首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growth, selection, regression and ovulation of ovarian follicles was ultrasonically monitored in 30 Murrah buffalo throughout a spontaneous estrous cycle during the breeding season (autumn). Examinations revealed that follicular growth during the estrous cycle occurs in waves; the buffalo showed 1-wave (3.3%, n = 1), 2-wave (63.3%, n = 19) or 3-wave (33.3%, n = 10) follicular growth. The first wave began at 1.00, 1.16 +/-0.50 and 1.10 +/- 0.32 d in buffalo with 1, 2 and 3 waves, respectively (ovulation = Day 0). The second wave appeared at 10.83 +/- 1.09 and 9.30 +/- 1.25 d (P < 0.01) for the 2 and 3 wave cycle animals, respectively. The third wave started at 16.80 +/- 1.22 d. Structural persistence of the first dominant follicle was longer in the 2- than 3-wave cycles (20.67 +/- 1.18 vs 17.90 +/- 3.47 d ; P < 0.05). The duration of the growth and static phases of the first dominant follicle differed between the 2 and 3 wave cycles (P < 0.05), whereas there were no differences in linear growth rates (cm/d). Two and three wave cycles differed (P < 0.05) with respect to the maximum diameter of both the first dominant follicle (1.51 +/- 0.24 vs 1.33 +/- 0.18 cm) and the ovulatory follicles (1.55 +/- 0.16 vs 1.34 +/- 0.13 cm). No relationship was found between dominant follicle development and the presence of either a CL or a previous dominant follicle in either ovary. Two and three wave cycles also differed with respect to the mean length of intervals between ovulation (22.27 +/- 0.89 vs 24.50 +/- 1.88 d; P < 0.01) and the mean length of luteal phases (10.40 +/- 2.11 vs 12.66 +/- 2.91 d; P < 0.05). These results demonstrate that buffalo have estrous cycles with 1, 2 or 3 follicular waves; that 2-wave cycles are the most common; and that the number of waves in a cycle is associated with the luteal phase and with estrous cycle length.  相似文献   

2.
Holstein heifers were used to study effects of exogenous administration of oxytocin on luteal function and ovarian follicular development. Twelve heifers were monitored for 1 estrous cycle to confirm normal ovarian function. At the subsequent estrus, these animals were randomly assigned to 1 of 3 treatments: saline control, (Group 1, n=4), oxytocin (Group 2, n=4) and saline pregnant (Group 3, n=4). Group 2 received continuous infusion of oxytocin (1.9 mg/d) from Days 14 to 26 after estrus, while Groups 1 and 3 received saline infusion during the same period. Group 3 were artificially inseminated at estrus. Daily blood samples were collected for oxytocin and progesterone assay. Ovarian follicles and corpus luteum (CL) development were monitored daily by transrectal ultrasonography until Day 32 after estrus. Plasma progesterone (P4) concentrations prior to initiation of infusion were 7.6+/-1.3 ng/mL on Day 14. They then decreased to <1 ng/mL on Day 19 for Group 1 and on Day 28 for Group 2. The interestrous interval was longer (P <0.05) for heifers that received oxytocin infusion. During the infusion period P4 concentrations were not different (P >0.05) between Group 2 and 3 but declined gradually from Day 20 in Group 2 despite the presence of high plasma oxytocin concentrations. Control heifers had 2 waves of follicular growth, with the second dominant follicle ovulating. Three of the 4 oxytocin-infused animals had an additional wave, with the third dominant follicle ovulating. Oxytocin infusion had no effect on size of the ovulating follicle (P >0.05) and the number of Class 1 follicles (3 to 5 mm, P >0.1). Differences in the number of Class 2 follicles (6 to 9 mm) among treatments on Days 15 to 22 after estrus were not detected (P >0.1) except on Days 23 to 26, when Group 2 had fewer follicles than Group 3 (P <0.05). The results show that continuous infusion of oxytocin during normal luteolysis delays luteal regression without inhibiting follicular development.  相似文献   

3.
Twenty-two Serrana goats were studied through two successive estrous cycles in order to characterize their follicular dynamics during the breeding season. The ovaries of the goats were scanned daily by real-time ultrasonography and all follicles >or=3mm were measured and classified. The data were classified by the number of follicular waves per goat to test the hypothesis that temporal and morphological differences between the last follicular wave of an ovary, irrespective of ovulation, will affect the selection of the next ovulatory wave. The mean interovulatory interval was 20.7+/-1.0 days (mean+/-S.D.). Three to five waves per estrous cycle were observed and 61.3% (19/31) of cycles had four waves. In estrous cycles with four waves, the day of onset of the first, second, third and fourth wave was 1.4+/-1.0, 6.9+/-1.4, 11.6+/-1.8 and 16.8+/-1.6, respectively. No differences (P>0.05) were found between the day of onset of the first and second waves for estrous cycles with three, four or five waves. However, the day of onset of the third and fourth waves occurred later when the number of waves per estrous cycle increased (P<0.001). The duration of the interwave interval (time between the day of onset of two consecutive waves) was longer when the second wave was ovulatory. The length of the growth phase (2.4+/-0.9 days) and size (5.9+/-0.7 mm) of the dominant follicle in the second wave were lower (P<0.01) than for the first wave (3.3+/-1.2 days and 6.6+/-0.9 mm, respectively) and the fifth wave (4.1+/-1.2 days and 7.5+/-1.0mm, respectively). Within pairs of ovaries, the onset of the last wave occurred later (P<0.05) and was less variable in ovulatory ovaries (day 16.8+/-1.4, n=20) than in anovulatory ovaries (day 15.1+/-3.7, n=20). The length of the growing phase was longer (P<0.001) in the last waves of ovulatory ovaries (3.1+/-0.9 days) than in the last waves of anovulatory ovaries (1.7+/-0.8 days). These results support the hypothesis that the day of onset of the ovulatory wave is related to or, at least, conditioned by the luteolysis and the decrease in plasma progesterone. In summary, the estrous cycle of Serrana goats is characterized by sequential follicular wave growth with a great variability in their onset and duration, with the exception of the ovulatory wave. The temporal and morphological differences observed in the last wave of estrous cycle provide strong evidence for the role of progesterone in their regulation.  相似文献   

4.
The characteristics of ovulatory follicular waves were studied for spontaneous waves and waves induced during the next estrous cycle by ovarian follicle ablations and administration of PGF2alpha 10 days after ovulation in 21 mares. In the induced group, both the days of the FSH surge and day of deviation were more synchronized, LH concentrations were greater before and after deviation, estradiol concentrations were greater after deviation, and the ovulatory follicle grew at a faster rate (3.4+/-0.2 compared with 2.7+/-0.1 mm/day). The frequency of two dominant follicles/wave was not different between induced waves (7 of 21) and spontaneous waves (9 of 21), but both dominant follicles ovulated more frequently in induced waves (6 of 7 waves compared with 0 of 9).  相似文献   

5.
The resumption of ovarian activity after normal calvings was studied in 18 lactating Friesian cows. Since, in 17 cows, first post-partum ovulation occurred without overt oestrous behaviour being detected, the resultant cycles were called 'ovarian cycles'. The mean (+/- s.d.) length of the ovarian cycles was 21.0 +/- 8.7 days. The duration of cycles tended to be normal (18-24 days) or long (greater than or equal to 25 days) when the ovulatory dominant follicles were identified before Day 10 post partum; they were consistently short (9-13 days) when dominant follicles identified after Day 20 post partum ovulated. When such follicles were detected between Days 10 and 20 post partum, long, normal and short ovarian cycles were detected. The number of waves of follicular growth with associated dominant follicles observed during the ovarian cycles tended to be related to cycle length; short cycles had 1 dominant follicle, normal cycles predominantly 2, and long cycles mostly 3 dominant follicles. The mean (+/- s.d.) duration of 13 oestrous cycles studied was 23.1 +/- 2.1 days. Of these cycles, 7 had 3 and 6 had 2 dominant follicles. The oestrous cycles with 3 dominant follicles had a mean (+/- s.d.) duration of 24.0 +/- 1.2 days and the respective dominant non-ovulatory follicles reached maximum sizes on Days 8 and 18, respectively; oestrous cycles with 2 dominant follicles were 22.2 +/- 2.6 days in duration, and the dominant non-ovulatory follicle reached maximum size by Day 8. Ovarian follicular development during the first 45 days of pregnancy was characterized by the growth and regression of successive dominant follicles, each lasting 10-12 days. These results show that the first ovarian cycle was predominantly short when the ovulatory dominant follicle was first detected after Day 20 post partum.  相似文献   

6.
Most estrous cycles in cows consist of 2 or 3 waves of follicular activity. Waves of ovarian follicular development comprise the growth of dominant follicles some of which become ovulatory and the others are anovulatory. Ovarian follicular activity in cows during estrous cycle was studied with a special reference to follicular waves and the circulating concentrations of estradiol and progesterone. Transrectal ultrasound examination was carried out during 14 interovulatory intervals in 7 cows. Ovarian follicular activity was recorded together with assessment of serum estradiol and progesterone concentrations. Three-wave versus two-wave interovulatory intervals was observed in 71.4% of cows. The 3-wave interovulatory intervals differed from 2-wave intervals in: 1) earlier emergence of the dominant follicles, 2) longer in length, and 3) shorter interval from emergence to ovulation. There was a progressive increase in follicular size and estradiol production during growth phase of each wave. A drop in estradiol concentration was observed during the static phase of dominant anovulatory follicles. The size of the ovulatory follicle was always greater and produced higher estradiol compared with the anovulatory follicle. In conclusion, there was a predominance of 3-wave follicular activity that was associated with an increase in length of interovulatory intervals. A dominant anovulatory follicle during its static phase may initiate the emergence of a subsequent wave. Follicular size and estradiol concentration may have an important role in controlling follicular development and in determining whether an estrous cycle will have 2 or 3-waves.  相似文献   

7.
Ultrasonography was used to monitor the growth, ovulation and regression of individual ovarian follicles greater than or equal to 5 mm during the late luteal and follicular phases of the oestrous cycle in heifers treated with injections of PGF-2 alpha to induce luteolysis and in heifers undergoing spontaneous luteolysis. Six heifers were given a single injection of PGF-2 alpha between Day 12 and 15 of the oestrous cycle and their ovaries were examined daily by transrectal ultrasonography until ovulation occurred. Another group of 5 heifers was examined daily by ultrasound from Day 14 or 15 of the cycle through spontaneous luteolysis and ovulation. Blood samples were taken twice daily from this group and analysed for progesterone to determine when luteolysis occurred. All heifers were checked for oestrous behaviour twice daily. Mean diameters of ovulatory follicles on each of the 3 days before oestrus were not different between PGF-2 alpha-treated and untreated heifers. In both groups there was large variation among heifers in the sizes and growth rates of the ovulatory follicles. At 3 days before oestrus the diameters of ovulatory follicles were between 7.5 and 11 mm in PGF-2 alpha-treated heifers and between 6 and 11.5 mm in untreated heifers. Non-ovulatory follicles decreased in size during the 3 days before oestrus and the number of non-ovulatory follicles within the size ranges of ovulatory follicles decreased. The ovulatory follicle was not consistently the largest follicle on the ovaries until the day of oestrus but was always one of the 2 largest follicles during the 3 days before oestrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The pattern of growth and regression of ovarian follicles was monitored once daily for one complete estrous cycle in eight individual water buffaloes by ultrasonographic scanning of the ovaries for an entire interovulatory interval of normal cycle length. One-wave follicular growth was observed in five animals and two-wave follicular growth in three buffaloes during the estrous cycle. The first follicular wave of a two-wave cycle emerged significantly earlier (P < 0.05) than the emergence of the solitary wave of a one-wave cycle. One- and two-wave cycles differed significantly (P < 0.05) with respect to the mean interovulatory interval (21.0 +/- 0.54 days versus 22.7 +/- 0.33 days) and the mean interestrus interval (20.8 +/- 0.58 days versus 22.3 +/- 0.66 days). The overall linear growth rate of the ovulatory follicle was significantly greater (P < 0.01) in a two-wave cycle compared to that of a one-wave cycle (1.17 +/- 0.33 mm/day versus 0.32 +/- 0.01 mm/day). In a one-wave pattern, the growth profile of the solitary dominant follicle was atypical, showing three distinct phases, i.e. growth phase, regression phase and regrowth phase culminating in ovulation. The level of plasma progesterone steadily increased from day 0 of estrous cycle, attained peak level on day 14 and declined thereafter. A slower growth rate of the dominant follicle was observed in the presence of higher plasma progesterone concentration. The present study shows that one-wave follicular growth is a normal phenomenon in suckled water buffaloes.  相似文献   

9.
Ovarian follicular dynamics in heifers during early pregnancy   总被引:1,自引:0,他引:1  
Daily ultrasonic monitoring of individual follicles was used to compare follicular wave characteristics of nonbred (n = 6) and pregnant heifers (n = 6). The dominant follicle of the first wave (Wave 1) did not differ significantly between reproductive statuses for any endpoint. The dominant follicle of Wave 2 was the ovulatory follicle in all nonbred heifers. The maximum diameter of the dominant follicle of Wave 2 was greater (p less than 0.05) for the nonbred heifers (14.8 mm) than for the pregnant heifers (13.0 mm). The dominant follicle of Wave 3 was detected later (p less than 0.003; Day 19.7 vs. Day 17.3) and reached a greater diameter (p less than 0.05; 16.6 mm vs. 12.0 mm) in the nonbred than in the pregnant heifers. On the mean day of onset of luteolysis (Day 15.2) in the nonbred heifers, the dominant follicle was similar in diameter for the two groups. Within a few days, the follicle began to regress in the pregnant heifers but maintained or increased in diameter in the nonbred heifers so that a greater maximum diameter was attained. During Days 0 70 of pregnancy, the interval from emergence of a wave to the emergence of the next wave was constant (not significantly different; mean intervals, 8.5 9.8 days). The mean maximum diameter attained by the dominant follicles differed significantly among the first 6 follicular waves; diameter was greatest for Wave 1 (15.7 mm), smallest for Waves 2 (13.1 mm) and 3 (12.6 mm), and intermediate for Waves 4 (14.0 mm), 5 (13.7 mm), and 6 (14.5 mm).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The pattern of turnover of dominant follicles involves the sequential growth and regression of two to three dominant follicles during the estrous cycle. The dominant follicle that ovulates is the one that develops concomitantly with the regression of the corpus luteum. The aim of this paper was to determine if the first dominant follicle would ovulate following induction of luteolysis with prostaglandin F2 alpha analogues (PGF) on Day 7 of the cycle. Heifers (n = 43) were checked for estrus (Day 0); their ovaries were scanned daily from Day 6 of the cycle for one week, and the fate of the first dominant follicle was determined. Luteolysis was induced on Day 7 with PGF analogues, and blood samples were taken daily for progesterone and estradiol measurement and at 3-h intervals for 33 h for luteinizing hormone (LH) measurement. Of the 43 heifers given PGF, complete luteolysis occurred in 40 animals. Of these, the first dominant follicle ovulated in 37 heifers; the dominant follicle was not the ovulatory follicle in 2 heifers and the dominant follicle became cystic in one heifer.  相似文献   

11.
For 18 two-wave interovulatory intervals in heifers, the follicular waves were first detected on Days -0.2 +/- 0.1 and 9.6 +/- 0.2, and for 4 three-wave intervals on Days -0.5 +/- 0.3, 9.0 +/- 0.0 and 16.0 +/- 1.1 (ovulation is Day 0). The day-to-day mean diameter profile of the dominant follicle of the 1st wave and the day of emergence of the 2nd wave were not significantly different between 2-wave and 3-wave intervals. There were no indications, therefore, that events occurring during the first half of the interovulatory interval were associated with the later emergence of a 3rd wave. The dominant ovulatory follicle differed significantly (P less than 0.05 at least) between 2-wave and 3-wave intervals in day of emergence (Day 9.6 +/- 0.2 and 16.0 +/- 1.1), length of interval from emergence of follicle to ovulation (10.9 +/- 0.4 and 6.8 +/- 0.6 days), and diameter on day before ovulation (16.5 +/- 0.4 and 13.9 +/- 0.4 mm). The mean length of 2-wave interovulatory intervals (20.4 +/- 0.3 days) was shorter (P less than 0.01) than for 3-wave intervals (22.8 +/- 0.6 days). The mean day of luteal regression for 2-wave and 3-wave intervals was 16.5 +/- 0.4 and 19.2 +/- 0.5 (P less than 0.01). For all intervals, luteal regression occurred after emergence of the ovulatory wave, and the next wave did not emerge until near the day of ovulation at the onset of the subsequent interovulatory interval. In conclusion, the emergence of a 3rd wave was associated with a longer luteal phase, and the viable dominant follicle present at the time of luteolysis became the ovulatory follicle.  相似文献   

12.
The pattern of ovarian follicle development in maiden cyclic lambs was characterized using the definition of a follicle wave as the changes in the number of follicles among the days of the estrous cycle, as originally defined in cattle by Rajakoski in 1960. We also examined the steroid content relationships among follicles on Days 5 (Wave 1) and 14 (Waves 2 and 3) of the estrous cycle. In Experiment 1, the ovaries of 20 cyclic lambs (40 to 45 kg) were examined daily using transrectal ultrasonography for 1 or 2 estrous cycles (n = 31 cycles). The number of small (2 and 3 mm in diameter), medium (4 and 5 mm) and large (> or = 6 mm) follicles were aligned with the beginning and end of the average length estrous cycle and then compared among days. Identified follicles were defined as those that grew to > or = 4 mm and remained at > or = 3 mm for > or = 3 d. The number of identified follicles emerging (retrospectively identified at 2 or 3 mm) per ewe per day was also aligned with the average length estrous cycle. In Experiment 2, ewe lambs were ovariectomized on Day 5 (n = 6) or 14 (n = 5) of the estrous cycle, then follicle diameters and follicular fluid concentrations of estradiol and progesterone were compared among follicles. Data were analyzed by repeated measures ANOVA and compared among days using Fisher's LSD. In Experiment 1, either 2 (n = 10 cycles), 3 (n = 20 cycles) or 4 (n = 1 cycle) periods of emergence of identified follicles occurred during individual cycles, with estrous cycle lengths of 15.6 +/- 1.6, 16.1 +/- 1.1 and 17 d respectively. In animals with 2 or 3 periods of emergence of identified follicles, the total number of small, medium and large follicles differed (P < 0.05) among days of the estrous cycle showing a wave-like pattern. In Experiment 2, a single follicle collected on each of Days 5 and 14 of the cycle (6.2 +/- 0.2 and 3.9 +/- 0.2 mm in diameter) had a higher (P < 0.05) concentration of follicular fluid estradiol (36.2 +/- 4.4 and 50.9 +/- 21.6 ng/mL) than other follicles collected on the same day (next largest follicle: 4.3 +/- 0.3 and 3.5 +/- 0.4 mm; 4.3 +/- 0.9 and 18.2 +/- 6.7 ng/mL estradiol). The results showed that 1) there was a synchronous emergence of follicles associated with fluctuations in the number and size of follicles during the estrous cycle; 2) within a wave there was a hierarchy among follicles for diameter and steroid content; 3) ovarian follicle growth in ewe lambs occurred in 2 or 3 organized waves during the estrous cycle.  相似文献   

13.
The aim of the present study was to investigate the temporal relationship between the secretory pattern of serum LH and FSH concentrations and waves of ovarian antral follicles during the luteal phase of the estrous cycle in sheep. The growth pattern of ovarian antral follicles and CL were monitored by transrectal ultrasonography and gonadotropin concentrations were measured in blood samples collected every 12 min for 6 h/d from 7 to 14 d after ovulation. There were two follicular waves (penultimate and final waves of the cycle) emerging and growing during the period of intensive blood sampling. Mean and basal LH concentrations and LH pulse frequency increased (P < 0.001) with decreasing progesterone concentration at the end of the cycle. Mean and basal FSH concentrations reached a peak (P < 0.01) on the day of follicular wave emergence before declining to a nadir by 2 d after emergence. None of the parameters of pulsatile LH secretion varied significantly with either the emergence of the final follicular wave or with the end of the growth phase of the largest follicle of the penultimate wave of the cycle. However, mean and basal LH concentrations did increase (P < 0.05) after the end of the growth phase of the largest follicle of the final follicular wave of the cycle. Furthermore, the end of the growth phase of the largest follicle of the final wave coincided with functional luteolysis. In summary, there was no abrupt or short-term change in pulsatile LH secretion in association with the emergence or growth of the largest follicle of a wave. We concluded that the emergence and growth of ovarian antral follicles in follicular waves do not require changes in LH secretion, but may involve changes in sensitivity of ovarian follicles to serum LH concentrations.  相似文献   

14.
The most common beef cattle raised in Brazil is the Nelore breed (Bos indicus). Information obtained by ultrasonography on follicular growth in Bos taurus cattle has been accumulating rapidly. However, there are few publications to date on follicular development in Bos indicus breeds. The follicular dynamics in Nelore heifers and cows during natural or prostaglandin (PG)-induced estrous cycle were studied. From the detection of estrus onward, all animals were examined daily by ultrasonography for one (n = 35) or two (n = 10) consecutive estrous cycles. The follicular dynamic in Nelore cattle was characterized by the predominance of 2 follicular waves in the cows (83.3%, n = 18, P < 0.05) and 3 waves in the heifers (64.7%, n = 16, P < 0.05). Most of the cattle observed over 2 consecutive estrous cycles presented the same pattern of follicular waves in the first and second cycle, and only 30% showed variation in the number of waves from one cycle to the other. Most of the follicular parameters analyzed were not affected by PG treatment or age but were altered by follicular waves. Consequently, data on cows and heifers were combined according to the number of follicular waves. The ovulatory follicle was larger than the other dominant follicles (P < 0.05), and the ovulatory wave was shorter than the preceding waves (P < 0.05). The interovulatory interval was longer in animals showing 3 waves than those exhibiting 2 waves (P < 0.05). Maximum diameter of the dominant follicle (around 11 mm) and of the corpus luteum (CL, approximately 17 mm) were smaller than those reported for European breeds. In conclusion, the results demonstrate that although the dominant follicle and corpus luteum are smaller than in European breeds, the follicular dynamics in Nelore cattle were similar to those observed in European breeds and were characterized by 2 or 3 follicular waves for cows and heifers, respectively, during the natural or prostaglandin-induced estrous cycle.  相似文献   

15.
Computer-assisted image analysis was used to evaluate ultrasound images of bovine ovarian follicles. The ovaries of 8 sexually mature heifers were examined daily by transrectal ultrasonography for 2 estrous cycles. Ultrasonographic examinations of the ovaries were then videotaped, and the dominant and subordinate follicles of successive waves were individually identified and monitored. Recorded images of the dominant anovulatory follicle of the first wave (n = 15) and the ovulatory follicle of the last wave (n = 15) of the estrous cycle were subsequently digitized for computer analysis of echotexture (mean pixel value and pixel heterogeneity). Regions of the image spanning the breadth of the follicle wall were selected, and image analysis revealed that mean pixel value of the dominant anovulatory follicle changed over time (P = 0.0005). Mean pixel value decreased (P = 0.0005) dramatically during the early static phase (Days 6 to 8, Day 0 = day of ovulation), increased (P = 0.0005) at the onset of the regressing phase (Day 12), and reached maximal levels (P = 0.0005) on Day 14. Similarly, image echotexture of the ovulatory follicle revealed a time-dependent effect (P = 0.0001) due to a rapid decrease in mean pixel values between 7 and 4 d before ovulation, followed by an increase until the day before ovulation. The echotexture of images of the follicular antrum were also evaluated and with regard to the dominant anovulatory follicle, a time-dependent effect was not detected for mean pixel value (P = 0.62) but was observed for pixel heterogeneity (P = 0.02). In addition, there was a positive correlation between mean pixel value and heterogeneity (r = 0.61, P = 0.0001). Heterogeneity initially decreased (P = 0.02) and remained low until the emergence of the second follicular wave (mean Day 9). Values subsequently increased and became variable during the late static and regressing phases (> Day 9). Mean pixel value of the antrum of the dominant ovulatory follicle increased (P = 0.0001) as the day of ovulation approached. Heterogeneity did not change (P = 0.14), nor was there any correlation between mean pixel value and heterogeneity for the antrum of the ovulatory follicle (r = 0.06, P = 0.49). We concluded that changes in echotexture (mean pixel value and heterogeneity) of bovine ovarian follicles assessed by computer analysis of ultrasound images were temporally related to functional status (i.e., anovulatory versus ovulatory; growing, static or regressing). The results were strongly supportive of the concept that ultrasonographically detected image attributes are a reflection of physiologic status.  相似文献   

16.
The use of hCG in cattle at breeding or at different times after breeding has been associated with extension in estrous cycle length among cows that do not become pregnant. The objective of this study was to determine whether the increase in estrous cycle length observed in hCG-treated cows that fail to become pregnant is due to changes in ovarian follicular dynamics. Twelve nonbred lactating cows were randomly assigned either to receive hCG on Day 7 of the cycle (Day 0 = day of estrus, n = 6) or to serve as controls (n = 6). Ultrasound scanning was conducted daily from Day 0 until the onset of the next ovulation to monitor follicular and corpus luteum (CL) dynamics. Blood samples were collected for progesterone analysis at each ultrasound session. Ovulation of the Day 7 follicle occurred in all 6 hCG-treated cows. The time of emergence of the second-wave of follicular growth was advanced in hCG-treated cows but was not statistically different (P > 0.05) from that of the control cows (10.8 +/- 0.3 vs 12.7 +/- 1.4 d). The mean diameter of the second-wave dominant follicle from Days 15 to 18 was not different (P > 0.05) between the treatment groups. However, the second-wave dominant follicle had a slower growth rate (0.8 vs 1.3 mm/d) among cows treated with hCG compared with that of the controls. The second-wave dominant follicle was the ovulatory follicle in 5 control cows, but only in 3 hCG-treated cows. The dominant follicle from the third wave ovulated in 1 control and in 3 hCG-treated cows. The lifespan of the spontaneous CL and the time to low progesterone levels (< 1 ng/ml) were not different between the control and hCG-treated cows. These results suggest an altered follicular dynamic but no extension in estrous cycle length when hCG is administered on Day 7 of the cycle in postpartum cows.  相似文献   

17.
Holstein heifers were given 5 injections (twice/day) of 10 ml charcoal-extracted bovine follicular fluid (bFF; N = 6) or 10 ml saline (N = 5) beginning 12 h after the onset of oestrus. Blood samples were collected for determination of plasma concentrations of FSH, LH, progesterone and oestradiol-17 beta. Treatment with bFF suppressed the secondary FSH surge (P less than 0.01). Cessation of bFF injections was followed by a rebound period during which FSH was elevated compared with controls (P less than 0.01). Daily ultrasonographic examinations revealed that follicular growth occurred in waves, with 4 of 5 control heifers exhibiting 3 waves and the other 2 waves. In contrast, 5 of 6 bFF-treated animals exhibited 2 waves and the other 3 waves. Appearance of follicles in the first wave was delayed in bFF-treated heifers (Day 3.3 +/- 0.3 compared with Day 1.4 +/- 0.2; P less than 0.0001) and appearance of the dominant follicle of the first wave was delayed (Day 4.5 +/- 0.3 compared with Day 1.8 +/- 0.2; P less than 0.0001). Follicles in the second wave appeared later in animals treated with bFF (Day 12.7 +/- 0.4 compared with Day 10.4 +/- 0.6; P less than 0.01), and the dominant follicle of this wave also appeared later (Day 13.0 +/- 0.5 compared with Day 10.6 +/- 0.5; P less than 0.01). Oestradiol-17 beta increased during the early luteal phase, but this increase occurred later in heifers treated with bFF (peak concentrations on Day 6.3 +/- 0.6 compared with Day 4.2 +/- 0.2; P less than 0.05). LH, progesterone and cycle length were not affected by bFF. Delayed follicular growth associated with suppression of FSH suggests that the secondary FSH surge is important in the initiation of follicular development early in the bovine oestrous cycle, and thus may play a role in the regulation of ovarian follicular dynamics.  相似文献   

18.
Folliculogenesis was studied daily in the 18 oestrous cycles in six prolific Olkuska ewes from October to December using transrectal ultrasonography to record the number and size of all ovarian follicles > or =2 mm in diameter. Blood samples were taken once a day and were analyzed for concentrations of FSH, LH, estradiol and progesterone. Follicular and hormonal data were analyzed for associations between different stages of development of the follicular waves and concentrations of FSH and estradiol. The first wave during which at least one follicle reached maximum diameter of > or =4 mm after ovulation, was defined as a wave 1, and the following waves were numbered sequentially. Waves 1, 2, 3, 4 and the ovulatory one emerged on days: -2 to 4, 4 to 8, 6 to 11, 10 to 12 and 11 to 15, respectively. The mean number of follicles per wave that reached diameter of > or =4 mm was 4.15 +/- 1.1 and 16.62 +/- 8.6 follicles per estrous cycle of a total 299 follicles were observed. Significantly more follicles (p> or =0.05) emerged on days 2, 8 and 13 than in other days. Serum FSH concentrations fluctuated from 0.11 ngml(-1) on day 2 to preovulatory maximum 1.81 ngml(-1) on day 17 of the estrous cycle. The emergence of follicular waves was associated with elevations of FSH concentrations in blood serum. The mean increase in FSH concentration was followed by the recruitment of follicles of the next wave. The mean daily FSH concentration and the mean number of follicles emerging each day were negatively correlated. The length of the interwave interval (4.4 +/- 1.6 days) did not differ significantly from the interval between pulses of FSH (4.8 +/- 0.3 days). The mean serum estradiol concentrations showed fluctuations until day 14 and then gradually increased from 5.47 +/- 0.3 pgml(-1) to reach a peak 13.14 +/- 0.2 pgml(-1) on the day before ovulation. To summarize, the growth of ovarian follicles during the estrous cycle in high fecundity Olkuska sheep exhibited a distinct wave-like pattern. Ovarian follicles emerged from the pool of 2 mm follicles. The preovulatory follicles originated from the large follicle population were present in the ovary at the time of luteal regression. The initial stages of the growth of the largest follicles appears to be controlled primarily by increases in FSH secretion.  相似文献   

19.
Individual follicles were monitored by ultrasonography in 15 mares during the transitional period preceding the first ovulation of the year and in 9 mares during the first interovulatory interval. During the transitional period, 7 mares developed 1-3 anovulatory follicular waves characterized by a dominant follicle (maximum diameter greater than or equal to 38 mm) that had growing, static, and regressing phases. The emergence of a subsequent wave (anovulatory or ovulatory) did not occur until the dominant follicle of the previous wave was in the static phase. After the emergence of the subsequent wave, the previous dominant follicle regressed. The mean (+/- s.d.) length of the interval between successive waves was 10.8 +/- 2.2 days. Before the emergence of waves (identified by a dominant follicle), follicular activity seemed erratic and follicles did not reach greater than 35 mm. During the interovulatory interval, 6 mares developed 2 waves (an anovulatory wave and a subsequent ovulatory wave) and 3 mares developed only 1 detected wave (the ovulatory wave). The ovulatory follicle at the end of the transitional period reached 20 mm earlier (Day - 15), grew slower (2.6 +/- 0.1 mm/day; mean +/- s.e.m.) but reached a larger diameter on Day - 1 (50.5 +/- 1.1 mm) than for the ovulatory follicle at the end of the interovulatory interval (Day - 10, 3.6 +/- 0.2 mm/day, 44.4 +/- 1.0 mm, respectively; P less than 0.05 for each end point). The interval from cessation of growth of the largest subordinate follicle to the occurrence of ovulation was longer (P less than 0.05) for end of the transitional period (9.5 +/- 0.7 days) than for the end of the interovulatory interval (6.8 +/- 0.6 days). Results demonstrated the occurrence of rhythmic follicular waves during some transitional periods and the occurrence of 2 waves during some of the first oestrous cycles of the year.  相似文献   

20.
Twenty-five normally cyclic Holstein heifers were used to examine the effects of oxytocin on cloprostenol-induced luteolysis, subsequent ovulation, and early luteal and follicular development. The heifers were randomly assigned to 1 of 4 treatments: Group SC-SC (n=6), Group SC-OT (n=6), Group OT-SC (n=6) and Group OT-OT (n=7). The SC-SC and SC-OT groups received continuous saline infusion, while Groups OT-SC and OT-OT received continuous oxytocin infusion (1:9 mg/d) on Days 14 to 26 after estrus. All animals received 500 microg, i.m. cloprostenol 2 d after initiation of infusion (Day 16) to induce luteolysis. Groups SC-OT and OT-OT received oxytocin twice daily (12 h apart) (0.33 USP units/kg body weight, s.c.) on Days 3 to 6 of the estrous cycle following cloprostenol-induced luteolysis, while Groups SC-SC and OT-SC received an equivalent volume of saline. Daily plasma progesterone (P4) concentrations prior to cloprostenol-induced luteolysis and rates of decline in P4 following the induced luteolysis did not differ between oxytocin-infused (OT-OT and OT-SC) and saline-infused (SC-SC and SC-OT) groups (P >0.1). Duration of the estrous cycle was shortened in saline-infused heifers receiving oxytocin daily during the first week of the estrous cycle. In contrast, oxytocin injections did not result in premature inhibition of luteal function and return to estrus in heifers that received oxytocin infusion (OT-OT). Day of ovulation, size of ovulating follicle and time of peak LH after cloprostenol administration for oxytocin and saline-treated control heifers did not differ (P >0.1). During the first 3 d of the estrous cycle following luteal regression, fewer (P <0.01) follicles of all classes were observed in the oxytocin-infused animals. Day of emergence of the first follicular wave in heifers treated with oxytocin was delayed (P <0.05). The results show that continuous infusion of oxytocin during the mid-luteal stage of the estrous cycle has no effect on cloprostenol-induced luteal regression, timing of preovulatory LH peak or ovulation. Further, the finding support that an episodic rather than continuous administration of oxytocin during the first week of the estrous cycle results in premature loss of luteal function. The data suggest minor inhibitory effects of oxytocin on follicular growth during the first 3 d of the estrous cycle following cloprostenol-induced luteolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号