首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Nuclear DNA and mtDNA polymorphisms were surveyed in various species of East African Oreochromis . In Lake Baringo, where only Oreochromis niloticus baringoensis is present, alien mtDNA haplotypes were observed, apparently the result of introgressive hybridization with Oreochromis leucostictus . This introgression is not accompanied by any substantial or recorded transfer of nuclear genes into O. n. baringoensis .  相似文献   

2.
Conservation strategies for African elephants would be advanced by resolution of conflicting claims that they comprise one, two, three or four taxonomic groups, and by development of genetic markers that establish more incisively the provenance of confiscated ivory. We addressed these related issues by genotyping 555 elephants from across Africa with microsatellite markers, developing a method to identify those loci most effective at geographic assignment of elephants (or their ivory), and conducting novel analyses of continent-wide datasets of mitochondrial DNA. Results showed that nuclear genetic diversity was partitioned into two clusters, corresponding to African forest elephants (99.5% Cluster-1) and African savanna elephants (99.4% Cluster-2). Hybrid individuals were rare. In a comparison of basal forest "F" and savanna "S" mtDNA clade distributions to nuclear DNA partitions, forest elephant nuclear genotypes occurred only in populations in which S clade mtDNA was absent, suggesting that nuclear partitioning corresponds to the presence or absence of S clade mtDNA. We reanalyzed African elephant mtDNA sequences from 81 locales spanning the continent and discovered that S clade mtDNA was completely absent among elephants at all 30 sampled tropical forest locales. The distribution of savanna nuclear DNA and S clade mtDNA corresponded closely to range boundaries traditionally ascribed to the savanna elephant species based on habitat and morphology. Further, a reanalysis of nuclear genetic assignment results suggested that West African elephants do not comprise a distinct third species. Finally, we show that some DNA markers will be more useful than others for determining the geographic origins of illegal ivory. These findings resolve the apparent incongruence between mtDNA and nuclear genetic patterns that has confounded the taxonomy of African elephants, affirm the limitations of using mtDNA patterns to infer elephant systematics or population structure, and strongly support the existence of two elephant species in Africa.  相似文献   

3.
Data on the frequency of the mtDNA region V deletion were used to estimate the relative maternal contribution from the parental populations to the gene pools of the two Black communities of Rio Cayapas and Viche in northern Ecuador. Ethnohistorical records and nuclear DNA data indicate that these populations are hybrids of West African and Amerindian populations. The unique distribution of the DNA marker in these parental groups provided good admixture estimates. The fraction of mtDNA of Amerindian origin in the population of Rio Cayapas is quite small (8%±5%), whereas in the community of Viche the native Americans contributed the major portion of the gene pool (51%±15). The mtDNA estimate for Rio Cayapas is similar to that of some protein polymorphisms, which confirms the cultural and genetic isolation of this community from the neighboring native population. On the other hand, the admixture value obtained from nuclear genes in Viche is statistically different from the estimate obtained from mtDNA data. This supports the traditional belief, gathered from historical records and cultural data, that the contribution from Indian females was higher than that of Indian males, at least in the primary settlements of the African-American population of Esmeraldas.  相似文献   

4.

Background

The tilapia family of the Cichlidae includes many fish species, which live in freshwater and saltwater environments. Several species, such as O. niloticus, O. aureus, and O. mossambicus, are excellent for aquaculture because these fish are easily reproduced and readily adapt to diverse environments. Historically, tilapia species, including O. mossambicus, S. melanotheron, and O. aureus, were introduced to Hawaii many decades ago, and the state of Hawaii uses the import permit policy to prevent O. niloticus from coming into the islands. However, hybrids produced from O. niloticus may already be present in the freshwater and marine environments of the islands. The purpose of this study was to identify tilapia species that exist in Hawaii using mitochondrial DNA analysis.

Methodology/Principal Findings

In this study, we analyzed 382 samples collected from 13 farm (captive) and wild tilapia populations in Oahu and the Hawaii Islands. Comparison of intraspecies variation between the mitochondrial DNA control region (mtDNA CR) and cytochrome c oxidase I (COI) gene from five populations indicated that mtDNA CR had higher nucleotide diversity than COI. A phylogenetic tree of all sampled tilapia was generated using mtDNA CR sequences. The neighbor-joining tree analysis identified seven distinctive tilapia species: O. aureus, O. mossambicus, O. niloticus, S. melanotheron, O. urolepies, T. redalli, and a hybrid of O. massambicus and O. niloticus. Of all the populations examined, 10 populations consisting of O. aureus, O. mossambicus, O. urolepis, and O. niloticus from the farmed sites were relatively pure, whereas three wild populations showed some degree of introgression and hybridization.

Conclusions/Significance

This DNA-based tilapia species identification is the first report that confirmed tilapia species identities in the wild and captive populations in Hawaii. The DNA sequence comparisons of mtDNA CR appear to be a valid method for tilapia species identification. The suspected tilapia hybrids that consist of O. niloticus are present in captive and wild populations in Hawaii.  相似文献   

5.
Despite its key location for population movements out of and back into Africa, Yemen has not yet been sampled on a regional level for an investigation of sub-Saharan, West Eurasian, and South Asian genetic contributions. In this study, we present mitochondrial DNA (mtDNA) data for regionally distinct Yemeni populations that reveal different distributions of mtDNA lineages. An extensive database of mtDNA sequences from North and East African, Middle Eastern and Indian populations was analyzed to provide a context for the regional Yemeni mtDNA datasets. The groups of western Yemen appear to be most closely related to Middle Eastern and North African populations, while the eastern Yemeni population from Hadramawt is most closely related to East Africa. Furthermore, haplotype matches with Africa are almost exclusively confined to West Eurasian R0a haplogroup in southwestern Yemen, although more sub-Saharan L-type matches appear in more northern Yemeni populations. In fact, Yemeni populations have the highest frequency of R0a haplotypes detected to date, thus Yemen or southern Arabia may be the site of the initial expansion of this haplogroup. Whereas two variants of the sub-Saharan haplogroup M1 were detected only in southwestern Yemen close to the Bab el-Mandeb Strait, different non-African M haplotypes were detected at low frequencies (approximately 2%) in western parts of the country and at a higher frequency (7.5%) in the Hadramawt. We conclude that the Yemeni gene pool is highly stratified both regionally and temporally and that it has received West Eurasian, Northeast African, and South Asian gene flow.  相似文献   

6.
Partial genetic linkage maps, based on microsatellite markers, were constructed for two tilapia species, Oreochromis aureus and Oreochromis niloticus using an interspecific backcross population. The linkage map for O. aureus comprised 28 markers on 10 linkage groups and covered 212.8 CM. Nine markers were mapped to four linkage groups on an O. niloticus female linkage map covering 40.6 CM. Results revealed a high degree of conservation of synteny between the linkage groups defined in O. aureus and the previously published genetic linkage map of O. niloticus.  相似文献   

7.
The roan antelope (Hippotragus equinus) is the second largest African antelope, distributed throughout the continent in sub-Saharan savannah habitat. Mitochondrial DNA (mtDNA) control region sequencing (401 bp, n = 137) and microsatellite genotyping (eight loci, n = 137) were used to quantify the genetic variability within and among 18 populations of this species. The within-population diversity was low to moderate with an average mtDNA nucleotide diversity of 1.9% and average expected heterozygosity with the microsatellites of 46%, but significant differences were found among populations with both the mtDNA and microsatellite data. Different levels of genetic resolution were found using the two marker sets, but both lent strong support for the separation of West African populations (samples from Benin, Senegal and Ghana) from the remainder of the populations studied across the African continent. Mismatch distribution analyses revealed possible past refugia for roan in the west and east of Africa. The West African populations could be recognized together as an evolutionarily significant unit (ESU), referable to the subspecies H. e. koba. Samples from the rest of the continent constituted a geographically more diverse assemblage with genetic associations not strictly corresponding to the other recognized subspecies.  相似文献   

8.
以随机扩增多态DNA技术(RAPD)分析了奥利亚罗非鱼和尼罗罗非鱼两个养殖群体的群体内及群体间遗传关系,并探讨了该技术在种群鉴定中的应用。RAPD引物筛选结果表明,所测试的20个随机引物中(Table 1),除一个引物未扩增出任何片段外,其余19个引物均扩增出1~11个大小不等的片段,长度大部分在500~3000bp之间,共扩增出220个片段,平均每个引物产生5.5个片段。两群体间共有片段70条,大部分引物的扩增产物具有种间多态性,种群间相似系数为0.727。以筛选的引物对两种群不同个体(Fig.1,Table2)及种群混合样品(Fig.2,Table3)进行RAPD分析。结果表明,不同引物在扩增图谱上表现很大差异。奥利亚罗非鱼不同个体间表现为一致的扩增图谱,种内相似系数达1000,显示了其种群内遗传变异的缺乏;尼罗罗非鱼种内相似系数为0.827,个体间存在不同程度的多态性;两个种群间的相似系数分别为0.767和0.742,表明种间有较高的同源性,遗传距离为0.235,略低于国外的报道、此外,两个养殖群体间的扩增图谱比较也暗示了遗传渐渗现象的存在。实验表明,RAPD标记可以作为一种可靠的遗传标记,用于不同鱼  相似文献   

9.
African wild dogs are large, highly mobile carnivores that are known to disperse over considerable distances and are rare throughout much of their geographical range. Consequently, genetic variation within and differentiation between geographically separated populations is predicted to be minimal. We determined the genetic diversity of mitochondrial DNA (mtDNA) control region sequences and microsatellite loci in seven populations of African wild dogs. Analysis of mtDNA nucleotide diversity suggests that, historically, wild dog populations have been small relative to other large carnivores. However, population declines due to recent habitat loss have not caused a dramatic reduction in genetic diversity. We found one historical and eight recent mtDNA genotypes in 280 individuals that defined two highly divergent clades. In contrast to a previous, more limited, mtDNA analysis, sequences from these clades are not geographically restricted to eastern or southern African populations. Rather, we found a large admixture zone spanning populations from Botswana, Zimbabwe and south-eastern Tanzania. Mitochondrial and microsatellite differentiation between populations was significant and unique mtDNA genotypes and alleles characterized the populations. However, gene flow estimates (Nm) based on microsatellite data were generally greater than one migrant per generation. In contrast, gene flow estimates based on the mtDNA control region were lower than expected given differences in the mode of inheritance of mitochondrial and nuclear markers which suggests a male bias in long-distance dispersal.  相似文献   

10.
Introgressive hybridization may cause substantial discordances among phylogenies based on different genetic markers. Such discordances have been found in diverse mammal species including primates. A recent study of mitochondrial DNA (mtDNA) revealed several poly- and paraphyletic relationships in African green monkeys (Chlorocebus), suggesting contemporary and/or ancient introgressive hybridization among almost all parapatric species of the genus. However, mtDNA analyses alone do not allow us to draw conclusions concerning introgression events. In this study we analyzed two Y chromosomal (Y-chr) markers for 30 African green monkey samples and compared the resulting genetic relationships to those based on published mtDNA data. In line with the results for mtDNA, we found no Y-chr evidence of hypothesized hybridization among Chlorocebus sabaeus and C. tantalus in the northern part of the contact zone in West Africa, and we found two distinct and distantly related Y-chr haplotypes within the range of C. tantalus, suggesting possible cryptic genetic diversity rather than ancient introgressive hybridization in this species. In contrast, Y-chr data revealed monophyletic relationships within Chlorocebus pygerythrus from East Africa, suggesting that mtDNA paraphylies found in this species are most likely to be the result of ancient introgressive hybridization and subsequent cytonuclear extinction of an earlier taxon. Our results accentuate the importance of analyzing sex chromosomal data in addition to mtDNA to obtain more information on the potential outcomes of hybridization with respect to genetic and species diversity. Analysis of more diverse nuclear marker sets is needed to obtain a more complete picture of the African green monkey evolution.  相似文献   

11.
Tonione M  Johnson JR  Routman EJ 《Genetica》2011,139(2):209-219
We investigated genetic diversity of the hellbender (Cryptobranchus alleganiensis) throughout its range in the eastern US using nuclear markers and compared our results to a previously published mitochondrial analysis. A variety of nuclear markers, including protein-coding gene introns and microsatellites were tested but only microsatellites were variable enough for population level analysis. Microsatellite loci showed moderate among population sharing of alleles, in contrast to the reciprocal monophyly exhibited by mitochondrial DNA. However, analyses using F-statistics and Bayesian clustering algorithms showed considerable population subdivision and clustered hellbender populations into the same major groups as the mtDNA. The microsatellites combined with the mtDNA data suggest that gene flow is severely restricted or non-existent among eight major groups, and potentially among populations (rivers) within groups. The combined mtDNA and microsatellite data suggest that the currently recognized hellbender subspecies are paraphyletic. We suggest that the eight independent groups identified in our study should be managed as such, rather than basing conservation decisions on the two named subspecies of hellbender.  相似文献   

12.
We analyzed sequence variation in the mitochondrial DNA (mtDNA) hypervariable segment I (HVS-I) from 201 Black individuals from two Brazilian cities (Rio de Janeiro and Porto Alegre), and compared these data with published information from 21 African populations. A subset of 187 males of the sample was also characterized for 30 Y-chromosome biallelic polymorphisms, and the data were compared with those from 48 African populations. The mtDNA data indicated that respectively 69% and 82% of the matrilineages found in Rio de Janeiro and Porto Alegre originated from West-Central/Southeast Africa. These estimates are in close agreement with historical records which indicated that most of the Brazilian slaves who arrived in Rio de Janeiro were from West-Central Africa. In contrast to mtDNA, Y-chromosome haplogroup analysis did not allow discrimination between places of origin in West or West-Central Africa. Thus, when comparing these two major African regions, there seems to be higher genetic structure with mtDNA than with Y-chromosome data.  相似文献   

13.
罗非鱼颗粒蛋白前体cDNA序列与表达分析   总被引:1,自引:0,他引:1  
颗粒蛋白前体(Progranulin,PGRN)在先天免疫反应调控及个体生长发育过程中均有重要作用。通过对罗非鱼外周血白细胞全长cDNA文库筛选得到的序列进行生物信息学分析,获得罗非鱼Pgrn全长cDNA序列(GenBank登录号为GQ241348)。该cDNA克隆总长843bp,包含一个完整的开放阅读框,编码206个氨基酸,其中推定信号肽20个氨基酸,两个GRN重复单位均56个氨基酸。研究采用实时定量PCR(Real-time RT-PCR)方法对感染海豚链球菌后奥尼罗非鱼、尼罗罗非鱼、奥利亚罗非鱼和吉富罗非鱼4种组织(脑、肝脏、脾脏和头肾)Pgrn mRNA表达情况进行分析。结果显示,Pgrn mRNA在攻毒后4种罗非鱼4种组织中表达均有上调趋势,并且在脾中的表达量最高,提示PGRN在鱼类先天免疫反应调控中起重要作用。另外,奥尼罗非鱼在感染海豚链球菌后6h的脑和肝脏、6h和12h的脾脏和头肾中Pgrn mRNA表达均下调,然后表达升高,这种表达变化在其他三种鱼中不明显,这也许是奥尼罗非鱼抗病力较强的一个原因。研究为从分子水平探讨PGRN在罗非鱼先天免疫反应中的作用机制提供了数据,也为罗非鱼的抗病选育提供了参考分子标记。    相似文献   

14.
The introduction of invasive Nile tilapia (Oreochromis niloticus), and the rapacious predator Nile perch (Lates niloticus), into Lake Victoria resulted in a decline in population sizes, genetic diversity and even extirpation of native species which were previously the mainstay of local fisheries. However, remnant populations of native fish species, including tilapia, still persist in satellite lakes around Lake Victoria where they may coexist with O. niloticus. In this study we assessed population genetic structure, diversity, and integrity of the native critically endangered Singidia tilapia (O. esculentus) in its refugial populations in the Yala swamp, Kenya, and contrasted this diversity with populations of the invasive tilapia O. niloticus in satellite lakes (Kanyaboli, Namboyo and Sare) and Lake Victoria. Based on mtDNA control region sequences and eight nuclear microsatellite loci, we did not detect any mtDNA introgression between the native and the invasive species in Lakes Kanyaboli and Namboyo, but did find low levels of nuclear admixture, primarily from O. niloticus to O. esculentus. Some genetic signal of O. esculentus in O. niloticus was found in Lake Sare, where O. esculentus is not found, suggesting it has recently been extirpated by the O. niloticus invasion. In both species, populations in the satellite lakes are significantly genetically isolated from each other, with private mtDNA haplotypes and microsatellite alleles. For O. niloticus, genetic diversity in satellite lakes was similar to that found in Lake Victoria. Our data imply a low frequency of immigration exchange between the two populations of O. esculentus and we suggest that the populations of this endangered species and important fisheries resource should be conserved separately in Lakes Kanyaboli and Namboyo and with high priority.  相似文献   

15.
The pond loach Misgurnus dabryanus is a freshwater fish with a distribution range spanning the eastern part of the Asian continent, the Korean Peninsula, and Taiwan. The pond loach was transplanted to the Japanese archipelago through the co-inclusion with dojo loach (Misgurnus anguillicaudatus species complex) populations, which were imported live from China for food materials, and it is currently distributed widely across Japan. A previous mitochondrial DNA (mtDNA) analysis revealed that a pond loach population in Ehime Prefecture (Shikoku Island, Japan) included two highly diverged mtDNA groups (Groups I and II). To examine the origin of these two distinct forms of mtDNA within the Japanese pond loach population, we performed phylogenetic analyses using sequences based on the mtDNA of cytochrome oxidase b (cyt b) and the nuclear DNA recombination activating gene 1 (RAG-1). We also conducted a random amplified polymorphic DNA (RAPD) analysis to examine the establishment of reproductive isolation between sympatric pond loaches with two different mtDNA groups. Our mtDNA phylogenetic results indicated that the two diverged pond loach mtDNA sequences showed polyphyletic relationships among Misgurnus species and its related genus Cobitis. In contrast, there were no clear divergence in nuclear DNA among the pond loaches irrespective of their mtDNA groups, and they all formed monomorphic clades in the phylogenetic relationships among the species. The discrepancy between the mtDNA and nuclear DNA genes support that the existence of two diverged forms of DNA within the pond loach population could be attributed to past mtDNA introgressions from other species rather than convergent evolution. Previous mtDNA phylogenetic studies among Cobitidae revealed that the dojo loach also consisted of two genetically diverged polyphyletic clades: an original Misgurnus mtDNA and an introgressed mtDNA from Cobitis species. In our mtDNA result, the Group II haplotype of the pond loach was included in the mtDNA from the introgressed dojo loach. This suggested that the Group II haplotype was derived from introgressed dojo loach mtDNA. The close relationships between the introgressed dojo loach and the pond loach mtDNA indicated that this secondary introgression had recently occurred via hybridization in a recent artificial aquaculture or transportation process. Common RAG-1 alleles and RAPD bands were shared between the sympatric pond loaches with original and introgressed mtDNAs. This indicates that the introgressed mtDNA haplotype is included as one of the polymorphic genotypes within the pond loach populations, and does not represent existence of different cryptic species.  相似文献   

16.
The chimpanzee populations of the Bossou and Nimba regions in West Africa were genetically surveyed to 1) reveal the genetic relationship between the Bossou and Nimba populations, and 2) elucidate the evolutionary relationship between the Bossou-Nimba and other West African populations. The chimpanzee group at Bossou is characterized by its small population size, no evidence of contact with neighboring populations, and no female immigration. It is believed that most females and adolescent males emigrate from this population. To reveal the genetic signature of these characteristics, we examined the genetic diversity of Bossou and two neighboring populations (Seringbara and Yealé) in the Nimba Mountains by sequencing approximately 605 bp of the mitochondrial DNA (mtDNA) control region. A total of 20 distinct mtDNA variants were observed from 56 sequences of noninvasively collected, anonymous samples. Nucleotide diversity in the Nimba Mountain populations was 0.03-0.04, and did not differ significantly from that in the Bossou population. Very few mitochondrial variants are shared among the sites sampled, which suggests that there is little gene flow involving mtDNA. Nevertheless, no clear population structures were revealed in either population. A comparison with published sequences from West African chimpanzees (Pan troglodytes verus) indicates that the variants observed in the Bossou and Nimba regions are scattered throughout the subspecies, rather than clustered according to geographic region. This suggests that the Bossou-Nimba populations derived only recently from the common ancestral population of the West African chimpanzees, and did not pass through a bottleneck.  相似文献   

17.
Recent work has suggested that rates of introgression should be inversely related to levels of gene flow because introgressed populations cannot be 'rescued' by intraspecific gene flow if it is too low. Mitochondrial and chloroplast DNA (mtDNA and cpDNA) experience very different levels of gene flow in conifers due to their contrasted maternal and paternal modes of transmission, hence the prediction that mtDNA should introgress more readily than cpDNA in this group. Here, we use sequence data from both mtDNA and cpDNA to test this hypothesis in a group of closely related spruces species, the Picea asperata complex from China. Nine mitochondrial and nine chloroplast haplotypes were recovered from 459 individuals in 46 natural populations belonging to five species of the Picea asperata complex. Low variation was found in the two mtDNA introns along with a high level of differentiation among populations ( G ST = 0.90). In contrast, we detected higher variation and lower differentiation among populations at cpDNA markers ( G ST = 0.56), a trend shared by most conifer species studied so far. We found that cpDNA variation, although far from being fully diagnostic, is more species-specific than mtDNA variation: four groups of populations were identified using cpDNA markers, all of them related to species or groups of species, whereas for mtDNA, geographical variation prevails over species differentiation. The literature suggests that mtDNA haplotypes are often shared among related conifer species, whereas cpDNA haplotypes are more species-specific. Hence, increased intraspecific gene flow appears to decrease differentiation within species but not among species.  相似文献   

18.
Sequences of the mitochondrial cytochrome c oxidase subunit I (COI) gene have been shown to be useful for species identification in various groups of animals. However, the DNA barcoding approach has never been tested on African fruit bats of the family Pteropodidae (Mammalia, Chiroptera). In this study, the COI gene was sequenced from 120 bats collected in the Central African Republic and belonging to either Epomophorus?gambianus or Micropteropus?pusillus, two species easily diagnosed on the basis of morphological characters, such as body size, skull shape and palatal ridges. Two additional molecular markers were used for comparisons: the complete mitochondrial cytochrome b gene and the intron 7 of the nuclear β-fibrinogen (FGB) gene. Our results reveal an unexpected discordance between mitochondrial and nuclear genes. The nuclear FGB signal agrees with our morphological identifications, as the three alleles detected for E.?gambianus are divergent from the fourteen alleles found for M.?pusillus. By contrast, this taxonomic distinction is not recovered with the analyses of mitochondrial genes, which support rather a polyphyletic pattern for both species. The conflict between molecular markers is explained by multiple mtDNA introgression events from M.?pusillus into E.?gambianus or, alternatively, by incomplete lineage sorting of mtDNA haplotypes associated with positive selection on FGB alleles of M.?pusillus. Our work shows the failure of DNA barcoding to discriminate between two morphologically distinct fruit bat species and highlights the importance of using both mitochondrial and nuclear markers for taxonomic identification.  相似文献   

19.
We evaluated the potential effects of homoplasy, ancestral polymorphism, and hybridization as obstacles to resolving phylogenetic relationships within Nomonyx-Oxyura stiff-tailed ducks (Oxyurinae; subtribe Oxyurina). Mitochondrial DNA (mtDNA) control region sequences from 94 individuals supported monophyly of mtDNA haplotypes for each of the six species and provided no evidence of extant incomplete lineage sorting or inter-specific hybridization. The ruddy ducks (O. j. jamaicensis,O. j. andina, O. j. ferruginea) are each others' closest relatives, but the lack of shared haplotypes between O. j. jamaicensis and O. j. ferruginea suggests long-standing historical isolation. In contrast, O. j. andina shares haplotypes with O. j. jamaicensis and O. j. ferruginea, which supports Todd's (1979) and Fjelds?'s (1986) hypothesis that O. j. andina is an intergrade or hybrid subspecies of O. j. jamaicensis and O. j. ferruginea. Control region data and a much larger data set composed of approximately 8800 base pairs of mitochondrial and nuclear sequence for each species indicate that the two New World species, O. vittata and O. jamaicensis, branch basally within Oxyura. A clade of three Old World species (O. australis, O. maccoa, O. leucocephala) is well supported, but different loci and also different characters within the mtDNA data support three different resolutions of the Old World clade, yielding an essentially unresolved trichotomy. Fundamentally different factors limited the resolution of the mtDNA and nuclear gene trees. Gene trees for most nuclear loci were unresolved due to slow rates of mutation and a lack of informative variation, whereas uncertain resolution of the mtDNA gene tree was due to homoplasy. Within the mtDNA, approximately equal numbers of characters supported each of three possible resolutions. Parametric and nonparametric bootstrap analyses suggest that resolution of the mtDNA tree based on ~4300 bp per taxon is uncertain but that complete mtDNA sequences would yield a fully resolved gene tree. A short internode separating O. leucocephala from (O. australis, O. maccoa) in the best mtDNA tree combined with long terminal branches and substantial rate variation among nucleotide sites allowed the small number of changes occurring on the internode to be obscured by homoplasy in a significant portion of simulated data sets. Although most nuclear loci were uninformative, two loci supported a resolution of the Old World clade (O. maccoa, O. leucocephala) that is incongruent with the best mtDNA tree. Thus, incongruence between nuclear and mtDNA trees may be due to random sorting of ancestral lineages during the short internode, homoplasy in the mtDNA data, or both. The Oxyura trichotomy represents a difficult though likely common problem in molecular systematics. Given a short internode, the mtDNA tree has a greater chance of being congruent with the history of speciation because its effective population size (N(e)) is one-quarter that of any nuclear locus, but its resolution is more likely to be obscured by homoplasy. In contrast, gene trees for more slowly evolving nuclear loci will be difficult to resolve due to a lack of substitutions during the internode, and when resolved are more likely to be incongruent with the species history due to the stochastic effects of lineage sorting. We suggest that researchers consider first whether independent gene trees are adequately resolved and then whether those trees are congruent with the species history. In the case of Oxyura, the answer to both questions may be no. Complete mtDNA sequences combined with data from a very large number of nuclear loci may be the only way to resolve such trichotomies.  相似文献   

20.
The Pleistocene glacial cycles left a genetic legacy on taxa throughout the world; however, the persistence of genetic lineages that diverged during these cycles is dependent upon levels of gene flow and introgression. The consequences of secondary contact among taxa may reveal new insights into the history of the Pleistocene’s genetic legacy. Here, we use phylogeographic methods, using 20 nuclear loci from regional populations, to infer the consequences of secondary contact following divergence in the Mountain Chickadee (Poecile gambeli). Analysis of nuclear data identified two geographically-structured genetic groups, largely concordant with results from a previous mitochondrial DNA (mtDNA) study. Additionally, the estimated multilocus divergence times indicate a Pleistocene divergence, and are highly concordant with mtDNA. The previous mtDNA study showed a paucity of sympatry between clades, while nuclear patterns of gene flow show highly varied patterns between populations. The observed pattern of gene flow, from coalescent-based analyses, indicates southern populations in both clades exhibit little gene flow within or between clades, while northern populations are experiencing higher gene flow within and between clades. If this pattern were to persist, it is possible the historical legacy of Pleistocene divergence may be preserved in the southern populations only, and the northern populations would become a genetically diverse hybrid species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号