首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Nitric oxide (NO) and reactive oxygen species (ROS) have fundamentally important roles in the regulation of vascular tone and remodeling. Although arterial disease and endothelial dysfunction alter NO and ROS levels to impact vasodilation and vascular structure, direct measurements of these reactive species under in vivo conditions with flow alterations are unavailable. In this study, in vivo measurements of NO and H2O2 were made on mesenteric arteries to determine whether antioxidant therapies could restore normal NO production in spontaneously hypertensive rats (SHR). Flow was altered from approximately 50-200% of control in anesthetized Wistar-Kyoto rats (WKY) and SHR by selective placement of microvascular clamps on adjacent arteries while NO and H2O2 were directly measured with microelectrodes. Relative to WKY, SHR had significantly increased baseline NO and H2O2 concentrations (2,572 +/- 241 vs. 1,059 +/- 160 nM, P < 0.01; and 26 +/- 7 vs. 7 +/- 1 microM, P < 0.05, respectively). With flow elevation, H2O2 but not NO increased in SHR; NO but not H2O2 was elevated in WKY. Apocynin and polyethylene-glycolated catalase decreased baseline SHR NO and H2O2 to WKY levels and restored flow-mediated NO production. Suppression of NAD(P)H oxidase with gp91ds-tat decreased SHR H2O2 to WKY levels. Addition of topical H2O2 to increase peroxide to the basal concentration measured in SHR elevated WKY NO to levels observed in SHR. The results support the hypothesis that increased vascular peroxide in SHR is primarily derived from NAD(P)H oxidase and increases NO concentration to levels that cannot be further elevated with increased flow. Short-term and even acute administration of antioxidants are able to restore normal flow-mediated NO signaling in young SHR.  相似文献   

2.
Florian M  Freiman A  Magder S 《Steroids》2004,69(13-14):779-787
OBJECTIVE: Oxidant stress contributes to vascular injury and atherosclerosis. We hypothesized that estrogen treatment of ovariectomized rats decreases O(2)(-) by decreasing the activity of NAD(P)H oxidase and this reduction in O(2)(-) could have a vasculoprotective effect. METHODS AND RESULTS: Ovariectomized rats were treated with 17-beta-estradiol E2 (0.25mg) or oil placebo for 21 days. Aorta were removed for contractility studies and O(2)(-) production was measured by lucigenin enhanced chemiluminescence (230 and 5microM). E2 treatment decreased basal O(2)(-) production but did not alter NADH or NADPH stimulated O(2)(-) production. Total p47phox and p47phox in membrane fractions of cardiac tissue were decreased, which suggests less activation of NAD(P)H oxidase in E2 treated rats. E2 did not change expression of other components of NAD(P)H oxidase in heart, lung, spleen and diaphragm. Expression of eNOS was also lower in E2 treated rats. E2 did not affect the contractile response to phenylepherine, dilation with acetylcholine, dilation with superoxide dismutase or constriction with l-NAME. This argues against changes in bioavailable NO. CONCLUSIONS: E2 decreases activation of p47phox and O(2)(-) production by NAD(P)H oxidase. This did not affect contractile properties of the vessel, but could still potentially alter cell signaling from oxidant increasing stresses.  相似文献   

3.
Although NAD(P)H oxidase-derived superoxide (O(2)(-)) is increased during the development of angiotensin II (ANG II)-dependent hypertension, vascular regulation at the protein level has not been reported. We have shown that four major components of NAD(P)H oxidase are located primarily in the vascular adventitia as a primary source of vascular O(2)(-). Here we compare vascular levels of O(2)(-) and NAD(P)H oxidase in normotensive and ANG II-infused hypertensive mice and show that, after 7 days of ANG II infusion (750 microg. kg(-1). day(-1) ip) in C57B1/6 mice, systolic blood pressure was increased compared with that after sham infusion, concomitant with increased O(2)(-) in the thoracic aorta as measured using lucigenin (25 microM)-enhanced chemiluminescence. Both p67(phox) and gp91(phox) were detectable by Western blotting in aortic homogenates, and we observed increased protein levels of NAD(P)H oxidase subunits. These ANG II-induced increases were normalized by simultaneous treatment with the AT(1) receptor antagonist losartan. Moreover, the primary location of these subunits was the adventitia as detected immunohistochemically. Our results suggest that ANG II-induced increases in O(2)(-) are due to increased adventitial NAD(P)H oxidase activity, brought about by the heightened expression and interaction of its components.  相似文献   

4.
There is growing evidence that endothelial dysfunction, which is often defined as the decreased endothelial-derived nitric oxide (NO) bioavailability, is a crucial factor leading to vascular disease states such as hypertension, diabetes, atherosclerosis, heart failure and cigarette smoking. This is due to the fact that the lack of NO in endothelium-dependent vascular disorders contributes to impaired vascular relaxation, platelet aggregation, increased vascular smooth muscle proliferation, and enhanced leukocyte adhesion to the endothelium. During the last several years, it has become clear that reduction of NO bioavailability in the endothelium-impaired function disorders is associated with an increase in endothelial production of superoxide (O(2)(*-)). Because O(2)(*-) rapidly scavenges NO within the endothelium, a reduction of bioactive NO might occur despite an increased NO generation. Among many enzymatic systems that are capable of producing O(2)(*-), NAD(P)H oxidase and uncoupled endothelial NO synthase (eNOS) apparently are the main sources of O(2)(*-) in the endothelial cells. It seems that O(2)(*-) generated by NAD(P)H oxidase may trigger eNOS uncoupling and contribute to the endothelial balance between NO and O(2)(*-). That is maintained at diverse levels.  相似文献   

5.
Vascular NAD(P)H oxidase-derived reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) have emerged as important molecules in the pathogenesis of atherosclerosis, hypertension, and diabetic vascular complications. Additionally, myeloperoxidase (MPO), a transcytosable heme protein that is derived from leukocytes, is also believed to play important roles in the above-mentioned inflammatory vascular diseases. Previous studies have shown that MPO-induced vascular injury responses are H2O2 dependent. It is well known that MPO can use leukocyte-derived H2O2; however, it is unknown whether the vascular-bound MPO can use vascular nonleukocyte oxidase-derived H2O2 to induce vascular injury. In the present study, ANG II was used to stimulate vascular NAD(P)H oxidases and increase their H2O2 production in the vascular wall, and vascular dysfunction was used as the vascular injury parameter. We demonstrated that vascular-bound MPO has sustained activity in the vasculature. MPO could use the vascular NAD(P)H oxidase-derived H2O2 to produce hypochlorus acid (HOCl) and its chlorinating species. More importantly, MPO derived HOCl and chlorinating species amplified the H2O2-induced vascular injury by additional impairment of endothelium-dependent relaxation. HOCl-modified low-density lipoprotein protein (LDL), a specific biomarker for the MPO-HOCl-chlorinating species pathway, was expressed in LDL and MPO-bound vessels with vascular NAD(P)H oxidase-derived H2O2. MPO-vascular NAD(P)H oxidase-HOCl-chlorinating species may represent a common pathogenic pathway in vascular diseases and a new mechanism involved in exacerbation of vascular diseases under inflammatory conditions.  相似文献   

6.
Vascular aging is characterized by increased oxidative stress, impaired nitric oxide (NO) bioavailability and enhanced apoptotic cell death. The oxidative stress hypothesis of aging predicts that vascular cells of long-lived species exhibit lower production of reactive oxygen species (ROS) and/or superior resistance to oxidative stress. We tested this hypothesis using two taxonomically related rodents, the white-footed mouse (Peromyscus leucopus) and the house mouse (Mus musculus), that show a more than twofold difference in maximum lifespan potential (MLSP = 8 and 3.5 years, respectively). We compared interspecies differences in endothelial superoxide (O2-) and hydrogen peroxide (H2O2) production, NAD(P)H oxidase activity, mitochondrial ROS generation, expression of pro- and antioxidant enzymes, NO production, and resistance to oxidative stress-induced apoptosis. In aortas of P. leucopus, NAD(P)H oxidase expression and activity, endothelial and H2O2 production, and ROS generation by mitochondria were less than in mouse vessels. In P. leucopus, there was a more abundant expression of catalase, glutathione peroxidase 1 and hemeoxygenase-1, whereas expression of Cu/Zn-SOD and Mn-SOD was similar in both species. NO production and endothelial nitric oxide synthase expression was greater in P. leucopus. In mouse aortas, treatment with oxidized low-density lipoprotein (oxLDL) elicited substantial oxidative stress, endothelial dysfunction and endothelial apoptosis (assessed by TUNEL assay, DNA fragmentation and caspase 3 activity assays). According to our prediction, vessels of P. leucopus were more resistant to the proapoptotic effects of oxidative stressors (oxLDL and H2O2). Primary fibroblasts from P. leucopus also exhibited less H2O2-induced DNA damage (comet assay) than mouse cells. Thus, increased lifespan potential in P. leucopus is associated with a decreased cellular ROS generation and increased oxidative stress resistance, which accords with the prediction of the oxidative stress hypothesis of aging.  相似文献   

7.
Nitric oxide (NO) by activating soluble guanylyl cyclase (sGC) is involved in vascular homeostasis via induction of smooth muscle relaxation. In cardiovascular diseases (CVDs), endothelial dysfunction with altered vascular reactivity is mostly attributed to decreased NO bioavailability via oxidative stress. However, in several studies, relaxation to NO is only partially restored by exogenous NO donors, suggesting sGC impairment. Conflicting results have been reported regarding the nature of this impairment, ranging from decreased expression of one or both subunits of sGC to heme oxidation. We showed that sGC activity is impaired by thiol S-nitrosation. Recently, angiotensin II (ANG II) chronic treatment, which induces hypertension, was shown to generate nitrosative stress in addition to oxidative stress. We hypothesized that S-nitrosation of sGC occurs in ANG II-induced hypertension, thereby leading to desensitization of sGC to NO hence vascular dysfunction. As expected, ANG II infusion increases blood pressure, aorta remodeling, and protein S-nitrosation. Intravital microscopy indicated that cremaster arterioles are resistant to NO-induced vasodilation in vivo in anesthetized ANG II-treated rats. Concomitantly, NO-induced cGMP production decreases, which correlated with S-nitrosation of sGC in hypertensive rats. This study suggests that S-nitrosation of sGC by ANG II contributes to vascular dysfunction. This was confirmed in vitro by using A7r5 smooth muscle cells infected with adenoviruses expressing sGC or cysteine mutants: ANG II decreases NO-stimulated activity in the wild-type but not in one mutant, C516A. This result indicates that cysteine 516 of sGC mediates ANG II-induced desensitization to NO in cells.  相似文献   

8.
Both NADPH oxidase-derived reactive oxygen species (ROS) and asymmetric dimethylarginine (ADMA) are increased in hypertension. Apocynin, an NADPH oxidase inhibitor, could inhibit ROS, thus we tested whether apocynin can block NADPH oxidase and prevent increases of ADMA and blood pressure (BP) in spontaneously hypertensive rats (SHRs). SHRs and Wistar Kyoto (WKY) rats, aged 4 weeks, were assigned to four groups: untreated SHRs and WKY rats, SHRs and WKY rats that received 2.5 mM apocynin for 8 weeks. BP was significantly higher in SHRs compared to WKY rats, which was attenuated by apocynin. Apocynin prevented p47phox translocation in SHR kidneys, but not the increase of superoxide and H(2)O(2). Additionally, apocynin did not protect SHRs against increased ADMA. Apocynin blocks NADPH oxidase to attenuate hypertension, but has little effect on the ADMA/nitric oxide (NO) pathway in young SHRs. The reduction of ROS and the preservation of NO simultaneously might be a better approach to restoring ROS-NO balance to prevent hypertension.  相似文献   

9.
The endothelial nitric oxide synthase (eNOS) requires tetrahydrobiopterin (H(4)B) as a cofactor and, in its absence, produces superoxide (O(2)(·-)) rather than nitric oxide (NO(·)), a condition referred to as eNOS uncoupling. DOCA-salt-induced hypertension is associated with H(4)B oxidation and uncoupling of eNOS. The present study investigated whether administration of sepiapterin or H(4)B recouples eNOS in DOCA-salt hypertension. Bioavailable NO(·) detected by electron spin resonance was markedly reduced in aortas of DOCA-salt hypertensive mice. Preincubation with sepiapterin (10 μmol/l for 30 min) failed to improve NO(·) bioavailability in hypertensive aortas while it augmented NO(·) production from control vessels, implicating a hypertension-associated deficiency in sepiapterin reductase (SPR), the rate-limiting enzyme for sepiapterin conversion to H(4)B. Indeed, a decreased SPR expression was observed in aortic endothelial cells, but not in endothelium-denuded aortic remains, implicating an endothelium-specific SPR deficiency. Administration of hypertensive aortas with H(4)B (10 μmol/l, 30 min) partially restored vascular NO(·) production. Combined administration of H(4)B and the NADPH oxidase inhibitor apocynin (100 μmol/l, 30 min) fully restored NO(·) bioavailability while reducing O(2)(·-) production. In angiotensin II-induced hypertension, however, aortic endothelial SPR expression was not affected. In summary, administration of sepiapterin is not effective in recoupling eNOS in DOCA-salt hypertension, due to an endothelium-specific loss in SPR, whereas coadministration of H(4)B and apocynin is highly efficient in recoupling eNOS. This is consistent with our previous observations that in angiotensin II hypertension, endothelial deficiency in dihydrofolate reductase is alternatively responsible for uncoupling of eNOS. Taken together, these data indicate that strategies specifically targeting at different H(4)B metabolic enzymes might be necessary in restoring eNOS function in different types of hypertension.  相似文献   

10.
We have previously reported that ANG II stimulation increased superoxide anion (O2-) through the activation of NAD(P)H oxidase and inhibited nitric oxide (NO)-dependent control of myocardial oxygen consumption (MVo2) by scavenging NO. Our objective was to investigate the role of NAD(P)H oxidase, especially the gp91phox subunit, in the NO-dependent control of MVo2. MVo2 in mice with defects in the expression of gp91phox [gp91(phox)(-/-)] was measured with a Clark-type oxygen electrode. Baseline MVo2 was not significantly different between wild-type (WT) and gp91(phox)(-/-) mice. Stimulation of NO production by bradykinin (BK) induced significant decreases in MVo2 in WT mice. BK-induced reduction in MVo2 was enhanced in gp91(phox)(-/-) mice. BK-induced reduction in MVo2 in WT mice was attenuated by 10(-8) mol/l ANG II, which was restored by coincubation with Tiron or apocynin. In contrast to WT mice, BK-induced reduction in MVo2 in gp91(phox)(-/-) mice was not altered by ANG II. There was a decrease in lucigenin (5 x 10(-6) mol/l)-detectable O2- in gp91(phox)(-/-) mice compared with WT mice. ANG II resulted in significant increases in O2- production in WT mice, which was inhibited by coincubation with Tiron or apocynin. However, ANG II had no effect on O2- production in gp91(phox)(-/-) mice. Histological examination showed that the development of abscesses and/or the invasion of inflammatory cells occurred in lungs and livers but not in hearts and kidneys from gp91(phox)(-/-) mice. These results indicate that the gp91(phox) subunit of NAD(P)H oxidase mediates O2- production through the activation of NAD(P)H oxidase and attenuation of NO-dependent control of MVo2 by ANG II.  相似文献   

11.
Nitric oxide (NO) is a potent regulator in the cardiovascular system; it is generated by the nitric oxide synthase (NOS) family of proteins. NO produced in endothelial cells plays a crucial role in vascular functions. The aim of this study was to clarify the effect of diabetes on aortic NO synthesis in a model of genetic hypertension and determine whether captopril modulates this effect. Diabetes was induced in ten weeks old spontaneously hypertensive rats (SHR) by streptozotocin injection. The rats were allocated into 3 groups: control group 1, non-diabetic SHR; group 2, diabetic SHR; group 3, diabetic SHR group receiving captopril at 80 mg/kg in drinking water for 4 weeks. Mean blood pressure (MBP) was measured once a week by tail-cuff method. Aortic NO metabolities (nitrite/nitrate) and endothelial NOS (NOS-3) were assayed by Griess reaction and by immunoblotting and immunohistochemistry, respectively. There was a significant decrease in nitrite/nitrate (NOx) in aortas of diabetic SHR compared with controls. The decrease of aortic NOx in diabetic SHR was accompanied by a decrease in NOS-3 expression. Captopril treatment reduced MBP without affecting either NOx level or NOS-3 expression in aortas of diabetic SHR. We conclude that STZ-induced diabetes decreased NO in aortas of SHR that may reflect endothelial cell dysfunction; captopril administration decreased MBP without affecting NO level in aortas of diabetic SHR which suggest that the blood pressure-lowering effects of captopril were independent of NO.  相似文献   

12.
Aorta coarctation results in hypertension (HTN) in the arterial tree proximal to stenosis and, as such, provides an ideal model to discern the effects of different levels of blood pressure on the vascular tissue in the same animal. Compelling evidence has emerged supporting the role of oxidative stress as a cause of HTN. However, whether or not HTN (independent of the circulating humoral factors) can cause oxidative stress is less certain. NAD(P)H oxidase isoforms are the main source of reactive oxygen species (ROS) in the vascular tissues. We therefore compared the expressions of NOX-I, gp91phox and the regulatory subunits of the enzyme in the aorta segments residing above and below coarctation in rats with abdominal aorta banding. Rats were studied 4 weeks after aorta banding above the renal arteries or sham operation. Subunits of NAD(P)H oxidase and its NOX-I isoform as well as endothelial NO synthase (eNOS) and nitrotyrosine (footprint of NO oxidation by superoxide) were measured in the aorta segments above and below coarctation. The gp91phox, p47phox, and p67phox subunits of NAD(P)H oxidase, NOX-I isoform, eNOS and nitrotyrosine were markedly increased in the aorta segment above coarctation (hypertensive zone), but were virtually unchanged in the segment below coarctation. Since, excepting blood pressure, all other conditions were constant, the upregulation of NAD(P)H oxidase isoforms and the increased NO oxidation in the aorta segment above, but not below, coarctation prove that HTN, per se, independent of circulating mediators can cause oxidative/nitrosative stress in the arterial wall. These observations suggest that HTN control may represent a specific form of antioxidant therapy for hypertensive disorders.  相似文献   

13.
Nitric oxide (NO) is a widespread biological messenger that has many physiological and pathophysiological roles. Most of the physiological actions of NO are mediated through the activation of sGC (soluble guanylate cyclase) and the subsequent production of cGMP. NO also binds to the binuclear centre of COX (cytochrome c oxidase) and inhibits mitochondrial respiration in competition with oxygen and in a reversible manner. Although sGC is more sensitive to endogenous NO than COX at atmospheric oxygen tension, the more relevant question is which enzyme is more sensitive at physiological oxygen concentration. Using a system in which NO is generated inside the cells in a finely controlled manner, we determined cGMP accumulation by immunoassay and mitochondrial oxygen consumption by high-resolution respirometry at 30 microM oxygen. In the present paper, we report that the NO EC50 of sGC was approx. 2.9 nM, whereas that required to achieve IC50 of respiration was 141 nM (the basal oxygen consumption in the absence of NO was 14+/-0.8 pmol of O2/s per 10(6) cells). In accordance with this, the NO-cGMP signalling transduction pathway was activated at lower NO concentrations than the AMPKs (AMP-activated protein kinase) pathway. We conclude that sGC is approx. 50-fold more sensitive than cellular respiration to endogenous NO under our experimental conditions. The implications of these results for cell physiology are discussed.  相似文献   

14.
Metabolic syndrome is a cluster of metabolic abnormalities, including hypertension, hyperlipidemia, hyperinsulinemia, glucose intolerance and obesity. In such lifestyle-related diseases, impairment of nitric oxide (NO) production or bioactivity has been reported to lead to the development of atherogenic vascular diseases. Therefore, in the present study we investigated changes in the NO/cyclic guanosine monophosphate (cGMP) system in aortas of SHR/NDmcr-cp (cp/cp) rats (SHR-cp), a model of the metabolic syndrome. In aortas of SHR-cp, endothelium-dependent relaxations induced by acetylcholine and endothelium-independent relaxations induced by sodium nitroprusside were significantly impaired in comparison with Wistar-Kyoto rats. Furthermore, protein levels of soluble guanylyl cyclase and cGMP levels induced by sodium nitroprusside were significantly decreased. In contrast, protein levels of endothelium NO synthase and cGMP levels induced by acetylcholine were significantly increased, and plasma NO2 plus NO3 levels were also increased. The levels of lipid peroxide in plasma and the contents of 3-nitrotyrosine, a biomarker of peroxynitrite, in aortas were markedly increased. These findings indicate that in the aortas of SHR-cp, NO production from the endothelium is augmented, although the NO-induced relaxation response is impaired. Enhanced NO production may be a compensatory response to a variety of factors, including increases in oxidative stress.  相似文献   

15.
Hypertension is considered as a low-grade inflammatory disease, with adaptive immunity being an important mediator of this pathology. TLR4 may have a role in the development of several cardiovascular diseases; however, little is known about its participation in hypertension. We aimed to investigate whether TLR4 activation due to increased activity of the renin-angiotensin system (RAS) contributes to hypertension and its associated endothelial dysfunction. For this, we used aortic segments from Wistar rats treated with a non-specific IgG (1 µg/day) and SHRs treated with losartan (15 mg/kg·day), the non-specific IgG or the neutralizing antibody anti-TLR4 (1 µg/day), as well as cultured vascular smooth muscle cells (VSMC) from Wistar and SHRs. TLR4 mRNA levels were greater in the VSMC and aortas from SHRs compared with Wistar rats; losartan treatment reduced those levels in the SHRs. Treatment of the SHRs with the anti-TLR4 antibody: 1) reduced the increased blood pressure, heart rate and phenylephrine-induced contraction while it improved the impaired acetylcholine-induced relaxation; 2) increased the potentiation of phenylephrine contraction after endothelium removal; and 3) abolished the inhibitory effects of tiron, apocynin and catalase on the phenylephrine-induced response as well as its enhancing effect of acetylcholine-induced relaxation. In SHR VSMCs, angiotensin II increased TLR4 mRNA levels, and losartan reduced that increase. CLI-095, a TLR4 inhibitor, mitigated the increases in NAD(P)H oxidase activity, superoxide anion production, migration and proliferation that were induced by angiotensin II. In conclusion, TLR4 pathway activation due to increased RAS activity is involved in hypertension, and by inducing oxidative stress, this pathway contributes to the endothelial dysfunction associated with this pathology. These results suggest that TLR4 and innate immunity may play a role in hypertension and its associated end-organ damage.  相似文献   

16.
It has been reported that nonmitochondrial NAD(P)H oxidases make an important contribution to intracellular O2-* in vascular tissues and, thereby, the regulation of vascular function. Topological analyses have suggested that a well-known membrane-associated NAD(P)H oxidase may not release O2-* into the cytosol. It is imperative to clarify the source of intracellular O2-* associated with this enzyme and its physiological significance in vascular cells. The present study hypothesized that an NAD(P)H oxidase on the sarcoplasmic reticulum (SR) in coronary artery smooth muscle (CASM) regulates SR ryanodine receptor (RyR) activity by producing O2-* locally. Western blot analysis was used to detect NAD(P)H oxidase subunits in purified SR from CASM. Fluorescent spectrometric analysis demonstrated that incubation of SR with NADH time dependently produced O2-*, which could be substantially blocked by the specific NAD(P)H oxidase inhibitors diphenylene iodonium and apocynin and by SOD or its mimetic tiron. This SR NAD(P)H oxidase activity was also confirmed by HPLC analysis of conversion of NADH to NAD+. In experiments of lipid bilayer channel reconstitution, addition of NADH to the cis solution significantly increased the activity of RyR/Ca2+ release channels from these SR preparations from CASM, with a maximal increase in channel open probability from 0.0044 +/- 0.0005 to 0.0213 +/- 0.0018; this effect of NADH was markedly blocked in the presence of SOD or tiron or the NAD(P)H oxidase inhibitors diphenylene iodonium, N-vanillylnonanamide, and apocynin. These results suggest that a local NAD(P)H oxidase system on SR from CASM regulates RyR/Ca2+ channel activity and Ca2+ release from SR by producing O2-*.  相似文献   

17.
The objectives of this study were to determine the effects of chronic treatment with pioglitazone, a peroxisome proliferator-activated receptor gamma agonist, on the impaired endothelium-dependent relaxation seen in aortas from established streptozotocin (STZ)-induced diabetic rats, and to identify some of the molecular mechanisms involved. Starting at 8 weeks of diabetes, pioglitazone (10 mg/kg) was administered to STZ-induced diabetic rats for 4 weeks. In untreated STZ rats (vs age-matched control rats): (1) ACh-induced relaxation, cGMP accumulation, phosphorylation of the cGMP-dependent protein kinase substrate vasodilator-stimulated phosphoprotein at Ser-239 [an established biochemical end-point of nitric oxide (NO)/cGMP signaling], and Cu/Zn-superoxide dismutase (SOD) expression and SOD activity were all reduced; (2) aortic superoxide generation, nitrotyrosine expression, and NAD(P)H oxidase activity were increased; (3) plasma endothelin-1 (ET-1) and aortic c-Jun (AP-1 component) protein expressions were increased. Pioglitazone treatment markedly corrected the above abnormalities. Collectively, these results suggest that pioglitazone treatment improves endothelium-dependent relaxation by reducing oxidative stress via increased SOD activity, decreased NAD(P)H oxidase activity, and a decreased ET-1 level, and that this decreased ET-1 level may be attributable to an inhibition of the AP-1 signaling pathway.  相似文献   

18.
Although inhaled NO (iNO) therapy is often effective in treating infants with persistent pulmonary hypertension of the newborn (PPHN), up to 40% of patients fail to respond, which may be partly due to abnormal expression and function of soluble guanylate cyclase (sGC). To determine whether altered sGC expression or activity due to oxidized sGC contributes to high pulmonary vascular resistance (PVR) and poor NO responsiveness, we studied the effects of cinaciguat (BAY 58-2667), an sGC activator, on pulmonary artery smooth muscle cells (PASMC) from normal fetal sheep and sheep exposed to chronic intrauterine pulmonary hypertension (i.e., PPHN). We found increased sGC α(1)- and β(1)-subunit protein expression but lower basal cGMP levels in PPHN PASMC compared with normal PASMC. To determine the effects of cinaciguat and NO after sGC oxidation in vitro, we measured cGMP production by normal and PPHN PASMC treated with cinaciguat and the NO donor, sodium nitroprusside (SNP), before and after exposure to 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, an sGC oxidizer), hyperoxia (fraction of inspired oxygen 0.50), or hydrogen peroxide (H(2)O(2)). After treatment with ODQ, SNP-induced cGMP generation was markedly reduced but the effects of cinaciguat were increased by 14- and 64-fold in PPHN fetal PASMC, respectively (P < 0.01 vs. controls). Hyperoxia or H(2)O(2) enhanced cGMP production by cinaciguat but not SNP in PASMC. To determine the hemodynamic effects of cinaciguat in vivo, we compared serial responses to cinaciguat and ACh in fetal lambs after ductus arteriosus ligation. In contrast with the impaired vasodilator response to ACh, cinaciguat-induced pulmonary vasodilation was significantly increased. After birth, cinaciguat caused a significantly greater fall in PVR than either 100% oxygen, iNO, or ACh. We conclude that cinaciguat causes more potent pulmonary vasodilation than iNO in experimental PPHN. We speculate that increased NO-insensitive sGC may contribute to the pathogenesis of PPHN, and cinaciguat may provide a novel treatment of severe pulmonary hypertension.  相似文献   

19.
Recently, it has been shown that the exogenous addition of hydrogen peroxide (H(2)O(2)) increases endothelial nitric oxide (NO(.)) production. The current study is designed to determine whether endogenous levels of H(2)O(2) are ever sufficient to stimulate NO(.) production in intact endothelial cells. NO(.) production was detected by a NO(.)-specific microelectrode or by an electron spin resonance spectroscopy using Fe(2+)-(DETC)(2) as a NO(.)-specific spin trap. The addition of H(2)O(2) to bovine aortic endothelial cells caused a potent and dose-dependent increase in NO(.) release. Incubation with angiotensin II (10(-7) mol) elevated intracellular H(2)O(2) levels, which were attenuated with PEG-catalase. Angiotensin II increased NO(.) production by 2-fold, and this was prevented by Losartan and by PEG-catalase, suggesting a critical role of AT1 receptor and H(2)O(2) in this response(.) In contrast, NO(.) production evoked by either bradykinin or calcium ionophore was unaffected by PEG-catalase. As in bovine aortic endothelial cells, angiotensin II doubled NO(.) production in aortic endothelial cells from C57BL/6 mice but had no effect on NO(.) production in endothelial cells from p47(phox-/-) mice. In contrast, stimulated NO(.) production to a similar extent in endothelial cells from wild-type and p47(phox-/-) mice. In summary, the present study provides direct evidence that endogenous H(2)O(2), derived from the NAD(P)H oxidase, mediates endothelial NO(.) production in response to angiotensin II. Under disease conditions associated with elevated levels of angiotensin II, this response may represent a compensatory mechanism. Because angiotensin II also stimulates O(2)() production from the NAD(P)H oxidase, the H(2)O(2) stimulation of NO(.) may facilitate peroxynitrite formation in response to this octapeptide.  相似文献   

20.
BackgroundRice bran enzymatic extract (RBEE) used in this study has shown beneficial activities against dyslipidemia, hyperinsulinemia and hypertension. Our aim was to investigate the effects of a diet supplemented with RBEE in vascular impairment developed in obese Zucker rats and to evaluate the main mechanisms mediating this action.Methods and resultsObese Zucker rats were fed a 1% and 5% RBEE-supplemented diet (O1% and O5%). Obese and their lean littermates fed a standard diet were used as controls (OC and LC, respectively). Vascular function was evaluated in aortic rings in organ baths. The role of nitric oxide (NO) was investigated by using NO synthase (NOS) inhibitors. Aortic expression of endothelial NOS (eNOS), inducible NOS (iNOS), tumor necrosis factor (TNF)-α and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits and superoxide production in arterial wall were determined. Endothelial dysfunction and vascular hyperreactivity to phenylephrine in obese rats were ameliorated by RBEE treatment, particularly with 1% RBEE. Up-regulation of eNOS protein expression in RBEE-treated aortas should contribute to this activity. RBEE attenuated vascular inflammation by reducing aortic iNOS and TNF-α expression. Aortas from RBEE-treated groups showed a significant decrease of superoxide production and down-regulation of NADPH oxidase subunits.ConclusionRBEE treatment restored endothelial function and vascular contractility in obese Zucker rats through a reduction of vascular inflammation and oxidative stress. These results show the nutraceutical potential of RBEE to prevent obesity-related vascular complications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号