共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Wu S Gao J Ohlemeyer C Roos D Niessen H Köttgen E Gessner R 《Free radical biology & medicine》2005,39(12):1601-1610
Cardiovascular pathogenesis induced by angiotensin II (Ang-II) is a complex process often connected to oxidative stress. In the present study we show that, 4 h after addition, Ang-II induces a four- to fivefold increase in AP-1 activity in cultured neonatal rat cardiomyocytes and that the intracellular level of reactive oxygen species (ROS) correlates with the extent of AP-1 binding activity. Ang-II stimulated ROS generation in rat cardiomyocytes in a dose- and time-dependent manner. These effects of Ang-II were suppressed by the Ang-II receptor type I (AT1) inhibitor CV-11974 as well as by the antioxidants diphenylene iodonium (DPI) and N-acetyl-l-cysteine (NAC), but not by AT2 antagonist PD 122319. Furthermore, Ang-II induced a two- to threefold increase in protein synthesis and cell size during 12–24 h, which could be inhibited by CV-11974 as well as by DPI and NAC. Because the rat cardiomyocytes strongly expressed gp91phox, this suggests that ROS generated in a gp91-containing NADPH oxidase are involved in signal transduction leading to AP-1 activation. Together, these findings indicate that Ang-II elicits the activation of the redox-sensitive AP-1 via ROS through AT1, resulting in effects on cardiomyocyte function such as hypertrophy. 相似文献
3.
Moll SJ Jones CJ Crocker IP Baker PN Heazell AE 《Apoptosis : an international journal on programmed cell death》2007,12(9):1611-1622
Pre-eclampsia and intrauterine growth restriction are associated with increased apoptosis of placental villous trophoblast.
This may result from placental hypoperfusion, leading to the generation of reactive oxygen species (ROS). Apoptosis can be
induced in villous trophoblast following exposure to oxidative stress. Epidermal growth factor (EGF) reduces trophoblast apoptosis
resulting from exposure to hypoxia. We hypothesised that exposure to hydrogen peroxide, a potent generator of ROS, would induce
apoptosis in term placental villous explants and that this could be reduced by treatment with EGF. Placental explants were
taken from normal term pregnancies and exposed to increasing doses of hydrogen peroxide (0–1,000 μM) or to a combination of
increasing doses of hydrogen peroxide and EGF (0–100 ng/ml) for either 6 or 48 h. Apoptosis was assessed by TUNEL, proliferation
by Ki-67 immunostaining, necrosis by lactate dehydrogenase activity and trophoblast differentiation by human chorionic gonadotrophin
(hCG) secretion in conditioned culture media. Immunoperoxidase staining was performed to identify phosphorylated-AKT (p-AKT)
and phosphorylated-PI3 kinase (p-PI3k). Exposure to 1,000 μM hydrogen peroxide for 48 h induced apoptosis in placental explants.
The increase in TUNEL positive nuclei predominantly localised to syncytiotrophoblast. The amount of apoptosis was reduced
to control levels by treatment with 10 and 100 ng/ml EGF. Proliferation of cytotrophoblasts within villous explants was significantly
reduced following exposure to 1,000 μM hydrogen peroxide, this was restored to control levels by simultaneous treatment with
10 or 100 ng/ml EGF. Neither exposure to hydrogen peroxide or EGF altered the amount of necrosis. There was increased immunostaining
for pPI3K following treatment with EGF. This study shows that apoptosis may be induced in villous trophoblast following exposure
to ROS, and demonstrates the anti-apoptotic effect of EGF in trophoblast, the maintenance of which is essential for normal
pregnancy. 相似文献
4.
Pavel Pospíšil 《BBA》2009,1787(10):1151-1160
Photosysthetic cleavage of water molecules to molecular oxygen is a crucial process for all aerobic life on the Earth. Light-driven oxidation of water occurs in photosystem II (PSII) — a pigment-protein complex embedded in the thylakoid membrane of plants, algae and cyanobacteria. Electron transport across the thylakoid membrane terminated by NADPH and ATP formation is inadvertently coupled with the formation of reactive oxygen species (ROS). Reactive oxygen species are mainly produced by photosystem I; however, under certain circumstances, PSII contributes to the overall formation of ROS in the thylakoid membrane. Under limitation of electron transport reaction between both photosystems, photoreduction of molecular oxygen by the reducing side of PSII generates a superoxide anion radical, its dismutation to hydrogen peroxide and the subsequent formation of a hydroxyl radical terminates the overall process of ROS formation on the PSII electron acceptor side. On the PSII electron donor side, partial or complete inhibition of enzymatic activity of the water-splitting manganese complex is coupled with incomplete oxidation of water to hydrogen peroxide. The review points out the mechanistic aspects in the production of ROS on both the electron acceptor and electron donor side of PSII. 相似文献
5.
6.
It is of great interest to know how nitrofurans are mutagenic and clastogenic. In particular, the 3-amino-2-oxazolidone (AOZ) ring, deriving from a cleavage of furazolidone, is not further metabolized and has been found to be part of protein-bound residues in edible tissues of farm animals and these might be released in the stomach of the consumer. The data in this paper show that isoniazide as well as AOZ and 3-amino-5-morpholinomethyl-2-oxazolidinone (AMOZ), the latter deriving from furaltadone, cause irreversible damage to the prosthetic group of enzymes as well as degrade their polypeptide chain and cause fragmentation of the backbone chain of cellular or isolated DNA and RNA. Cellular DNA was degraded into small fragments of 2000 Mb, while rRNA was completely destroyed. Nitrofuran derivatives and hydrazides, in fact, share an N-N moiety, which is assumed to play an essential role in the irreversible damage observed. The key to the molecular mechanisms by which these compounds cause their irreversible effects may lie in oxygen consumption and electron spin resonance measurements, which reveal that both nitrofurans and isoniazide produce oxygen radicals at various degrees of efficiency. AOZ and AMOZ are not metabolized into more reactive metabolites, being themselves able to react with atmospheric oxygen and induce protein and oligonucleotide damage. The reaction does not require metal ions, although their presence will accelerate it. 相似文献
7.
Muscari Claudio Giaccari Antonella Giordano Emanuele Clô Carlo Guarnieri Carlo Caldarera Claudio Marcello 《Molecular and cellular biochemistry》1996,160(1):159-166
Biochemical and structural changes occurring in the myocardium with aging are mainly resulting from the association of a general tissue atrophy with the hypertrophy of the remaining myocytes. Whilst hypertrophy seems to be a compensatory process to the loss of cardiomyocytes and to a mild systolic hypertensive condition that accompanies elderly people, atrophy should be the modification more closely related to aging per se. In support to the free radical theory of aging, several signs of oxidative damage have been shown in the aged heart, such as lipofuscin accumulation, decreased phospholipid unsaturation index, greater formation of both hydrogen peroxide and 8-hydroxy-2deoxyguanosine. As a compensatory reaction, the activities of the main oxygen-radical scavenger enzymes are stimulated in the mitochondria of aged rat heart. Endothelium-mediated vasoregulation is more susceptible to oxidative stress in aged with respect to young rats, suggesting that also the vasculature can be negatively influenced by the oxygen free radicals generated during aging. The possible primary role of oxygen free radicals in the development of myocardial atrophy is also discussed. 相似文献
8.
In the present study the role of Akt/PKB (protein kinase B) in PIF- (proteolysis-inducing factor) induced protein degradation has been investigated in murine myotubes. PIF induced transient phosphorylation of Akt at Ser(473) within 30 min, which was attenuated by the PI3K (phosphoinositide 3-kinase) inhibitor LY294002 and the tyrosine kinase inhibitor genistein. Protein degradation was attenuated in myotubes expressing a dominant-negative mutant of Akt (termed DNAkt), compared with the wild-type variant, whereas it was enhanced in myotubes containing a constitutively active Akt construct (termed MyrAkt). A similar effect was observed on the induction of the ubiquitin-proteasome pathway. Phosphorylation of Akt has been linked to up-regulation of the ubiquitin-proteasome pathway through activation of NF-kappaB (nuclear factor kappaB) in a PI3K-dependent process. Protein degradation was attenuated by rapamycin, a specific inhibitor of mTOR (mammalian target of rapamycin), when added before, or up to 30 min after, addition of PIF. PIF induced transient phosphorylation of mTOR and the 70 kDa ribosomal protein S6 kinase. These results suggest that transient activation of Akt results in an increased protein degradation through activation of NF-kappaB and that this also allows for a specific synthesis of proteasome subunits. 相似文献
9.
Eley HL Russell ST Tisdale MJ 《American journal of physiology. Endocrinology and metabolism》2008,295(6):E1417-E1426
Both tumor necrosis factor-alpha (TNF-alpha)/interferon-gamma (IFN-gamma) and angiotensin II (ANG II) induced an increase in total protein degradation in murine myotubes, which was completely attenuated by treatment with beta-hydroxy-beta-methylbutyrate (HMB; 50 microM). There was an increase in formation of reactive oxygen species (ROS) within 30 min, as well as an increase in the activity of both caspase-3 and -8, and both effects were attenuated by HMB. Moreover, inhibitors of caspase-3 and -8 completely attenuated both ROS formation and total protein degradation induced by TNF-alpha/IFN-gamma and ANG II. There was an increased autophosphorylation of double-stranded RNA-dependent protein kinase (PKR), which was attenuated by the specific caspase-3 and -8 inhibitors. Neither ROS formation or protein degradation occurred in myotubes expressing a catalytically inactive PKR variant, PKRDelta6, in response to TNF-alpha/IFN-gamma, compared with myotubes expressing wild-type PKR, although there was still activation of caspase-3 and -8. HMB also attenuated activation of PKR, suggesting that it was important in protein degradation. Formation of ROS was attenuated by rotenone, an inhibitor of the mitochondrial electron transport chain, nitro-l-arginine methyl ester, an inhibitor of nitric oxide synthase, and SB 203580, a specific inhibitor of p38 mitogen-activated protein kinase (p38 MAPK), which also attenuated total protein degradation. Activation of p38 MAPK by PKR provides the link to ROS formation. These results suggest that TNF-alpha/IFN-gamma and ANG II induce muscle protein degradation by a common signaling pathway, which is attenuated by HMB, and that this involves the initial activation of caspase-3 and -8, followed by autophosphorylation and activation of PKR, which then leads to increased ROS formation via activation of p38 MAPK. Increased ROS formation is known to induce protein degradation through the ubiquitin-proteasome pathway. 相似文献
10.
Reactive oxygen species (ROS) are implicated in aging of cartilage and in the pathogenesis of osteoarthritis. However, the biological role of chondrocytes-derived ROS has not been elucidated. An in-vitro model was developed to study the role of chondrocyte-derived ROS in cartilage matrix degradation. The primary articular chondrocytes were cultured and the aggrecan matrix was radiolabeled with 35-sulfate. The labeled aggrecan matrix was washed to remove unincorporated label and chondrocytes were returned to serum free balanced salt solution. The cell-monolayer-matrix sensitivity to oxidative damage due to either hydrogen peroxide or glucose oxidase was established by monitoring the release of labeled aggrecan into the medium. Lipopolysaccharide (LPS) treatment of chondrocytemonolayer enhanced the release of labeled aggrecan. Catalase significantly prevented the release of labeled aggrecan in LPS-chondrocyte cultures, suggesting a role for chondrocyte-derived hydrogen peroxide in aggrecan degradation. Superoxide dismutase or boiled catalase had no such inhibitory effect. The effect of several antioxidants on LPS-chondrocyte-dependent aggrecan degradation was examined. Hydroxyl radical scavengers (mannitol and thiourea) significantly decreased aggrecan degradation. A spin trapping agent N-tert-butyl-phenylnitrone (but not its inactive analog tert-butyl-phenylcarbonate) significantly decreased aggrecan degradation. Butylated hydroxytoluene also inhibited aggrecan degradation, whereas the other lipophilic antioxidant tested, propyl gallate, had a marked dose-dependent inhibitory effect. These data indicate that general antioxidants, hydroxyl radical scavengers, antioxidant vitamins, iron chelating agents, lipophilic antioxidants, and spin trapping agents can influence chondrocyte-dependent aggrecan degradation. These studies support the role of a chondrocyte-dependent oxidative mechanism in aggrecan degradation and indicate that antioxidants can prevent matrix degradation and therefore may have a preventive or therapeutic value in arthritis. The enhancement of oxidative activity in chondrocytes and its damaging effect on matrix may be an important mechanism of matrix degradation in osteoarthritis. 相似文献
11.
Reactive oxygen species (ROS) are implicated in aging of cartilage and in the pathogenesis of osteoarthritis. However, the biological role of chondrocytes-derived ROS has not been elucidated. An in-vitro model was developed to study the role of chondrocyte-derived ROS in cartilage matrix degradation. The primary articular chondrocytes were cultured and the aggrecan matrix was radiolabeled with 35-sulfate. The labeled aggrecan matrix was washed to remove unincorporated label and chondrocytes were returned to serum free balanced salt solution. The cell-monolayer-matrix sensitivity to oxidative damage due to either hydrogen peroxide or glucose oxidase was established by monitoring the release of labeled aggrecan into the medium. Lipopolysaccharide (LPS) treatment of chondrocytemonolayer enhanced the release of labeled aggrecan. Catalase significantly prevented the release of labeled aggrecan in LPS-chondrocyte cultures, suggesting a role for chondrocyte-derived hydrogen peroxide in aggrecan degradation. Superoxide dismutase or boiled catalase had no such inhibitory effect. The effect of several antioxidants on LPS-chondrocyte-dependent aggrecan degradation was examined. Hydroxyl radical scavengers (mannitol and thiourea) significantly decreased aggrecan degradation. A spin trapping agent N-tert-butyl-phenylnitrone (but not its inactive analog tert-butyl-phenylcarbonate) significantly decreased aggrecan degradation. Butylated hydroxytoluene also inhibited aggrecan degradation, whereas the other lipophilic antioxidant tested, propyl gallate, had a marked dose-dependent inhibitory effect. These data indicate that general antioxidants, hydroxyl radical scavengers, antioxidant vitamins, iron chelating agents, lipophilic antioxidants, and spin trapping agents can influence chondrocyte-dependent aggrecan degradation. These studies support the role of a chondrocyte-dependent oxidative mechanism in aggrecan degradation and indicate that antioxidants can prevent matrix degradation and therefore may have a preventive or therapeutic value in arthritis. The enhancement of oxidative activity in chondrocytes and its damaging effect on matrix may be an important mechanism of matrix degradation in osteoarthritis. 相似文献
12.
Daniel J Dwyer Michael A Kohanski James J Collins 《Current opinion in microbiology》2009,12(5):482-489
13.
Regulated synthesis of reactive oxygen species (ROS) by specific fungal NADPH oxidases (Noxs) plays a key role in fungal cellular differentiation and development. Fungi have up to three different Nox isoforms, NoxA, B and C. The NoxA isoform has a key role in triggering the development of fruiting bodies in several sexual species whereas NoxB plays a key role in ascospore germination. The function of NoxC remains unknown. Both NoxA and NoxB are required for the development of fungal infection structures by some plant pathogens. ROS production by NoxA is critical for maintaining a fungal-plant symbiosis. Localised synthesis of ROS is also important in establishing and maintaining polarised hyphal growth. Activation of NoxA/NoxB requires the regulatory subunit, NoxR, and the small GTPase RacA. The BemA scaffold protein may also be involved in the assembly of the Nox complex. By analogy with mammalian systems MAP and PAK kinases may regulate fungal Nox activation. How fungal cells sense and respond to ROS associated with cellular differentiations remains to be discovered. 相似文献
14.
Chung YM Lee SB Kim HJ Park SH Kim JJ Chung JS Yoo YD 《The Journal of biological chemistry》2008,283(48):33763-33771
Persistent accumulation of DNA damage induced by reactive oxygen species (ROS) is proposed to be a major contributor toward the aging process. Furthermore, an increase in age-associated ROS is strongly correlated with aging in various species, including humans. Here we showed that the enforced expression of the ROS modulator 1 (Romo1) triggered premature senescence by ROS production, and this also contributed toward induction of DNA damage. Romo1-derived ROS was found to originate in the mitochondrial electron transport chain. Romo1 expression gradually increased in proportion to population doublings of IMR-90 human fibroblasts. An increase in ROS production in these cells with high population doubling was blocked by the Romo1 knockdown using Romo1 small interfering RNA. Romo1 knockdown also inhibited the progression of replicative senescence. Based on these results, we suggest that age-related ROS levels increase, and this contributes to replicative senescence, which is directly associated with Romo1 expression. 相似文献
15.
Role of reactive oxygen species in intestinal diseases. 总被引:5,自引:0,他引:5
It is well known that reactive oxygen metabolites are generated during several pathologies, and that they are able to disturb many cellular processes and eventually lead to cellular injury. After intestinal ischemia, reactive oxygen species are produced when the ischemic tissue is reperfused. The enzyme xanthine oxidase is thought to play a key role in this process. As a result of this oxygen radical production, the permeability of the endothelium and the mucosa increases, allowing infiltration of inflammatory leukocytes into the ischemic area. Moreover, reactive oxygen species are also indirectly involved in leukocyte activation. In turn, these inflammatory cells respond with the production of oxygen radicals, which play an important role in the development of tissue injury. Thus, intestinal ischemia and reperfusion evokes an inflammatory response. Also during chronic intestinal inflammatory diseases, reactive oxygen metabolites are proposed to play an important role in the pathology. Scavenging of reactive oxygen species will thus be beneficial in these disorders. 相似文献
16.
M. A. Chelombitko A. V. Fedorov O. P. Ilyinskaya R. A. Zinovkin B. V. Chernyak 《Biochemistry. Biokhimii?a》2016,81(12):1564-1577
Mast cells are a heterogeneous multifunctional cellular population that promotes connective tissue homeostasis by slow release of biologically active substances, affecting primarily the permeability of vessels and vascular tone, maintenance of electrolyte and water balance, and composition of the extracellular matrix. Along with this, they can rapidly release inflammatory mediators and chemotactic factors that ensure the mobilization of effector innate immune cells to fight against a variety of pathogens. Furthermore, they play a key role in initiation of allergic reactions. Aggregation of high affinity receptors to IgE (FcεRI) results in rapid degranulation and release of inflammatory mediators. It is known that reactive oxygen species (ROS) participate in intracellular signaling and, in particular, stimulate production of several proinflammatory cytokines that regulate the innate immune response. In this review, we focus on known molecular mechanisms of FcεRI-dependent activation of mast cells and discuss the role of ROS in the regulation of this pathway. 相似文献
17.
The modification of proteins by reactive oxygen and nitrogen species plays an important role in various biologic processes involving protein activation and inactivation, protein translocation and turnover during signal transduction, stress response, proliferation, and apoptosis. Recent advances in protein and peptide separation and mass spectrometry provide increasingly sophisticated tools for the quantitative analysis of such protein modifications, which are absolutely necessary for their correlation with biologic phenomena. The present review focuses specifically on the qualitative and quantitative mass spectrometric analysis of the most common protein modifications caused by reactive oxygen and nitrogen species in vivo and in vitro and details a case study on a membrane protein the sarco/endoplasmic reticulum Ca-ATPase (SERCA). 相似文献
18.
A number of reports indicate the potential for redox signalling via extracellular signal-regulated protein kinases (ERK) during neuronal injury. We have previously found that sustained ERK activation contributes to toxicity elicited by 6-hydroxydopamine (6-OHDA) in the B65 neuronal cell line. To determine whether reactive oxygen species (ROS) play a role in mediating ERK activation and 6-OHDA toxicity, we examined the effects of catalase, superoxide dismutase (SOD1), and metalloporphyrin antioxidants ('SOD mimetics') on 6-OHDA-treated cells. We found that catalase and metalloporphyrin antioxidants not only conferred protection against 6-OHDA but also inhibited development of sustained ERK phosphorylation in both differentiated and undifferentiated B65 cells. However, exogenously added SOD1 and heat-inactivated catalase had no effect on either toxicity or sustained ERK phosphorylation. This correlation between antioxidant protection and inhibition of 6-OHDA-induced sustained ERK phosphorylation suggests that redox regulation of ERK signalling cascades may contribute to neuronal toxicity. 相似文献
19.
《Free radical research》2013,47(1):52-70
AbstractThe multiple roles that have been associated with heat shock proteins (HSPs), inside and outside cells are remarkable. HSPs have been found to play a fundamental role in multiple stress conditions and to offer protection from subsequent insults. Exercise, because of the physiological stresses associated with it, is one of the main stimuli associated with a robust increase of different HSPs in several tissues. Given the combination of physiological stresses induced by exercise, and the ‘cross-talk’ that occurs between signaling pathways in different tissues, it is likely that exercise induces the HSP expression through a combination of ‘stressors’, among which reactive oxygen species (ROS) could play a major role. Indeed, although an imbalance between ROS production and antioxidant levels results in oxidative stress, causing damage to lipids, proteins, and nucleic acids with a possible activation of the programed cell death pathway, at moderate concentrations ROS play an important role as regulatory mediators in signaling processes. Many of the ROS-mediated responses actually protect the cells against oxidative stress and re-establish redox homeostasis. The aim of this review is to provide a critical update on the role of exercise-induced ROS in the modulation of the HSP's response, focusing on experimental results from animal and human studies where the link between redox homeostasis and HSPs’ expression in different tissues has been addressed. 相似文献
20.