首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guinea-pig neuropeptide Y1 and rat pancreatic polypeptide Y4 receptors expressed in Chinese hamster ovary cells were internalized rapidly upon attachment of selective peptide agonists. The Y1 and Y2, but not the Y4, receptor also internalized the nonselective neuropeptide Y receptor agonist, human/rat neuropeptide Y. The internalization of guinea-pig neuropeptide Y2 receptor expressed in Chinese hamster ovary cells was small at 37 degrees C, and essentially absent at or below 15 degrees C, possibly in connection to the large molecular size of the receptor-ligand complexes (up to 400 kDa for the internalized fraction). The rate of intake was strongly temperature dependent, with essentially no internalization at 6 degrees C for any receptor. Internalized receptors were largely associated with light, endosome-like particulates. Sucrose dose-dependently decreased the internalization rate for all receptors, while affecting ligand attachment to cell membrane sites much less. Internalization of the Y1 and the Y4 receptors could be blocked, and that of the Y2 receptor significantly inhibited, by phenylarsine oxide, which also unmasked spare cell-surface receptors especially abundant for the Y2 subtype. The restoration of Y1 and Y4 receptors after agonist peptide pretreatment was decreased significantly by cycloheximide and monensin. Thus, in Chinese hamster ovary cells the Y1 and Y4 receptors have much larger subcellular dynamics than the Y2 receptor. This differential could also hold in organismic systems, and is comparable with the known differences in internalization of angiotensin, bradykinin, somatostatin and opioid receptor subtypes.  相似文献   

2.
Human neuropeptide Y was isolated from acid extracts of adrenal-medullary phaeochromocytoma tissue. After (NH4)2SO4 fractionation, the neuropeptide Y-like immunoreactivity was purified from the resolubilized 80%-saturation-(NH4)2SO4 peptide-rich precipitate, by gel filtration, cation-exchange chromatography and reverse-phase high-pressure liquid chromatography. Amino acid analysis of the peptide revealed a composition almost identical with that of the pig peptide, the exception being the loss of one leucine residue and its replacement with methionine. Tryptic digestion of the peptide and subsequent amino acid analysis of the fragments further confirmed the identity of the peptide. Carboxypeptidase Y digestion of the (1-19)-peptide tryptic fragment has shown the methionine to be located at position 17 in human neuropeptide Y.  相似文献   

3.
New neurones are produced in the adult hippocampus throughout life and are necessary for certain types of hippocampal learning. Little, however, is known about the control of hippocampal neurogenesis. We used primary hippocampal cultures from early post-natal rats and neuropeptide Y Y1 receptor knockout mice as well as selective neuropeptide Y receptor antagonists and agonists to demonstrate that neuropeptide Y is proliferative for nestin-positive, sphere-forming hippocampal precursor cells and beta-tubulin-positive neuroblasts and that the neuroproliferative effect of neuropeptide Y is mediated via its Y1 receptor. Immunohistochemistry confirmed Y1 receptor staining on both nestin-positive cells and beta-tubulin-positive cells in culture and short pulse 5-bromo-2-deoxyuridine studies demonstrated that neuropeptide Y has a proliferative effect on both cell types. These studies suggest that the proliferation of hippocampal neuroblasts and precursor cells is increased by neuropeptide Y and, therefore, that hippocampal learning and memory may be modulated by neuropeptide Y-releasing interneurones.  相似文献   

4.
125I-[Leu31,Pro34]peptide YY (PYY) and 125I-PYY3-36, initially described as selective neuropeptide Y Y1 and Y2 receptor ligands, respectively, were recently shown to label also Y4 and Y5 receptors. We used receptor autoradiography to assess whether these ligands can be reliably used to investigate the various neuropeptide Y receptors in rat forebrain. In most of the brain regions examined (in coronal sections at the level of dorsal hippocampus), specific 125I-[Leu31,Pro34]PYY binding was completely inhibited by 1 microM BIBP-3226, a selective Y1 receptor ligand, but unaffected by 10 nM rat pancreatic polypeptide, selectively inhibiting Y4 receptors, suggesting that Y4 receptors are present in negligible numbers compared with Y1 receptors in the areas examined. Significant numbers of BIBP-3226-insensitive 125I-[Leu31,Pro34]PYY binding sites were measured in the CA3 subfield of the hippocampus only, possibly representing Y5 receptors. 125I-PYY3-36 binding was unchanged by 1 microM BIBP-3226, whereas a population of 125I-PYY3-36 binding sites was sensitive to 100 nM [Leu31,Pro34]neuropeptide Y, likely representing Y5 receptors. The possibility of distinguishing between Y2 and Y5 receptors using 125I-PYY3-36 as radioligand was validated by their different regional distribution and their distinct changes 24 h after kainate seizures, i.e., binding to Y5 receptors was selectively decreased in the outer cortex, whereas binding to Y2 receptors was enhanced in the hippocampus. Thus, the use of selective unlabeled compounds is required for distinguishing the various receptor subtypes labeled by 125I-[Leu31,Pro34]PYY and 125I-PYY3-36 in rat brain tissue.  相似文献   

5.
Active neuropeptide Y receptors were solubilized from rabbit kidney membranes using the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS). In membrane fragments and soluble extracts neuropeptide Y binding was time dependent, saturable, reversible, and of high affinity. Scatchard analysis of equilibrium binding data indicated a single class of binding sites with respective KD and Bmax values of 0.09 nM and 530 fmol/mg of protein for the membrane-bound receptors and 0.10 nM and 1585 fmol/mg of protein for the soluble receptors. Neuropeptide Y binding was specifically inhibited by the nonhydrolyzable GTP analog guanosine 5'-O-(3-thiotriphosphate) in a concentration-dependent manner, with IC50 values of 28 and 0.14 microM for membrane-bound and soluble receptors, respectively, suggesting that neuropeptide Y receptors are functionally coupled to GTP-binding regulatory proteins. Cross-linking studies were performed with the heterobifunctional N-hydroxysuccinimidyl-4-azidobenzoate and the monofunctional neuropeptide Y derivative, azidobenzoyl and led to the identification of a 100 kDa peptide that should represent the covalently labeled neuropeptide Y receptor.  相似文献   

6.
Abstract Neuropeptide Y (NPY), receptors belong to the G-protein coupled receptor superfamily. NPY mediates several physiological responses, such as blood pressure, food intake, sedation. These actions of NPY are mediated by six receptor subtypes denoted as Y(1)-Y(5) and y(6). Modeling of receptor subtypes and binding site identification is an important step in developing new therapeutic agents. We have attempted to model the three NPY receptor types, Y1, Y4, and Y5 using homology modeling and threading methods. The models are consistent with previously reported experimental evidence. To understand the interaction and selectivity of NPY analogues with different neuropeptide receptors, docking studies of two neuropeptide analogues (BVD10 and BVD15) with receptors Y1 and Y4 were carried out. Results of the docking studies indicated that the interaction of ligands BVD10 and BVD15 with Y1 and Y4 receptors are different. These results were evaluated for selectivity of peptide analogues BVD10 and BVD15 towards the receptors.  相似文献   

7.
Neuropeptide Y (NPY), receptors belong to the G-protein coupled receptor superfamily. NPY mediates several physiological responses, such as blood pressure, food intake, sedation. These actions of NPY are mediated by six receptor subtypes denoted as Y1-Y5 and y6. Modeling of receptor subtypes and binding site identification is an important step in developing new therapeutic agents. We have attempted to model the three NPY receptor types, Y1, Y4, and Y5 using homology modeling and threading methods. The models are consistent with previously reported experimental evidence. To understand the interaction and selectivity of NPY analogues with different neuropeptide receptors, docking studies of two neuropeptide analogues (BVD10 and BVD15) with receptors Y1 and Y4 were carried out. Results of the docking studies indicated that the interaction of ligands BVD10 and BVD15 with Y1 and Y4 receptors are different. These results were evaluated for selectivity of peptide analogues BVD10 and BVD15 towards the receptors.  相似文献   

8.
Five neuropeptide Y receptors, the Y1-, Y2-, Y4-, Y5- and y6-subtypes, have been cloned, which belong to the rhodopsin-like G-protein-coupled, 7-transmembrane helix-spanning receptors and bind the 36-mer neuromodulator NPY (neuropeptide Y) with nanomolar affinity. In this study, the Y2-receptor subtype expressed in a human neuroblastoma cell line (SMS-KAN) and in transfected Chinese hamster ovary cells (CHO-hY2) was characterized on the protein level by using photoaffinity labeling and antireceptor antibodies. Two photoactivatable analogues of NPY were synthesized, in which a Tyr residue was substituted by the photoreactive amino acid 4-(3-trifluoromethyl)-3H-diazirin-3-ylphenylalanine ((Tmd)Phe), [Nalpha-biotinyl-Ahx2,(Tmd)Phe36]NPY (Tmd36), and the Y2-receptor subtype selective [Nalpha-biotinyl-Ahx2,Ahx5-24,(Tmd)Phe27]N PY (Tmd27). Both analogues were labeled with [3H]succinimidyl-propionate at Lys4 and bind to the Y2-receptor with affinity similar to that of the native ligand. A synthetic fragment of the second (E2) extracellular loop was used to generate subtype selective antireceptor antibodies against the Y2-receptor. Photoaffinity labeling of the receptor followed by SDS-PAGE and detection of bound radioactivity and SDS-PAGE of solubilized receptors and subsequent Western blotting revealed the same molecular masses. Two proteins correspondingly have been detected for each cell line with molecular masses of 58 +/- 4 and 50 +/- 4 kDa, respectively.  相似文献   

9.
(1) In the present study the occlusion method was employed to evaluate the overall coexistence of neuropeptide Y and phenylethanolamine-N-methyl transferase, neuropeptide Y and tyrosine hydroxylase as well as cholecystokinin and phenylethanolamine-N-methyl transferase immunoreactivity in nerve cell bodies of the dorsal subnuclei of the nucleus tractus solitarius of the male rat. A high degree of coexistence was established for neuropeptide Y/phenylethanolamine-N-methyl transferase, cholecystokinin/phenylethanolamine-N-methyl transferase and for tyrosine hydroxylase/neuropeptide Y immunoreactivity. (2) Sulfated [12I]cholecystokinin-8 was used as radioligand to study the densities of cholecystokinin-8 binding sites in the dorsal medulla oblongata by means of quantitative receptor autoradiography. High densities of binding sites were observed in parts of the nucleus tractus solitarius and in the area postrema. Labeling was also observed in the dorsal motor nucleus of the vagus. (3) In the physiological studies adrenaline (0.15–1.0 nmol), neuropeptide Y (0.075–0.75 nmol) and sulfated cholecystokinin-8 (0.3–3.0 nmol) were administered alone or in combination with neuropeptide Y or adrenaline intracisternally into -chloralose anaesthetized male rats. Especially the hypotensive and bradycardic responses of adrenaline were counteracted in the adrenaline/cholecystokinin co-treated animals, whereas the cardiovascular effects of neuropeptide Y when co-administered with cholecystokinin-8 (0.3 nmol) appeared to be more resistant to the antagonistic effect of cholecystokinin 8. In addition, cholecystokinin-8 further enhanced the neuropeptide Y-induced bradynpnea and increase in the tidal volume.

The present results indicate the existence of neuropeptide Y, adrenaline and cholecystokinin-8 immunoreactivity in the same neurons of the dorsal subnuclei of the nucleus tractus solitarius. Furthermore, binding sites for cholecystokinin-8 seem to at least partly co-distribute with -2 adrenergic and neuropeptide Y binding sites in the nucleus tractus solitarius. In the functional analysis, an antagonistic interaction between cholecystokinin-8 and adrenaline as well as between cholecystokinin and neuropeptide Y is demonstrated opening up the possibility that cholecystokinin peptides act as intrinsic modulators in the putative cholecystokinin/neuropeptide Y/adrenaline synapses in the nucleus tractus solitarius.  相似文献   


10.
摘要 目的:分析血清1-磷酸鞘氨醇、神经肽Y与冠状动脉(以下简称冠脉)临界病变的关系及对功能性心肌缺血的预测价值。方法:选择我院自2020年1月至2022年6月接诊的148例冠脉临界病变患者作为观察组,根据冠脉粥样硬化斑块易损性,分为易损斑块组(68例)和稳定斑块组(80例);另选同期的148例非冠脉临界病变的体检者作为对照组。检测所有受试者血清1-磷酸鞘氨醇、神经肽Y水平,比较观察组与对照组、易损斑块组与稳定斑块组血清1-磷酸鞘氨醇、神经肽Y水平,使用Pearson相关性分析血清1-磷酸鞘氨醇、神经肽Y与Gensini评分的关系,通过受试者工作特征曲线(ROC)下面积(AUC)评价血清1-磷酸鞘氨醇联合神经肽Y对功能性心肌缺血的预测效能。结果:观察组血清1-磷酸鞘氨醇、神经肽Y水平均高于对照组(P<0.05);易损斑块组血清1-磷酸鞘氨醇、神经肽Y水平均高于稳定斑块组(P<0.05);经Pearson相关性分析,冠脉临界病变患者血清1-磷酸鞘氨醇、神经肽Y水平均与Gensini评分呈正相关(P<0.05);在148例冠脉临界病变患者中,发生功能性心肌缺血45例;功能性心肌缺血组血清1-磷酸鞘氨醇、神经肽Y水平均高于非功能性心肌缺血组(P<0.05);经ROC曲线分析,血清1-磷酸鞘氨醇联合神经肽Y预测冠状动脉临界病变患者发生功能性心肌缺血的AUC为0.928。结论:冠状动脉临界病变患者血清1-磷酸鞘氨醇、神经肽Y水平均明显升高,两者与病情严重程度密切相关,联合预测功能性心肌缺血的准确性较高,值得临床予以重视应用。  相似文献   

11.
Abstract: Neuropeptide Y is colocalized with noradrena-line in sympathetic fibers innervating the rat pineal gland. In this article we present a study of the effects and mechanisms of action of neuropeptide Y on the pineal noradrenergic transmission, the main input leading to the rhythmic secretion of melatonin. At the presynaptic level, neuropeptide Y inhibits by 45%, with an EC50 of 50 n M , the potassium-evoked noradrenaline release from pineal nerve endings. This neuropeptide Y inhibition occurs via the activation of pertussis toxin-sensitive G protein-coupled neuropeptide Y-Y2 receptors and is independent from, but additive to, the α2-adrenergic inhibition of noradrenaline release. At the postsynaptic level, neuropeptide Y decreases by a maximum of 35%, with an EC50 of 5 n M , the β-adrenergic induction of cyclic AMP elevation via the activation of neuropeptide Y-Y1 receptors. This moderate neuropeptide Y-induced inhibition of cyclic AMP accumulation, however, has no effect on the melatonin secretion induced by a β-adrenergic stimulation. On the contrary, in the presence of 1 m M ascorbic acid, neuropeptide Y potentiates (up to threefold) the melatonin secretion. In conclusion, this study has demonstrated that neuropeptide Y modulates the noradrenergic transmission in the rat pineal gland at both presynaptic and postsynaptic levels, using different receptor subtypes and transduction pathways.  相似文献   

12.
Highly potent and selective small molecule neuropeptide Y Y2 receptor antagonists are reported. The systematic SAR exploration of a hit molecule N-(4-ethoxyphenyl)-4-[hydroxy(diphenyl)methyl]piperidine-1-carbothioamide, identified from HTS, led to the discovery of highly potent NPY Y2 antagonists 16 (CYM 9484) and 54 (CYM 9552) with IC(50) values of 19 nM and 12 nM respectively.  相似文献   

13.
The distribution of neuropeptide Y in the brain includes extensive coexistence within adrenaline- and noradrenaline-containing neurons and many of its actions are often associated with adrenergic systems. Since neuropeptide Y immunoreactivity is particularly intense in the preoptic area, one of the principal sites for thermoregulation, we have tested the effects of neuropeptide Y on core temperature in normothermic rats, and rats rendered hypothermic by systemic treatment with adrenergic antagonists. In the normothermic rat, intracerebroventricular administration of 1 microgram of neuropeptide Y did not have a significant effect on core temperature. Intraperitoneal treatment with the alpha 1-adrenoceptor antagonist, prazosin, or the beta-adrenoceptor antagonist, propranolol, caused an immediate and significant hypothermia; the intracerebroventricular administration of 1 microgram of neuropeptide Y, 10 minutes after these drugs, strongly potentiated their hypothermic effect. Although intraperitoneal treatment with the alpha 2-adrenoceptor antagonist, idazoxan, had no hypothermic effect per se, the intracerebroventricular administration of NPY 10 minutes after this antagonist led to a significant decrease in core temperature.  相似文献   

14.
C-terminal analogues of neuropeptide Y have been synthesized. The influence of chain length, single-amino-acid substitutions and segment substitutions on receptor binding, biological activity and conformational properties has been investigated. Receptor binding and in vivo assays revealed biological activity already for amino acids 28-36 of neuropeptide Y [neuropeptide Y-(Ac-28-36)-peptide] which increased with increasing chain length. Replacement of Arg25 in neuropeptide Y-(Ac-25-36)-peptide had no influence on binding, whereas Arg33 and Arg35 cannot be replaced by lysine or ornithine without considerable decrease in receptor binding. The introduction of conformational constraints by the 2-aminoisobutyric acid residue (Aib) in position 30 and replacing the amino acids 28-32 by Ala-Aib-Ala-Aib-Ala decreased receptor binding. However, the corresponding Aib-Ala-Aib-Ala-Aib-substituted analogue and a more flexible analogue with Gly5 at position 28-32 exhibited considerable affinity for the receptor. All these substitutions led to a decrease in postsynaptic activity. Strong agonistic activities could be detected in a series of 10 discontinuous analogues, which are constructs of N-terminal parts linked via different spacer molecules to C-terminal segments. One of the most active molecules was neuropeptide Y amino acids 1-4 linked to amino acids 25-36 through aminohexanoic acid (Ahx) [neuropeptide Y-(1-4-Ahx-25-36)-peptide].  相似文献   

15.
Abstract

Neuropeptide Y (NPY), receptors belong to the G-protein coupled receptor superfamily. NPY mediates several physiological responses, such as blood pressure, food intake, sedation. These actions of NPY are mediated by six receptor subtypes denoted as Y1-Y5 and y6. Modeling of receptor subtypes and binding site identification is an important step in developing new therapeutic agents. We have attempted to model the three NPY receptor types, Y1, Y4, and Y5 using homology modeling and threading methods. The models are consistent with previously reported experimental evidence. To understand the interaction and selectivity of NPY analogues with different neuropeptide receptors, docking studies of two neuropeptide analogues (BVD10 and BVD15) with receptors Y1 and Y4 were carried out. Results of the docking studies indicated that the interaction of ligands BVD10 and BVD15 with Y1 and Y4 receptors are different. These results were evaluated for selectivity of peptide analogues BVD10 and BVD15 towards the receptors.  相似文献   

16.
V E Barrios  J Sun  J Douglass  C F Toombs 《Peptides》1999,20(9):1107-1113
Pancreatic polypeptide (PP) is a member of the PP fold family of regulatory peptides. Studies have shown that neuropeptide Y, peptide YY, and PP increased gastrointestinal motility. The GI effects of neuropeptide Y and peptide YY were accompanied by an increase in mean arterial blood pressure; however, PP decreased mean arterial blood pressure. Cloning of a receptor of the neuropeptide Y family with high affinity for PP has been reported. This Y4 receptor is present in intestine, pancreas, and prostate, and its mRNA has been detected in brain and coronary artery. We found in vitro evidence of PP-mediated inhibition of arterial neurogenic vasoconstriction. We have also detected Y4 mRNA in rat peripheral arteries. These findings suggest a potential role for the Y4 receptor in regulating vascular tone.  相似文献   

17.
Abstract: Electrical kindling of the rat dorsal hippocampus induced significant changes in the binding of 125I-peptide YY to Y1 and Y2 subtypes of neuropeptide Y receptors and in their mRNA levels in the area dentata as assessed by quantitative receptor autoradiography and in situ hybridization histochemistry. Binding to Y1 receptor sites decreased by 50% ( p < 0.05) in the molecular layer of the stimulated dentate gyrus, 2 days after preconvulsive stage 2 and 1 week or 1 month after generalized stage 5 seizures compared with sham-stimulated rats. Binding to Y2 receptor sites increased bilaterally by 36–87% ( p < 0.05) in the hilus at stage 2 and 1 week or 1 month after stage 5. No significant changes were observed after one afterdischarge or in the other hippocampal subfields or in the cortex. Y1 receptor mRNA signal decreased bilaterally by 50–64% ( p < 0.01) in the granule cell layer, 6 h but not 24 h after stages 2 and 5. The Y2 receptor mRNA signal was enhanced by 283% ( p < 0.01) in the stimulated granule cell layer 24 h after stage 2. At 6 and 24 h after stage 5, mRNA levels were increased both ipsilaterally (283 and 360%, respectively; p < 0.01) and contralaterally (190 and 260%, respectively; p < 0.05). No significant changes in level of either mRNA was found following one afterdischarge. These modifications, and the enhanced neuropeptide Y release previously shown in the hippocampus, suggest that kindling is associated with lasting changes in neuropeptide Y-mediated neurotransmission.  相似文献   

18.
Protein kinase C (PKC) activation induces neuronal differentiation of SH-SY5Y neuroblastoma cells. This study examines the role of PKCbeta isoforms in this process. The PKCbeta-specific inhibitor LY379196 had no effect on 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced neurite outgrowth from SH-SY5Y neuroblastoma cells. On the other hand, PKCbeta inhibition suppressed the TPA-stimulated increase in neuropeptide Y mRNA, activation of neuropeptide Y gene promoter elements, and phosphorylation of Erk1/2. The TPA-induced increase in neuropeptide Y expression was also inhibited by the MEK inhibitor PD98059. These data indicate that activation of a PKCbeta isoform, through a pathway involving Erk1/2, leads to increased expression of neuronal differentiation genes in neuroblastoma cells.  相似文献   

19.
20.
Npy1randNpy2r,the genes encoding mouse type 1 and type 2 neuropeptide Y receptors, have been mapped by interspecific backcross analysis. Previous studies have localized the human genes encoding these receptors to chromosome 4q31–q32. We have now assignedNpy1randNpy2rto conserved linkage groups on mouse Chr 8 and Chr 3, respectively, which correspond to the distal region of human chromosome 4q. Using yeast artificial chromosomes, we have estimated the distance between the human genes to be approximately 6 cM. Although ancient tandem duplication events may account for some closely spaced G-protein-coupled receptor genes, the large genetic distance between the human type 1 and type 2 neuropeptide Y receptor genes raises questions about whether this mechanism accounts for their proximity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号