首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Raman spectra of oxy- and deoxyhemoglobin obtained with 218 and 200 nm pulsed (7 ns) laser excitation show changes (loss of 880 cm-1 tryptophan band intensity, increase in the 830/850 cm-1 tyrosine doublet intensity ratio) which are attributed to the aromatic contacts (Trp beta 37-Tyr alpha 140 and Tyr alpha 42-Asp beta 99) that are specific to the T quaternary structure. At high concentration (2 mM in heme) HbCO shows the same spectral signatures as HbO2. As the HbCO concentration is decreased, however, the spectra approach those shown by deoxy-Hb. This dilution effect is attributable to photolysis, which increases with decreasing concentration. The results imply that the HbCO photoproduct shows the same aromatic environments as does deoxy-Hb. Thus, T-like contacts are apparently formed at the alpha 1 beta 2 interface within 7 ns of photolysis, a time short compared to the spectral alterations of the heme group (approximately 100 ns, approximately 1 microsecond, and approximately 20 microseconds) which have previously been attributed to tertiary and quaternary relaxations.  相似文献   

2.
Heme-heme interaction in Hb M Boston (His alpha 58-->Tyr) was investigated with visible and UV resonance Raman (RR), EPR, and CD spectroscopies. Although Hb M Boston has been believed to be frozen in the T quaternary state, oxygen binding exhibited appreciable co-operativity (n=1.4) and the near-UV CD spectrum indicated weakening of the T marker at pH 9.0. Binding of CO to the normal beta-subunit gave no change in the EPR and visible Raman spectra of the abnormal alpha-subunit at pH 7.5, but it caused an increase of EPR rhombicity and significant changes in the Raman coordination markers as well as the Fe(III)-tyrosine related bands of the alpha-subunit at pH 9.0. The UVRR spectra indicated appreciable changes of Trp but not of Tyr upon CO binding to the alpha-subunit at pH 9.0. Therefore, we conclude that the ligand binding to the beta heme induces quaternary structure change at pH 9.0 and is communicated to the alpha heme, presumably through His beta 92-->Trp beta 37-->His alpha 87.  相似文献   

3.
In this work, we use a sol-gel protocol to trap and compare the R and T quaternary states of both the deoxygenated (deoxyHb) and carbonmonoxide (HbCO) derivatives of human hemoglobin. The near infrared optical absorption band III and the infrared CO stretching band are used to detect the effect of quaternary structure on the spectral properties of deoxyHb and HbCO; comparison with myoglobin allows for an assessment of tertiary and quaternary contributions to the measured band shifts. The R<-->T transition is shown to cause a blue shift of the band III by approximately 35 cm(-1) for deoxyHb and a red shift of the CO stretching band by only approximately 0.3 cm(-1) for HbCO. This clearly shows that quaternary structure changes are transmitted to the heme pocket and that effects on deoxyHb are much larger than on HbCO, at least as far as the band energies are concerned. Experiments performed in the ample temperature interval of 300-10K show that the above quaternary structure effects are "static" and do not influence the dynamic properties of the heme pocket, at least as probed by the temperature dependence of band III and of the CO stretching band. The availability of quaternary structure sensitive spectroscopic markers and the quantitative measurement of the quaternary structure contribution to band shifts will be of considerable help in the analysis of flash-photolysis experiments on hemoglobin. Moreover, it will enable one to characterize the dynamic properties of functionally relevant hemoglobin intermediates and to study the kinetics of both the T-->R and R-->T quaternary transitions through time-resolved spectroscopy.  相似文献   

4.
The influence of solvation on the rate of quaternary structural change is investigated in human hemoglobin, an allosteric protein in which reduced water activity destabilizes the R state relative to T. Nanosecond absorption spectroscopy of the heme Soret band was used to monitor protein relaxation after photodissociation of aqueous HbCO complex under osmotic stress induced by the nonbinding cosolute poly(ethylene glycol) (PEG). Photolysis data were analyzed globally for six exponential time constants and amplitudes as a function of osmotic stress and viscosity. Increases in time constants associated with geminate rebinding, tertiary relaxation, and quaternary relaxation were observed in the presence of PEG, along with a decrease in the fraction of hemes rebinding CO with the slow rate constant characteristic of the T state. An analysis of these results along with those obtained by others for small cosolutes showed that both osmotic stress and solvent viscosity are important determinants of the microscopic R --> T rate constant. The size and direction of the osmotic stress effect suggests that at least nine additional water molecules are required to solvate the allosteric transition state relative to the R-state hydration, implying that the transition state has a greater solvent-exposed area than either end state.  相似文献   

5.
Ligand binding to heme proteins: connection between dynamics and function   总被引:18,自引:0,他引:18  
Ligand binding to heme proteins is studied by using flash photolysis over wide ranges in time (100 ns-1 ks) and temperature (10-320 K). Below about 200 K in 75% glycerol/water solvent, ligand rebinding occurs from the heme pocket and is nonexponential in time. The kinetics is explained by a distribution, g(H), of the enthalpic barrier of height H between the pocket and the bound state. Above 170 K rebinding slows markedly. Previously we interpreted the slowing as a "matrix process" resulting from the ligand entering the protein matrix before rebinding. Experiments on band III, an inhomogeneously broadened charge-transfer band near 760 nm (approximately 13,000 cm-1) in the photolyzed state (Mb*) of (carbonmonoxy)myoglobin (MbCO), force us to reinterpret the data. Kinetic hole-burning measurements on band III in Mb* establish a relation between the position of a homogeneous component of band III and the barrier H. Since band III is red-shifted by 116 cm-1 in Mb* compared with Mb, the relation implies that the barrier in relaxed Mb is 12 kJ/mol higher than in Mb*. The slowing of the rebinding kinetics above 170 K hence is caused by the relaxation Mb*----Mb, as suggested by Agmon and Hopfield [(1983) J. Chem. Phys. 79, 2042-2053]. This conclusion is supported by a fit to the rebinding data between 160 and 290 K which indicates that the entire distribution g(H) shifts. Above about 200 K, equilibrium fluctuations among conformational substates open pathways for the ligands through the protein matrix and also narrow the rate distribution. The protein relaxations and fluctuations are nonexponential in time and non-Arrhenius in temperature, suggesting a collective nature for these protein motions. The relaxation Mb*----Mb is essentially independent of the solvent viscosity, implying that this motion involves internal parts of the protein. The protein fluctuations responsible for the opening of the pathways, however, depend strongly on the solvent viscosity, suggesting that a large part of the protein participates. While the detailed studies concern MbCO, similar data have been obtained for MbO2 and CO binding to the beta chains of human hemoglobin and hemoglobin Zürich. The results show that protein dynamics is essential for protein function and that the association coefficient for binding from the solvent at physiological temperatures in all these heme proteins is governed by the barrier at the heme.  相似文献   

6.
The near-UV magnetic circular dichroism spectroscopy of the aromatic amino acid bands of hemoglobin was investigated as a potential probe of structural changes at the alpha(1)beta(2) interface during the allosteric transition. Allosteric effectors were used to direct carp and chemically modified human hemoglobins into the R (relaxed) or T (tense) state in order to determine the heme-ligation-independent spectral characteristics of the quaternary states. The tryptophan magnetic circular dichroism (MCD) peak observed at 293 nm in the R state of N-ethylsuccinimide- (NES-) des-Arg-modified human hemoglobin (Hb) was shifted to a slightly longer wavelength in the T state, consistent with the shift expected for tryptophan acting as a proton donor in a T-state hydrogen bond. Moreover, the increase observed in the T-state MCD intensity of this band relative to the R-state intensity was consistent with the effect expected for proton donation by tryptophan on the basis of the Michl perimeter model of aromatic MCD. The peak-to-trough magnitude of the R - T MCD difference spectrum is equal to 30% of the total R-state peak intensity contributed by all six tryptophans present in the human tetramer; the relative magnitude specific to the two beta37 tryptophans undergoing conformational change is estimated accordingly to be 3 times larger. The Trp-beta37 spectral shift, about 200 cm(-)(1), is in good agreement with the shifts observed in other H-bonded proton donors and provides corroborating spectral evidence for the formation in solution of a T-state Trp beta37-Asp alpha94 hydrogen bond observed in X-ray diffraction studies of deoxyHb crystals.  相似文献   

7.
After photodissociation, ligand rebinding to myoglobin exhibits complex kinetic patterns associated with multiple first-order geminate recombination processes occurring within the protein and a simpler bimolecular phase representing second-order ligand rebinding from the solvent. A smooth transition from cryogenic-like to solution phase properties can be obtained by using a combination of sol-gel encapsulation, addition of glycerol as a bathing medium, and temperature tuning (-15 --> 65 degrees C). This approach was applied to a series of double mutants, myoglobin CO (H64L/V68X, where X = Ala, Val, Leu, Asn, and Phe), which were designed to examine the contributions of the position 68(E11) side chain to the appearance and disappearance of internal rebinding phases in the absence of steric and polar interactions with the distal histidine. Based on the effects of viscosity, temperature, and the stereochemistry of the E11 side chain, the three major phases, B --> A, C --> A, and D --> A, can be assigned, respectively, to ligand rebinding from the following: (i) the distal heme pocket, (ii) the xenon cavities prior to large amplitude side chain conformational relaxation, and (iii) the xenon cavities after significant conformational relaxation of the position 68(E11) side chain. The relative amplitudes of the B --> A and C --> A phases depend markedly on the size and shape of the E11 side chain, which regulates sterically both ligand return to the heme iron atom and ligand migration to the xenon cavities. The internal xenon cavities provide a transient docking site that allows side chain relaxations and the entry of water into the vacated distal pocket, which in turn slows ligand recombination markedly.  相似文献   

8.
I Morishima  M Hara  K Ishimori 《Biochemistry》1986,25(22):7243-7250
To gain further insight into the quaternary structures of methemoglobin derivatives in the low-spin state, the interaction of fully liganded valency hybrid human hemoglobins with IHP was studied by proton NMR spectroscopy. Upon addition of IHP to (alpha CO beta + N3-)2, the same resonances as the previously reported IHP-induced NMR peaks for azidomethemoglobin (alpha + N3-beta +N3-)2 appeared, whereas the binding of IHP did not significantly affect the NMR spectra for (alpha + N3-beta CO)2. The binding of IHP also brought about more pronounced spectral changes for (alpha CO beta + Im)2 and (alpha CO beta + H2O)2 than for (alpha + Im beta CO)2 and (alpha + H2O beta CO)2. Therefore, the IHP-induced NMR peaks for azidomethemoglobin are attributed to the beta heme methyl group. Such IHP-induced beta heme methyl resonances were also observed for (alpha NO beta + N3-)2, which undergoes quaternary structural change, analogously to the R-T transition by the binding of IHP. From the above results, it was suggested that the IHP-induced heme methyl resonances for azidomethemoglobin and (alpha CO beta +N3-)2 may also be associated with the quaternary structure of these Hbs, implying the presence of the IHP-induced "T-like" state in low-spin metHb A.  相似文献   

9.
Opossum methemoglobin differs from methemoglobin A in spectral, spin state, conformational and chemical properties. The primary structural alterations in opossum hemoglobin, including the critical substitution at alpha 58 (E7) His leads to Gln result in the following properties. (a) Major contribution of the spectral transitions due to inositol hexakisphosphate binding arises from the alpha chains. (b) The aquomet to hydroxymet (high-spin to low-spin) transition as a function of pH is slightly retarded resulting in considerable high spin at alkaline pH. (c) The tertiary conformation (t) around the beta hemes, upon transition to a T quaternary state, differs from the known hemoglobin t tertiary structure. (d) Both alpha and beta hemes are susceptible to rapid reduction by ascorbic acid (the reduction rate being tenfold faster than that of methemoglobin A). These properties suggest that the heme environments in both the alpha and beta subunits of opossum hemoglobin are different from those of human hemoglobin A.  相似文献   

10.
The spectral changes of nitrosyl hemoglobin on addition of inositol hexaphosphate were studied in hybrid-heme hemoglobins. The results showed that the decrease in absorption in the Soret region was mainly due to a spectral change in alpha chains, and that the tension on heme in the quaternary T structure was much stronger in alpha than in beta chains.  相似文献   

11.
Band III is a near-infrared electronic transition at ~13,000 cm(-1) in heme proteins that has been studied extensively as a marker of protein conformational relaxation after photodissociation of the heme-bound ligand. To examine the influence of the heme pocket structure and ligand dynamics on band III, we have studied carbon monoxide recombination in a variety of myoglobin mutants after photolysis at 3 K using Fourier transform infrared temperature-derivative spectroscopy with monitoring in three spectral ranges, (1) band III, the mid-infrared region of (2) the heme-bound CO, and (3) the photodissociated CO. Here we present data on mutant myoglobins V68F and L29W, which both exhibit pronounced ligand movements at low temperature. From spectral and kinetic analyses in the mid-infrared, a small number of photoproduct populations can be distinguished, differing in their distal heme pocket conformations and/or CO locations. We have decomposed band III into its individual photoproduct contributions. Each photoproduct state exhibits a different "kinetic hole-burning" (KHB) effect, a coupling of the activation enthalpy for rebinding to the position of band III. The analysis reveals that the heme pocket structure and the photodissociated CO markedly affect the band III transition. A strong kinetic hole-burning effect results only when the CO ligand resides in the docking site on top of the heme group. Migration of CO away from the heme group leads to an overall blue shift of band III. Consequently, band III can be used as a sensitive tool to study ligand dynamics after photodissociation in heme proteins.  相似文献   

12.
The impact upon molecular structure of an additional point mutation adjacent to the existing E6V mutation in sickle cell hemoglobin was probed spectroscopically. The UV resonance Raman results show that the conformational consequences of mutating the salt bridge pair, betaGlu(7)-betaLys(132), are dependent on which residue of the pair is modified. The betaK132A mutants exhibit the spectroscopic signatures of the R --> T state transition in both the "hinge" and "switch" regions of the alpha(1)beta(2) interface. Both singly and doubly mutated hemoglobin (Hb) betaepsilon7Alpha exhibit the switch region signature for the R --> T quaternary state transition but not the hinge signature. The absence of this hinge region-associated quaternary change is the likely origin of the observed increased oxygen binding affinity for the Hb betaepsilon7Alpha mutants. The observed large decrease in the W3 alpha14beta15 band intensity for doubly mutated Hb betaepsilon7Alpha is attributed to an enhanced separation in the A helix-E helix tertiary contact of the beta subunits. The results for the Hb A betaGlu(7)-betaLys(132) salt bridge mutants demonstrate that attaining the T state conformation at the hinge region of the alpha(1)beta(2) dimer interface can be achieved through different intraglobin pathways; these pathways are subject to subtle mutagenic manipulation at sites well removed from the dimer interface.  相似文献   

13.
The abnormal human hemoglobin Malm? (beta97FG4 His leads to Gln) has been studied and its properties are compared with those of normal adult hemoglobin A. The data presented here show that the ring-current shifted proton resonances of both HbCO and HbO2 Malm? are very different from the corresponding forms of Hb A. The hyperfine shifted proton resonances of deoxy-Hb Malm? do not differ drastically from those of deoxy-Hb A. This result, together with the finding that the exchangeable proton resonances of the deoxy form of the two hemoglobins are similar, suggests that unliganded Hb Malm? can assume a deoxy-like quaternary structure both in the absence and presence of organic phosphates We have also compared the properties of Hb Malm? with those of Hb Chesapeake (alpha92FG4 Arg leads to Leu). This allows us to study the properties of two abnormal human hemoglobins with mutations at homologous positions of the alpha and beta chains in the three-dimenstional structure of the hemoglobin molecule. Our present results suggest that the mutaion at betaFG4 has its greatest effect on the teritiary structure of the heme pocket of the liganded forms of the hemoglobin while the mutation at alphaFG4 alters the deoxy structure of the hemoglogin molecule but does not alter the teriary structure of the heme pockets of the liganded form of the hemoglobin molecule. Both hemoglobins undergo a transition from the deoxy (T) to the oxy (R) quaternary structure upon ligation. The abnormally high oxygen affinities and low cooperativities of these two hemoglobins must therefore be due to either the structural differences which we have observed and/or to an altered transition between the T and R structures.  相似文献   

14.
Kinetic traces were generated for the nanosecond and slower rebinding of photodissociated CO to trHbN in solution and in porous sol-gel matrices as a function of viscosity, conformation, and mutation. TrHbN is one of the two truncated hemoglobins from Mycobacterium tuberculosis. The kinetic traces were analyzed in terms of three distinct phases. These three phases are ascribed to rebinding: (i) from the distal heme pocket, (ii) from the adjacent apolar tunnel prior to conformational relaxation, and (iii) from the apolar tunnel subsequent to conformational relaxation. The fractional content of each of these phases was shown to be a function of the viscosity and, in the case of the sol-gel-encapsulated samples, sample preparation history. The observed kinetic patterns support a model consisting of the following elements: (i) the viscosity and conformation-sensitive dynamics of the Tyr(B10) side chain facilitate diffusion of the dissociated ligand from the distal heme pocket into the adjacent tunnel; (ii) the distal heme pocket architecture determines ligand access from the tunnel back to the heme iron; (iii) the distal heme pocket architecture is governed by a ligand-dependent hydrogen bonding network that limits the range of accessible side chain positions; and (iv) the apolar tunnel linking the heme site to the solvent biases the competition between water and ligand for occupancy of the vacated polar distal heme pocket greatly toward the nonpolar ligand. Implications of these finding with respect to biological function are discussed.  相似文献   

15.
Hemoglobin Ypsilanti (HbY) is a stable tetrameric hemoglobin that binds oxygen with little or no cooperativity and with high affinity [Doyle, M. L., et al. (1992) Proteins: Struct., Funct., Genet. 14, 351-362]. It displays an especially large quaternary enhancement effect. An X-ray crystallographic study [Smith, F. R., et al. (1991) Proteins: Struct., Funct., Genet. 10, 81-91] of the carboxy derivative of this hemoglobin (COHbY) revealed a new quaternary structure that partially resembles the recently described R2 structure [Silva, M. M., et al. (1992) J. Biol. Chem. 267, 17248-17256]. Very little is known about either the solution phase conformations of the liganded and deoxy forms of HbY or the molecular basis for the large quaternary enhancement effect (Doyle et al., 1992). In this study, near-IR absorption, Soret-enhanced Raman, and UV (229 nm) resonance Raman spectroscopies are used to probe the liganded and deoxy derivatives of HbY in solution. Nanosecond time-resolved near-IR absorption measurements are used to expose the relaxation properties of the photoproduct of COHbY. Time-resolved (Soret band) absorption is used to generate the geminate and solvent phase ligand rebinding curves for photodissociated COHbY. The spectroscopic results indicate that COHbY has an R-like conformation with respect to both the proximal heme pocket and the hinge region of the alpha 1 beta 2 interface. The deoxy derivative of HbY has spectroscopic features that are very similar to those observed for species assigned to the deoxy R or half-liganded R conformations of human adult hemoglobin (HbA). The 10 ns to 100 micros relaxation properties of the photoproduct of COHbY are distinctly different from those of HbA in that for HbY, little if any tertiary or quaternary relaxation is observed. The near-absence of relaxation in the HbY photoproduct explains the differences in the geminate and solvent phase CO recombination between HbA and HbY. The impact of the conformational and relaxation properties of HbY on the geminate rebinding process forms the basis of a model that accounts for the large quaternary enhancement effect reported for HbY (Doyle et al., 1992). In addition, the spectroscopic data and the X-ray crystallographic results explain the slow relaxation for HbY and the near-absence of cooperative ligand binding for this protein based on the behavior of the penultimate tyrosines.  相似文献   

16.
A range of conformationally distinct functional states within the T quaternary state of hemoglobin are accessed and probed using a combination of mutagenesis and sol-gel encapsulation that greatly slow or eliminate the T --> R transition. Visible and UV resonance Raman spectroscopy are used to probe the proximal strain at the heme and the status of the alpha(1)beta(2) interface, respectively, whereas CO geminate and bimolecular recombination traces in conjunction with MEM (maximum entropy method) analysis of kinetic populations are used to identify functionally distinct T-state populations. The mutants used in this study are Hb(Nbeta102A) and the alpha99-alpha99 cross-linked derivative of Hb(Wbeta37E). The former mutant, which binds oxygen noncooperatively with very low affinity, is used to access low-affinity ligated T-state conformations, whereas the latter mutant is used to access the high-affinity end of the distribution of T-state conformations. A pattern emerges within the T state in which ligand reactivity increases as both the proximal strain and the alpha(1)beta(2) interface interactions are progressively lessened after ligand binding to the deoxy T-state species. The ligation and effector-dependent interplay between the heme environment and the stability of the Trp beta37 cluster in the hinge region of the alpha(1)beta(2) interface appears to determine the distribution of the ligated T-state species generated upon ligand binding. A qualitative model is presented, suggesting that different T quaternary structures modulate the stability of different alphabeta dimer conformations within the tetramer.  相似文献   

17.
The time-resolved spectra of photoproducts from ligand photodissociation of oxyhemoglobin are measured in the Soret spectral region for times from 10 ns to 320 microseconds after laser photolysis. Four processes are detected at a heme concentration of 80 microM: a 38-ns geminate recombination, a 137-ns tertiary relaxation, and two bimolecular processes for rebinding of molecular oxygen. The pseudo-first-order rate constants for rebinding to the alpha and beta subunits of hemoglobin are 3.2 x 10(4) s-1 (31 microseconds lifetime) and 9.4 x 10(4) s-1 (11 microseconds lifetime), respectively. The significance of kinetic measurements made at different heme concentrations is discussed in terms of the equilibrium compositions of hemoglobin tetramer and dimer mixtures. The rebinding rate constants for alpha and beta chains are observed to be about two times slower in the dimer than in the tetramer, a finding that appears to support the observation of quaternary enhancement in equilibrium ligand binding by hemoglobin tetramers.  相似文献   

18.
Nagatomo S  Nagai M  Shibayama N  Kitagawa T 《Biochemistry》2002,41(31):10010-10020
The alpha1-beta2 subunit contacts in the half-ligated hemoglobin A (Hb A) have been explored with ultraviolet resonance Raman (UVRR) spectroscopy using the Ni-Fe hybrid Hb under various solution conditions. Our previous studies demonstrated that Trpbeta37, Tyralpha42, and Tyralpha140 are mainly responsible for UVRR spectral differences between the complete T (deoxyHb A) and R (COHb A) structures [Nagai, M., Wajcman, H., Lahary, A., Nakatsukasa, T., Nagatomo, S., and Kitagawa, T. (1999) Biochemistry, 38, 1243-1251]. On the basis of it, the UVRR spectra observed for the half-ligated alpha(Ni)beta(CO) and alpha(CO)beta(Ni) at pH 6.7 in the presence of IHP indicated the adoption of the complete T structure similar to alpha(Ni)beta(deoxy) and alpha(deoxy)beta(Ni). The extent of the quaternary structural changes upon ligand binding depends on pH and IHP, but their characters are qualitatively the same. For alpha(Ni)beta(Fe), it is not until pH 8.7 in the absence of IHP that the Tyr bands are changed by ligand binding. The change of Tyr residues is induced by binding of CO, but not of NO, to the alpha heme, while it was similarly induced by binding of CO and NO to the beta heme. The Trp bands are changed toward R-like similarly for alpha(Ni)beta(CO) and alpha(CO)beta(Ni), indicating that the structural changes of Trp residues are scarcely different between CO binding to either the alpha or beta heme. The ligand induced quaternary structural changes of Tyr and Trp residues did not take place in a concerted way and were different between alpha(Ni)beta(CO) and alpha(CO)beta(Ni). These observations directly indicate that the phenomenon occurring at the alpha1-beta2 interface is different between the ligand binding to the alpha and beta hemes and is greatly influenced by IHP. A plausible mechanism of the intersubunit communication upon binding of a ligand to the alpha or beta subunit to the other subunit and its difference between NO and CO as a ligand are discussed.  相似文献   

19.
The observed static difference spectrum produced by inositol hexaphosphate binding to methemoglobin is the sum of a very fast and a slow spectral transition. The more rapid absorbance change is too fast to be measured by stopped flow techniques, whereas the slow change exhibits a half-time in the range 1 to 6 s. From the pH dependence of the rapidly formed difference spectrum and from a series of heme ligand binding studies, the rapid phase is interpreted to reflect a localized tertiary conformational change which immediately accompanies inositol hexaphosphate binding and results in a selective increase in spin and reactivity of the beta chain heme groups. In contrast, the slow phase appears to reflect a first order isomerization process which involves only a small portion (less than 10%) of the hemoglobin molecules and results primarily in a marked alteration of the spectral properties of the alpha chains with little change in spin. While the rapid spectral transition cannot be directly related to the overall quaternary transition which occurs during oxygen binding to ferrous deoxyhemoglobin, the slow spectral transition may represent the abortive formation of a deoxyhemoglobin A-like conformation which is inhibited in both rate and extent by the presence of water molecules bound to the heme iron atoms.  相似文献   

20.
We have developed a rapid and useful method for purification of valency hybrid hemoglobins (alpha 2+ beta 2 and alpha 2 beta 2+: + denotes ferric heme) from a hemoglobin solution oxidized partially with ferricyanide by preparative high-performance liquid chromatography. This method does not involve the separation of hemoglobin subunits and the reconstitution of ferric and partner ferrous subunits. Using the valency hybrid hemoglobins thus prepared, the effect of the ferric spin state on the alpha 1 beta 2 subunit boundary structure was investigated by measuring the ultraviolet difference absorption spectra between the deoxy and the oxy valency hybrids associated with various ferric ligands (fluoride, aquo, azide and cyanide). All derivatives of both alpha 2+ beta 2 and alpha 2 beta 2+ showed the difference spectra characteristic of R-T quaternary structural transition. However, the magnitude of the difference spectral peak observed near 288 nm was larger for high-spin derivatives than for low-spin ones. The magnitude of the peak for the valency hybrid hemoglobin was closely correlated with the difference in the free energy of oxygen binding between the R and T states. Since the R state of high-spin hybrids is considered to be identical to that of low-spin hybrids, we concluded from these results that the alpha 1 beta 2 subunit boundary structure plays an important role in regulating the oxygen affinity of deoxy T state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号