首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geographic variation was investigated in populations of the day gecko Phelsuma sundbergi from 22 islands in the Seychelles, using multivariate ordination procedures. Multiple group principal components analysis was used to negate ontogenetic variation. Seventy-eight characters from three character systems (body proportions, scalation and colour pattern) were analysed from 349 specimens. Three phenetic aggregations of granitic island populations were detected from the northwestern, northeastern and southern island groups. A comparison of the results from the three character systems analysed separately suggests that the separation of the southern form preceded that of the northern forms. Colour pattern characters reflect this closely, while body proportions and scalation characters follow evolution of body size. The populations of Phelsuma sundbergi on the coralline islands are not well differentiated from the races on the granitic islands, and probably represent recent colonizations or introductions by man.  相似文献   

2.
The condition‐dependent sexual dimorphism model explains the evolution and maintenance of sexual dimorphism in traits targeted by sexual selection, and predicts that the magnitude of sexual dimorphism depends on the variability of individual condition, male traits being more variable than female corresponding traits. Most convincing examples concern insects, while studies among vertebrates are scanty because manipulating condition often is not possible, and the time to reach sexual maturity may be too long. Islands offer a unique opportunity to compare how the environment affects the expression of sexual dimorphism, since they represent ‘natural experimental sets’ in which different populations of the same species may experience alternative environmental constraints. We investigated the occurrence of context‐dependent expression in sexual dimorphism of head shape in insular populations of the common wall lizards (Podarcis muralis) inhabiting the Tuscan Archipelago (Tyrrhenian Sea). Alternative models were formulated: H0 assumes that the sexual dimorphism is uninfluenced by islands, H1 assumes the only effect of phylogeny, H2A and H2B account for the biogeography of the archipelago (island size and distance from the mainland), while H3 assumes island‐specific effects on sexual dimorphism. Models were compared using Akaike's information criterion adjusted for multivariate analyses. All hypotheses performed better than H0, but H3 largely outperformed all other alternative hypotheses, indicating that environmental features of islands play an additive effect to ontogenetic, biogeographic and genetic factors in defining variation in head shape sexual dimorphism. Our results support the hypothesis of a context‐dependent sexual dimorphism in common wall lizards. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 552–565.  相似文献   

3.
Within a group of organisms, some morphologies are more readily generated than others due to internal developmental constraints. Such constraints can channel evolutionary changes into directions corresponding to the greatest intraspecific variation. Long-term evolutionary outputs, however, depend on the stability of these intraspecific patterns of variation over time and from the interplay between internal constraints and selective regimes. To address these questions, the relationship between the structure of phenotypic variance covariance matrices and direction of morphological evolution was investigated using teeth of fossil rodents. One lineage considered here leads to Stephanomys, a highly specialized genus characterized by a dental pattern supposedly favoring grass eating. Stephanomys evolved in the context of directional selection related to the climatic trend of global cooling causing an increasing proportion of grasslands in southwestern Europe. The initial divergence (up to approximately 6.5 mya) was channeled along the direction of greatest intraspecific variation, whereas after 6.5 mya, morphological evolution departed from the direction favored by internal constraints. This departure from the "lines of least resistance" was likely the consequence of an environmental degradation causing a selective gradient strong enough to overwhelm the constraints to phenotypic evolution. However, in a context of stabilizing selection, these constraints actually channel evolution, as exemplified by the lineage of Apodemus. This lineage retained a primitive diet and dental pattern over the last 10 myr. Limited morphological changes occurred nevertheless in accordance with the main patterns of intraspecific variation. The importance of these lines of least resistance directing long-term morphological evolution may explain parallel evolution of some dental patterns in murine evolution.  相似文献   

4.
拟南芥(Arabidopsis thaliana)是植物生物学的模式植物, 在分子遗传学方面已经积累了丰富的研究成果, 但目前对拟南芥自然分布的生境特点、表型变化的环境依赖特征等研究很少, 极大地限制了对拟南芥进化动力和机制的理解。为了了解在微环境下拟南芥种群分布和表型性状的变化特点, 对天山北部分布于塔尔巴哈台山、阿尔泰山和天山的10个拟南芥种群的分布特征、表型的变化特点, 以及与综合环境因子的相互关系进行了分析。结果表明: 除分枝数外, 株高、株重、根重、单个果实重量、单株果数、单株果重、果长、果实开裂力度、单株果重/总重9个特征在种群间变化显著, 可塑性能力较强; 但方差分析和变异系数结果显示, 角果长度、果实开裂力度在种群内和种群间的变化相对较小。表型特征在山系间、经纬度和海拔间的变化规律不明显。拟南芥主要分布于pH值和HCO3 -含量低, 有机质丰富, 且有一定坡度的沙土地块上。种群内拟南芥分布频度很低, 在1.56%-10.69%之间, 空间自相关距离在15.4-46.7 cm之间变化较大, 10个种群均呈现极显著集群分布, 分布的集群性受果实开裂力度的影响显著, 而果实开裂力度随环境胁迫而极显著增加。总结认为: 天山北部拟南芥生长和分布主要受微环境的影响, 在干旱环境下, 拟南芥主要通过增加繁殖分配比例, 产生难开裂的果实, 促使种子短距离扩散于母株周围, 确保子代利用原适宜生境来生存繁衍。  相似文献   

5.
We examined multivariate evolution of 20 leaf terpenoids in the invasive plant Melaleuca quinquenervia in a common garden experiment. Although most compounds, including 1,8-Cineole and Viridiflorol, were reduced in home compared with invaded range genotypes, consistent with an evolutionary decrease in defense, one compound (E-Nerolidol) was greater in invaded than home range genotypes. Nerolidol was negatively genetically correlated with Cineole and Viridiflorol, and the increase in this compound in the new range may have been driven by this negative correlation. There was positive selection on all three focal compounds, and a loss of genetic variation in introduced range genotypes. Selection skewers analysis predicted an increase in Cineole and Viridiflorol and a decrease or no change in Nerolidol, in direct contrast to the observed changes in the new range. This discrepancy could be due to differences in patterns of selection, genetic correlations, or the herbivore communities in the home versus introduced ranges. Although evolutionary changes in most compounds were consistent with the evolution of increased competitive ability hypothesis, changes in other compounds as well as selection patterns were not, indicating that it is important to understand selection and the nature of genetic correlations to predict evolutionary change in invasive species.  相似文献   

6.
Morphological character variation was examined in Atherinops affinis , a temperate marine silverside with a broad geographic range and presumed limited powers of dispersal. Populations of this species were sampled from three California mainland sites, one Channel Island site and one site in the upper Gulf of California. A geometric morphometric analysis yielded higher resolution in the assessment of phenotypic divergence among the four Pacific coast populations than either body measurement or meristic analysis, and it showed that most of the shape variation among these populations occurs in the head region and body depth of the fish. All three analyses supported the hypothesis that populations of A. affinis from central and southern California coastal waters and from Santa Catalina Island are morphologically distinct from each other; the Santa Catalina Island population was found to be the most divergent. On the basis of meristic characters alone, the population of A. affinis from the upper Gulf of California was different from A. affinis populations along the Pacific coast of California. The analyses revealed variation in several morphological characters, e.g . body depth and meristics, known to vary in association with environmental conditions. Given that A. affinis appears to have low among‐population genetic variation, this species may be phenotypically plastic in response to the environmental conditions of the habitat of each population.  相似文献   

7.
Reduced dispersability of species living on islands relative to mainland has been documented in both plants and animals. One evolutionary scenario explains this trend by strong selection against dispersal, once the species has reached the island, to reduce dispersal out to sea. In this study, we compare the dispersal ability of three wind dispersed plant species (Cirsium arvense, Epilobium angustifolium, and E. hirsutum) from populations on mainland and three islands. Dispersal ability was estimated directly as drop time of diaspores, and indirectly using a morphological measure relating the weight of the diaspore to the size of the pappus (Cirsium) or seed hairs (Epilobium). Positive correlation between the morphological measure of dispersal ability and drop time of diaspores were found for all study species. Dispersal ability varied significantly among mainland and islands, and among species. C. arvense showed a significant reduction in dispersal ability on islands compared to mainland, whereas the reverse was found for the two Epilobium species. Overall Epilobium diaspores had a 2–4 times higher dispersability than C. arvense, indicating that degree of isolation of islands vary among study species. Significant differences in dispersability among plants within populations were detected in all species suggesting that this trait may have a genetic component.  相似文献   

8.
Abstract Laboratory selection experiments are powerful tools for establishing evolutionary potentials. Such experiments provide two types of information, knowledge about genetic architecture and insight into evolutionary dynamics. They can be roughly classified into two types: (1) artificial selection in which the experimenter selects on a focal trait or trait index, and (2) quasi‐natural selection in which the experimenter establishes a set of environmental conditions and then allows the population to evolve. Both approaches have been used in the study of phenotypic plasticity. Artificial selection experiments have taken various forms including: selection directly on a reaction norm, selection on a trait in multiple environments, and selection on a trait in a single environment. In the latter experiments, evolution of phenotypic plasticity is investigated as a correlated response. Quasi‐natural selection experiments have examined the effects of both spatial and temporal variation. I describe how to carry out such experiments, summarize past efforts, and suggest further avenues of research.  相似文献   

9.
Phenotypic variation in trait means is a common observation for geographically separated populations. Such variation is typically retained under common garden conditions, indicating that there has been evolutionary change in the populations, as a result of selection and/or drift. Much less frequently studied is variation in the phenotypic covariance matrix (hereafter, P matrix), although this is an important component of evolutionary change. In this paper, we examine variation in the phenotypic means and P matrices in two species of grasshopper, Melanoplus sanguinipes and M. devastator. Using the P matrices estimated for 14 populations of M. sanguinipes and three populations of M. devastator we find that (1) significant differences between the sexes can be attributed to scaling effects; (2) there is no significant difference between the two species; (3) there are highly significant differences among populations that cannot be accounted for by scaling effects; (4) these differences are a consequence of statistically significant patterns of covariation with geographic and environmental factors, phenotypic variances and covariances increasing with increased temperature but decreasing with increased latitude and altitude. This covariation suggests that selection has been important in the evolution of the P matrix in these populations Finally, we find a significant positive correlation between the average difference between matrices and the genetic distance between the populations, indicating that drift has caused some of the variation in the P matrices.  相似文献   

10.
Adaptive phenotypic plasticity allows organisms to cope with environmental variability, and yet, despite its adaptive significance, phenotypic plasticity is neither ubiquitous nor infinite. In this review, we merge developmental and population genetic perspectives to explore costs and limits on the evolution of plasticity. Specifically, we focus on the role of modularity in developmental genetic networks as a mechanism underlying phenotypic plasticity, and apply to it lessons learned from population genetic theory on the interplay between relaxed selection and mutation accumulation. We argue that the environmental specificity of gene expression and the associated reduction in pleiotropic constraints drive a fundamental tradeoff between the range of plasticity that can be accommodated and mutation accumulation in alternative developmental networks. This tradeoff has broad implications for understanding the origin and maintenance of plasticity and may contribute to a better understanding of the role of plasticity in the origin, diversification, and loss of phenotypic diversity.  相似文献   

11.
The dorsal crest of newts (Salamandridae) is a novel, phenotypically plastic, sexually selected trait that may evolve in association with complex courtship behaviours. We estimated a near-comprehensive, time-calibrated phylogeny for salamandrids and analysed the evolution of their crests and display behaviour. Different models give conflicting reconstructions for crest evolution, showing that likelihood can estimate incorrect ancestral states with strong statistical support. The best-fitting model suggests that crests evolved once and were lost repeatedly, supporting the hypothesis that sexually selected traits may be frequently lost. We demonstrate the correlated evolution of crests and courtship behaviour and show that species with larger numbers of crest-related traits have larger repertoires of behaviours. We also show that phenotypically plastic morphological traits can be maintained over long macroevolutionary timescales (~25-48 Myr). Finally, we use salamandrids to address how novel structures may arise, and support a model involving the expansion and subdivision of pre-existing structures.  相似文献   

12.
The G-matrix summarizes the inheritance of multiple, phenotypic traits. The stability and evolution of this matrix are important issues because they affect our ability to predict how the phenotypic traits evolve by selection and drift. Despite the centrality of these issues, comparative, experimental, and analytical approaches to understanding the stability and evolution of the G-matrix have met with limited success. Nevertheless, empirical studies often find that certain structural features of the matrix are remarkably constant, suggesting that persistent selection regimes or other factors promote stability. On the theoretical side, no one has been able to derive equations that would relate stability of the G-matrix to selection regimes, population size, migration, or to the details of genetic architecture. Recent simulation studies of evolving G-matrices offer solutions to some of these problems, as well as a deeper, synthetic understanding of both the G-matrix and adaptive radiations.  相似文献   

13.
A common-garden experiment was conducted on larvae to test for genetic differences in body shape among populations of Atlantic cod ( Gadus morhua ). Offspring from four north-west Atlantic regions were reared from hatching to postmetamorphosis at two temperatures (7 ± 1 °C and 11 ± 1 °C) and two food levels (1500 and 4500 prey L−1). Body shape differed between populations and treatments. Population differences were greatest between south-west Scotian Shelf cod and those further north; the former were characterized by a deeper body, larger head, and longer caudal peduncle than cod from the other populations. Significant differences were also observed between two putative populations on the south-west Scotian Shelf, suggesting genetic divergence between spawning aggregations at small spatial scales (< 100 km). Temperature and food supply also influenced body shape, with the effect of the former being more pronounced. Individuals reared at the higher temperature or food level had a deeper body and a larger head than those reared at the lower temperature or food supply. Phenotypic responses to changes in the rearing environment also differed among populations, indicating genetic differences in phenotypic plasticity. Differences between populations in morphology and in phenotypic plasticity suggest genetic divergence at both large (> 1000 km) and small (< 100 km) spatial scales. The genetic differences at large spatial scales counteracted the expected effects of temperature differences in the wild, suggesting countergradient variation in morphology among these populations.  © 2006 Her Majesty the Queen in Right of Canada. Journal compilation © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 351–365.  相似文献   

14.
Adaptive phenotypic plasticity in the form of capacity to accelerate development as a response to pond drying risk is known from many amphibian species. However, very little is known about factors that might constrain the evolution of this type of plasticity, and few studies have explored to what degree plasticity might be constrained by trade-offs dictated by adaptation to different environmental conditions. We compared the ability of southern and northern Scandinavian common frog (Rana temporaria) larvae originating from 10 different populations to accelerate their development in response to simulated pond drying risk and the resulting costs in metamorphic size in a factorial laboratory experiment. We found that (i) northern larvae developed faster than the southern larvae in all treatments, (ii) a capacity to accelerate the response was present in all five southern and all five northern populations tested, but that the magnitude of the response was much larger (and less variable) in the southern than in the northern populations, and that (iii) significant plasticity costs in metamorphic size were present in the southern populations, the plastic genotypes having smaller metamorphic size in the absence of desiccation risk, but no evidence for plasticity costs was found in the northern populations. We suggest that the weaker response to pond drying risk in the northern populations is due to stronger selection on large metamorphic size as compared with southern populations. In other words, seasonal time constraints that have selected the northern larvae to be fast growing and developing, may also constrain their innate ability for adaptive phenotypic plasticity.  相似文献   

15.
Phenotypic integration and plasticity are central to our understanding of how complex phenotypic traits evolve. Evolutionary change in complex quantitative traits can be predicted using the multivariate breeders’ equation, but such predictions are only accurate if the matrices involved are stable over evolutionary time. Recent study, however, suggests that these matrices are temporally plastic, spatially variable and themselves evolvable. The data available on phenotypic variance‐covariance matrix ( P ) stability are sparse, and largely focused on morphological traits. Here, we compared P for the structure of the complex sexual advertisement call of six divergent allopatric populations of the Australian black field cricket, Teleogryllus commodus. We measured a subset of calls from wild‐caught crickets from each of the populations and then a second subset after rearing crickets under common‐garden conditions for three generations. In a second experiment, crickets from each population were reared in the laboratory on high‐ and low‐nutrient diets and their calls recorded. In both experiments, we estimated P for call traits and used multiple methods to compare them statistically (Flury hierarchy, geometric subspace comparisons and random skewers). Despite considerable variation in means and variances of individual call traits, the structure of P was largely conserved among populations, across generations and between our rearing diets. Our finding that P remains largely stable, among populations and between environmental conditions, suggests that selection has preserved the structure of call traits in order that they can function as an integrated unit.  相似文献   

16.
The lengths of the body and appendages of the aphid Acyrthosiphon pisum (Harris) (Homoptera: Aphididae) vary seasonally in sexual North American and asexual Australian populations. The first generation of spring aphids in North America and winter aphids in Australia have short appendages in relation to body length. Excluding this phenotype, North American and Australian aphids cannot be discriminated morphometrically. The short appendages in North America are associated with a specialized morph called a fundatrix; the short appendages of Australian aphids are caused by exposure to low temperatures during prenatal development. The same temperature-sensitive mechanism operates in sexual and asexual North American aphids, but does not explain the short appendages of the fundatrix, which appear to arise through a separate mechanism. The short appendages are caused neither by a maternal effect from winged mothers, although such an effect exists, nor by seasonal changes in body length and allometry, nor by microevolutionary changes. The temperature-induced shortening of appendages is a seasonal polymorphism, which mimics the short appendages seen in fundatrices. The two types of phenotypic plasticity have the same consequence in sexual and asexual populations of the same species and may be an example of convergent evolution.  相似文献   

17.
Mandibles from 13 island and six mainland populations of common shrews from the west coast of Scotland were subjected to geometric morphometric analysis in order to investigate the relationship between genetic diversity and fluctuating asymmetry. Although population mean shape fluctuating asymmetry (FA) and size FA were significantly inversely correlated with population genetic diversity this result was substantially due to one island. Sanda, the smallest island with by far the lowest genetic diversity, also had the highest FA. When Sanda was removed from the analysis, the relationship was not significant. There was no relationship between genetic diversity and FA at the individual level, whether measured as mean locus heterozygosity or d(2). In general, if genetic variation affects FA at all, the effect is weak and may only be of biological interest in very small populations.  相似文献   

18.
In ectotherms, variation in life history traits among populations is common and suggests local adaptation. However, geographic variation itself is not a proof for local adaptation, as genetic drift and gene flow may also shape patterns of quantitative variation. We studied local and regional variation in means and phenotypic plasticity of larval life history traits in the common frog Rana temporaria using six populations from central Sweden, breeding in either open‐canopy or partially closed‐canopy ponds. To separate local adaptation from genetic drift, we compared differentiation in quantitative genetic traits (QST) obtained from a common garden experiment with differentiation in presumably neutral microsatellite markers (FST). We found that R. temporaria populations differ in means and plasticities of life history traits in different temperatures at local, and in FST at regional scale. Comparisons of differentiation in quantitative traits and in molecular markers suggested that natural selection was responsible for the divergence in growth and development rates as well as in temperature‐induced plasticity, indicating local adaptation. However, at low temperature, the role of genetic drift could not be separated from selection. Phenotypes were correlated with forest canopy closure, but not with geographical or genetic distance. These results indicate that local adaptation can evolve in the presence of ongoing gene flow among the populations, and that natural selection is strong in this system.  相似文献   

19.
The substantial racial variation between the mainland and island populations of the Eastern grass snake ( Natrix natrix natrix ) is analysed by a range of multivariate methods, including principal component and canonical analysis. These techniques reveal a complex pattern of geographic variation which include sharp transition zones, gradual clines, a wide range of divergence of island populations and greater divergence per distance in the south than in the north. These patterns relate to the phylogenesis of this "incipient" species, and its post-Pleistocene range expansion as presented here and elsewhere. These racial patterns do not generally relate to physiographic features, conventional subspecies or CURRENT physical or biotic factors.  相似文献   

20.
Understanding local adaptation and population differentiation is vital to the success of re‐introduction initiatives. As other mammals living on islands, Arabian gazelles (G. arabica) show reduced body size on the Farasan archipelago, which we corroborated in this study through morphometric analyses of skulls. In the light of the steep population decline on the Arabian Peninsula – but stable population development on the archipelago – we tested the potential suitability of Farasan gazelles as a source for re‐introductions on the mainland. We therefore investigated genetic differentiation between Farasan and mainland populations using eleven nuclear microsatellite loci and detected a distinct genetic cluster exclusively present on the archipelago, which we inferred to be separated from the mainland cluster for less than 2000 years. About 30% of sampled individuals from Farasan Islands showed assignment to a mainland cluster with signs of ongoing introgression. Analyses using the isolation‐with‐migration model confirmed recent (probably human‐induced) bidirectional exchange of gazelles between mainland and island populations. Hence, the surprisingly uniform island dwarfism most likely reflects phenotypic plasticity, that is, altered morphology as a direct consequence of harsh environmental conditions and resource limitation on the archipelago. Should a further decline of Arabian gazelles on the mainland necessitate restocking in the future, Farasan gazelles may thus become an additional source for captive breeding programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号