reperfusion for 60 min after 30 min of ischemia reduced PKC-beta activity greatly and PKC-alpha and -gamma activities to a lesser extent. There was no redistribution of PKC-delta, -epsilon, and -zeta after ischemia or reperfusion. A calpain inhibitor, acetylleucylleucylnorleucinal, inhibited the down-regulation of PKC-beta, through intravenous injection. The PKC translocation to the P2 fraction was accompanied by their dephosphorylation, transition of PKC-alpha from dimer to trimer, and the decrease in activity. These data show that PKC-alpha, -beta, and -gamma isoforms translocate chiefly to the synaptosome in ischemic brain in association with the dephosphorylation, multimeric change, and inactivation, followed by the proteolysis of PKC-beta by calpain after postischemic reperfusion.  相似文献   

15.
Thrombin signalling through PAR (protease-activated receptor)-1 is involved in cellular processes, such as proliferation, differentiation and cell survival. Following traumatic injury to the eye, thrombin signalling may participate in disorders, such as PVR (proliferative vitreoretinopathy), a human eye disease characterized by the uncontrolled proliferation, transdifferentiation and migration of otherwise quiescent RPE (retinal pigment epithelium) cells. PARs activate the Ras/Raf/MEK/ERK MAPK pathway (where ERK is extracellular-signal-regulated kinase, MAPK is mitogen-activated protein kinase and MEK is MAPK/ERK kinase) through the activation of G(alpha) and G(betagamma) heterotrimeric G-proteins, and the downstream stimulation of the PLC (phospholipase C)-beta/PKC (protein kinase C) and PI3K (phosphoinositide 3-kinase) signalling axis. In the present study, we examined the molecular signalling involved in thrombin-induced RPE cell proliferation, using rat RPE cells in culture as a model system for PVR pathogenesis. Our results showed that thrombin activation of PAR-1 induces RPE cell proliferation through Ras-independent activation of the Raf/MEK/ERK1/2 MAPK signalling cascade. Pharmacological analysis revealed that the activation of 'conventional' PKC isoforms is essential for proliferation, although thrombin-induced phosphorylation of ERK1/2 requires the activation of atypical PKCzeta by PI3K. Consistently, thrombin-induced ERK1/2 activation and RPE cell proliferation were prevented completely by PI3K or PKCzeta inhibition. These results suggest that thrombin induces RPE cell proliferation by joint activation of PLC-dependent and atypical PKC isoforms and the Ras-independent downstream stimulation of the Raf/MEK/ERK1/2 MAPK cascade. The present study is the first report demonstrating directly thrombin-induced ERK phosphorylation in the RPE, and the involvement of atypical PKCzeta in this process.  相似文献   

16.
We explored the crosstalk between cell survival (phosphatidylinositol 3-kinase (PI3K)/Akt) and mitogenic (Ras/Raf/MEK/extracellular signal-regulated kinase (ERK)) signaling pathways activated by an epidermal growth factor (EGF) and analyzed their sensitivity to small molecule inhibitors in the PI3K-mutant estrogen receptor (ER)-positive MCF7 and T47D breast cancer cells. In contrast to MCF7 cells, ERK phosphorylation in T47D cells displayed resistance to MEK inhibition by several structurally different compounds, such as U0126, PD 098059 and PD 198306, MEK suppression by small interfering RNA (siRNA) and was also less sensitive to PI3K inhibition by wortmannin. Similar effect was observed in PI3K-wild type ER-positive BT-474 cells, albeit to a much lesser extent.MEK-independent ERK activation was induced only by ErbB receptor ligands and was resistant to inhibition of several kinases and phosphatases that are known to participate in the regulation of Ras/mitogen-activated protein kinase (MAPK) cascade. Although single agents against PDK1 or Akt did not affect EGF-induced ERK phosphorylation, a combination of PI3K/Akt and MEK inhibitors synergistically suppressed ERK activation and cellular growth. siRNA-mediated silencing of class I PI3K or Akt1/2 genes also significantly decreased U0126-resistant ERK phosphorylation.Our data suggest that in T47D cells ErbB family ligands induce a dynamic, PI3K/Akt-sensitive and MEK-independent compensatory ERK activation circuit that is absent in MCF7 cells. We discuss candidate proteins that can be involved in this activation circuitry and suggest that PDZ-Binding Kinase/T-LAK Cell-Originated Protein Kinase (PBK/TOPK) may play a role in mediating MEK-independent ERK activation.  相似文献   

17.
A complementary DNA (cDNA) of 2559 bp which encode all 674 amino acids of mouse protein kinase C-delta (PKC-delta) has been isolated from a cDNA library prepared from ABPL-2, a mouse myeloid tumor. The library was screened with a partial PKC-delta cDNA clone that had been created by polymerase chain reaction (PCR) amplification of ABPL-2 RNA using primers that are conserved among all rat PKC isozymes. This approach proved to be a distinct improvement over screening with synthetic oligonucleotides. Similar sets of cDNAs prepared from other hemopoietic cell lines were screened with this PKC-delta cDNA and with probes for the other PKC isoforms. These experiments revealed that the major isoform of PKC expressed in hemopoietic cells is PKC-delta. PKC-delta protein was purified from ABPL-3, a mouse myeloid tumor which expressed principally the delta isoform of PKC. The protein eluted from a hydroxylapatite column in the same position as PKC-beta and -epsilon would elute, if present. The kinase activity of purified PKC-delta showed strict dependence on the presence of phospholipids, but showed no activation by Ca2+.  相似文献   

18.
Platelet-derived growth factor (PDGF) is an important regulator of vascular smooth muscle (VSM) cell growth and migration and has been identified as a key mediator of neointima formation resulting from vascular injury. PDGF exerts its effects, in part, through activation of ERK1/2. Previously, we reported that PKC-delta, specifically compared with PKC-alpha, mediated phorbol ester- and ATP-dependent activation of ERK1/2 in VSM cells. The purpose of this study was to determine whether PKC-delta was involved in PDGF-dependent activation of ERK1/2 in VSM cells. The addition of PDGF resulted in the activation, and Src family kinase-dependent tyrosine phosphorylation, of PKC-delta. Treatment with rottlerin (0.1-10 microM), a selective PKC-delta inhibitor, or adenoviral overexpression of kinase-negative PKC-delta significantly attenuated PDGF-induced activation of ERK1/2. The effects of the PKC-delta inhibitors decreased with increasing concentrations of activator PDGF. Interestingly, treatment with Go6976 (0.1-3 microM), a selective inhibitor of cPKCs, or adenoviral overexpression of kinase-negative PKC-alpha also inhibited PDGF-stimulated ERK1/2. Furthermore, inhibition of cPKC activity with Go6976 or overexpression of kinase-negative PKC-alpha attenuated PKC-delta activation and tyrosine phosphorylation in response to PDGF. These studies indicate involvement of both PKC-delta and PKC-alpha isozymes in PDGF-stimulated signaling in VSM and suggest an unexpected role for PKC-alpha in the regulation of PKC-delta activity.  相似文献   

19.
Lewis Y (LeY) is a carbohydrate tumor‐asssociated antigen. The majority of cancer cells derived from epithelial tissue express LeY type difucosylated oligosaccharide. Fucosyltransferase IV (FUT4) is an essential enzyme that catalyzes the synthesis of LeY oligosaccharide. Our previous studies have shown that FUT4 overexpression promotes A431 cell proliferation, but the mechanism is still largely unknown. Herein, we investigated the role of the mitogen‐activated protein kinases (MAPKs) and phosphoinositide‐3 kinase (PI3K)/Akt signaling pathways on FUT4‐induced cell proliferation. Results show that overexpression of FUT4 increases the phosphorylation of ERK1/2, p38 MAPK, and PI3K/Akt. Inhibitors of PI3K (LY294002 and Wortmannin) prevented the phosphorylation of ERK1/2, p38 MAPK, and Akt PI3K). Moreover, phosphorylation of Akt is abolished by inhibitors of ERK1/2 (PD98059) and p38 MAPK (SB203580). These data suggested that FUT4 not only activates MAPK and PI3K/Akt signals, but also promotes the crosstalk among these signaling pathways. In addition, FUT4‐induced stimulation of cell proliferation correlates with increased cell cycle progression by promoting cells into S‐phase. The mechanism involves in increased expression of cyclin D1, cyclin E, CDK 2, CDK 4, and pRb, and decreased level of cyclin‐dependent kinases inhibitors p21 and p27, which are blocked by the inhibitors of upstream signal molecules, MAPK and PI3K/Akt. In conclusion, these studies suggest that FUT4 regulates A431 cell growth through controlling cell cycle progression via MAPK and PI3K/Akt signaling pathways. J. Cell. Physiol. 225: 612–619, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
We previously demonstrated that erbB-2-overexpressing human mammary epithelial (HME) cells exhibit several transformed phenotypes including growth factor independence, anchorage-independent growth, motility, and invasiveness. Because phosphatidylinositol 3'-kinase (PI3K) is a major target of erbB-2 activation, we tested the contribution that PI3K and its downstream signaling pathways make to these phenotypes. Utilizing a constitutively active form of PI3K, p110CAAX, we show that PI3K can mediate most phenotypes observed in erbB-2-overexpressing cells. To identify pathways leading from PI3K to specific phenotypes, we expressed constitutively active AKT or PTEN in erbB-2-overexpressing cells or in HME cells. HME cells expressing constitutively active AKT were growth factor independent, anchorage independent and motile, but not invasive. PTEN expression blocked erbB-2-mediated invasion but none of the other phenotypes. Rottlerin blocked invasion induced by p110CAAX and erbB-2, suggesting that protein kinase C delta (PKC-delta) is the downstream effector of PI3K responsible for the invasive capacity of the cells. Consistent with these observations, phospho-AKT remained detectable in erbB-2 cells treated with LY294002 or expressing exogenous PTEN, but was abolished by treatment with the p38MAP kinase inhibitor SB202190. Thus, both PI3K-dependent and p38MAP kinase-dependent pathways lead to activation of AKT, and activation of PKC-delta, via PI3K, mediates invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号