首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biosynthetic reaction scheme for the compatible solute mannosylglycerate in Rhodothermus marinus is proposed based on measurements of the relevant enzymatic activities in cell-free extracts and in vivo (13)C labeling experiments. The synthesis of mannosylglycerate proceeded via two alternative pathways; in one of them, GDP mannose was condensed with D-glycerate to produce mannosylglycerate in a single reaction catalyzed by mannosylglycerate synthase, in the other pathway, a mannosyl-3-phosphoglycerate synthase catalyzed the conversion of GDP mannose and D-3-phosphoglycerate into a phosphorylated intermediate, which was subsequently converted to mannosylglycerate by the action of a phosphatase. The enzyme activities committed to the synthesis of mannosylglycerate were not influenced by the NaCl concentration in the growth medium. However, the combined mannosyl-3-phosphoglycerate synthase/phosphatase system required the addition of NaCl or KCl to the assay mixture for optimal activity. The mannosylglycerate synthase enzyme was purified and characterized. Based on partial sequence information, the corresponding mgs gene was identified from a genomic library of R. marinus. In addition, the mgs gene was overexpressed in Escherichia coli with a high yield. The enzyme had a molecular mass of 46,125 Da, and was specific for GDP mannose and D-glycerate. This is the first report of the characterization of a mannosylglycerate synthase.  相似文献   

2.
The effect of salinity and growth temperature on the accumulation of intracellular organic solutes was examined in the hyperthermophilic archaeon Palaeococcus ferrophilus. The genus Palaeococcus represents a deep-branching lineage of the order Thermococcales, which diverged before Thermococcus and Pyrococcus. Palaeococcus ferrophilus accumulated mannosylglycerate, glutamate, and aspartate as major compatible solutes. Unlike members of the genera Pyrococcus and Thermococcus, Palaeococcus ferrophilus did not accumulate di-myo-inositol phosphate, a canonical solute of hyperthermophiles. The level of mannosylglycerate increased in response to both heat and salt stress; glutamate increased at supraoptimal growth temperatures, whereas aspartate increased at supraoptimal salt concentration. Proline, alanine, and trehalose were also found in lesser amounts, but their levels did not respond significantly to any of the stresses imposed. Additionally, the genes involved in the synthesis of mannosylglycerate in Palaeococcus ferrophilus and Thermococcus litoralis were identified. In both organisms the synthesis proceeds via the two-step pathway comprising mannosyl-3-phosphoglycerate synthase (MPGS) (EC 2.4.1.217) and mannosyl-3-phosphoglycerate phosphatase (MPGP) (EC 3.1.3.70). The mpgS and mpgP genes of Palaeococcus ferrophilus were expressed in Escherichia coli and the proteins were characterized. MPGS had maximal activity at 90 degrees C and pH near 7.0, and was strictly dependent on Mg2+. MPGP had optimal activity at 90 degrees C and pH 6.0 and was barely dependent on Mg2+. The half-life values for inactivation of MPGS and MPGP at 83 degrees C were 18 and 25 min, respectively. A comparative discussion of the osmo- and thermoadaptation strategies in these three genera of the Thermococcales is presented.  相似文献   

3.
Genetic manipulation of Rhodothermus marinus has been hampered by the lack of a selection system for gene transfer. We report construction of a Rhodothermus/Escherichia coli shuttle plasmid, containing the R. marinus trpB gene, based on pUC18 and the cryptic R. marinus plasmid pRM21. A plasmid-less R. marinus recipient strain was selected on the basis of growth characteristics and absence of restriction activity. The shuttle plasmid, pRM100, was successfully introduced into a TrpB mutant of the recipient strain using electroporation and was found to transform it to prototrophy. No loss or rearrangement of pRM100 was observed after growth for 80 generations in non-selective medium. The relative copy numbers of pRM100 and of the parental plasmid, pRM21, were determined as 7±1 and 42±4, respectively. The shuttle plasmid was used to optimize an electroporation protocol, and the maximal number of transformants obtained was 4.3±0.7×106 cfu/g DNA at 22.5 kV/cm, 200 and 25 F. Transformation failed, however, after chemical preparation of cells according to several protocols. This is the first report of genetic transformation in the genus Rhodothermus.  相似文献   

4.
The aim of this work was to develop an approach for chromosomal engineering of the thermophile Rhodothermus marinus. A selection strategy for R. marinus had previously been developed; this strategy was based on complementing a restriction-negative trpB strain with the R. marinus trpB gene. The current work identified an additional selective marker, purA, which encodes adenylosuccinate synthase and confers adenine prototrophy. In a two-step procedure, the available Trp(+) selection was used during the deletion of purA from the R. marinus chromosome. The alternative Ade(+) selection was in turn used while deleting the endogenous trpB gene. Since both deletions are unmarked, the purA and trpB markers may be reused. Through the double deletant SB-62 (ΔtrpB ΔpurA), the difficulties that are associated with spontaneous revertants and unintended chromosomal integration of marker-containing molecules are circumvented. The selection efficiency in R. marinus strain SB-62 (ΔtrpB ΔpurA) was demonstrated by targeting putative carotenoid biosynthesis genes, crtBI, using a linear molecule containing a marked deletion with 717 and 810 bp of 5' and 3' homologous sequences, respectively. The resulting Trp(+) transformants were colorless rather than orange-red. The correct replacement of an internal crtBI fragment with the trpB marker was confirmed by Southern hybridization analysis of the transformants. Thus, it appears that target genes in the R. marinus chromosome can be readily replaced with linear molecules in a single step by double-crossover recombination.  相似文献   

5.
6.
7.
A Rhodothermus marinus gene, hemB, coding for 5-aminolevulinic acid (ALA) dehydratase (ALAD) has been cloned and sequenced. The reading frame of the hemB gene is 1020 base pairs encoding a protein of 340 amino acids with a calculated molecular mass of 37.4 kDa. The amino acid sequence shows homology with eubacterial and eukaryotic ALA dehydratases. A putative metal-binding site of the protein shows strongest homology with corresponding sites from plant ALA dehydratases that require Mg2+ for activity. It differs with respect to only one amino acid out of 20 from a corresponding site in pea ALAD. Received: 1 March 1999 / Accepted: 7 April 1999  相似文献   

8.
(sup13)C nuclear magnetic resonance spectroscopy and (sup1)H nuclear magnetic resonance spectroscopy were used to identify and quantify the organic solutes of several strains of halophilic or halotolerant thermophilic bacteria. Two strains of Rhodothermus marinus and four strains of "Thermus thermophilus" grown in complex medium containing NaCl were examined. 2-O-Mannosylglycerate was a major compatible solute in all strains: the Thermus strains accumulated the (beta)-anomer only, whereas both anomers were found in R. marinus. 2-O-(beta)-mannosylglycerate and 2-O-(alpha)-mannosylglycerate were the major compatible solutes in R. marinus. The former was the predominant solute in cells grown in 2.0 and 4.0% NaCl-containing medium, while the latter was the predominant compatible solute at higher salinities. Glutamate, trehalose, and glucose were also present as minor components. The intracellular K(sup+) concentration, as determined by (sup39)K nuclear magnetic resonance spectroscopy, in R. marinus increased with salinity and was sufficient to balance the negative charges of the mannosylglycerate. In addition to 2-O-(beta)-mannosylglycerate, trehalose was a major compatible solute of "T. thermophilus." 2-O-(beta)-Mannosylglycerate was the main solute in medium containing 1.0 or 2.0% NaCl, while trehalose predominated in cells grown in medium supplemented with 3.0 or 4.0% NaCl. Glycine betaine, in lower concentrations, was also detected in two "T. thermophilus" strains. This is the first report of mannosylglycerate as a compatible solute in bacteria.  相似文献   

9.
In this study we propose revised structures for the two major compatible solutes of Rhodothermus marinus. We have also examined the accumulation of compatible solutes by the type strains of the slightly halophilic and thermophilic species Rhodothermus marinus and Rhodothermus obamensis at several growth temperatures and salinities. The major solutes of R. marinus were identified as α-mannosylglycerate (α-MG) and α-mannosylglyceramide (α-MGA), whereas R. obamensis accumulated only α-mannosylglycerate. The total osmolyte content was higher during the early exponential phase and decreased abruptly as growth continued into the stationary phase. At low growth temperatures, R. marinus responded to water stress by accumulation of α-mannosylglycerate and its amide, in addition to low levels of trehalose, glutamate, and glucose. At the highest growth temperature, α-mannosylglycerate was the major compatible solute and α-mannosylglyceramide was not detected. When both compounds were present, an increase in the salinity of the growth medium favored the accumulation of α-mannosylglyceramide over α-mannosylglycerate. The absence of α-mannosylglyceramide in R. obamensis at all growth temperatures and salinities constituted the most pronounced difference in the profiles of compatible solute accumulation by the two strains. Trehalose was also a prominent solute in this organism. Both organisms accumulated higher levels of α-mannosylglycerate as the temperature was raised. The importance of the two compounds in the mechanisms of thermoadaptation and osmoadaptation is discussed. Received: February 10, 1998 / Accepted: January 11, 1999  相似文献   

10.
The rotenone sensitive NADH: menaquinone oxidoreductase (NDH-I or complex I) from the thermohalophilic bacterium Rhodothermus marinus has been purified and characterized. Three of its subunits react with antibodies against 78, 51, and 21.3c kDa subunits of Neurospora crassa complex I. The optimum conditions for NADH dehydrogenase activity are 50°C and pH 8.1, and the enzyme presents a K M of 9 M for NADH. The enzyme also displays NADH:quinone oxidoreductase activity with two menaquinone analogs, 1,4-naphtoquinone (NQ) and 2,3-dimethyl-1,4-naphtoquinone (DMN), being the last one rotenone sensitive, indicating the complex integrity as purified. When incorporated in liposomes, a stimulation of the NADH:DMN oxidoreductase activity is observed by dissipation of the membrane potential, upon addition of CCCP. The purified enzyme contains 13.5 ± 3.5 iron atoms and 3.7 menaquinone per FMN. At least five iron—sulfur centers are observed by EPR spectroscopy: two [2Fe–2S]2+/1+ and three [4Fe–4S]2+/1+ centers. By fluorescence spectroscopy a still unidentified chromophore was detected in R. marinus complex I.  相似文献   

11.
In the thermohalophilic bacterium Rhodothermus marinus, the NADH:quinone oxidoreductase (complex I) is encoded by two single genes and two operons, one of which contains the genes for five complex I subunits, nqo10-nqo14, a pterin carbinolamine dehydratase, and a putative single subunit Na+/H+ antiporter. Here we report that the latter encodes indeed a functional Na+/H+ antiporter, which is able to confer resistance to Na+, but not to Li+ to an Escherichia coli strain defective in Na+/H+ antiporters. In addition, an extensive amino acid sequence comparison with several single subunit Na+/H+ antiporters from different groups, namely NhaA, NhaB, NhaC, and NhaD, suggests that this might be the first member of a new type of Na+/H+ antiporters, which we propose to call NhaE.  相似文献   

12.
The xyn1 encoded 5 domain xylanase from the thermophilic bacterium Rhodothermus marinus binds specifically to xylan, β-glucan and amorphous but not crystalline cellulose. Our results show that the binding is mediated by the full length xylanase, but not by the catalytic domain only. Based on similarities concerning both predicted secondary structure and binding specificity found with one cellulose binding domain of CenC from Cellulomonas fimi, we suggest that the binding is mediated by the two N-terminally repeated domains.  相似文献   

13.
The culture medium for Rhodothermus marinus was optimised on a shake-flask scale by using statistical factorial designs for enhanced production of a highly thermostable alpha-L-arabinofuranosidase (AFase). The medium containing 3.6 g/l birch wood xylan and 8.2 g/l yeast extract yielded a maximum of 110 nkat/ml AFase activity together with 125 nkat/ml xylanase and 65 nkat/ml beta-xylosidase activity. In addition, low levels of beta-mannanase (30 nkat/ml), alpha-galactosidase (0.2 nkat/ml), beta-galactosidase (0.3 nkat/ml), endoglucanase (5 nkat/ml) and beta-glucosidase (30 nkat/ml) were detected in the culture filtrate. Among the various carbon sources tested, birchwood xylan was most effective for the formation of AFase and xylanase activities, followed by oat spelt and beechwood xylans, and xylan-rich lignocelluoses (e.g., starch-free sugar beet pulp and wheat bran). Constitutive levels of enzyme activities were detected when the bacterium was grown on other polysaccharides and low-molecular-weight carbohydrates. A fermentation in a 5-l fermenter (3-l working volume) using the optimised medium yielded 60 nkat/ml AFase associated with 65 nkat/ml xylanase and 35 nkat/ml beta-xylosidase activities. The crude AFase displayed optimal activity between pH 5.5 and 7 and at 85 degrees C. It had half-lives of 8.3 h at 85 degrees C and 17 min at 90 degrees C. It showed high stability between pH 5 and 9 (24 h at 65 degrees C). The combined use of AFase-rich xylanase and mannanase from R. marinus in the prebleaching of softwood kraft pulp gave a brightness increase of 1.8% ISO. To our knowledge, this is the first report on the production of a high AFase activity by an extreme thermophilic bacterium and this enzyme is the most thermostable AFase reported so far.  相似文献   

14.
Trehalose uptake at 65°C in Rhodothermus marinus was characterized. The profile of trehalose uptake as a function of concentration showed two distinct types of saturation kinetics, and the analysis of the data was complicated by the activity of a periplasmic trehalase. The kinetic parameters of this enzyme determined in whole cells were as follows: Km = 156 ± 11 μM and Vmax = 21.2 ± 0.4 nmol/min/mg of total protein. Therefore, trehalose could be acted upon by this periplasmic activity, yielding glucose that subsequently entered the cell via the glucose uptake system, which was also characterized. To distinguish the several contributions in this intricate system, a mathematical model was developed that took into account the experimental kinetic parameters for trehalase, trehalose transport, glucose transport, competition data with trehalose, glucose, and palatinose, and measurements of glucose diffusion out of the periplasm. It was concluded that R. marinus has distinct transport systems for trehalose and glucose; moreover, the experimental data fit perfectly with a model considering a high-affinity, low-capacity transport system for trehalose (Km = 0.11 ± 0.03 μM and Vmax = 0.39 ± 0.02 nmol/min/mg of protein) and a glucose transporter with moderate affinity and capacity (Km = 46 ± 3 μM and Vmax = 48 ± 1 nmol/min/mg of protein). The contribution of the trehalose transporter is important only in trehalose-poor environments (trehalose concentrations up to 6 μM); at higher concentrations trehalose is assimilated primarily via trehalase and the glucose transport system. Trehalose uptake was constitutive, but the activity decreased 60% in response to osmotic stress. The nature of the trehalose transporter and the physiological relevance of these findings are discussed.  相似文献   

15.
Cytochrome c from Rhodothermus marinus has been crystallized using the hanging-drop vapor-diffusion method in 30 % (w/v) polyethylene glycol 8K, 0.2 M ammonium sulfate, 8 % hexanediol and 50 mM sodium citrate pH 2.2. The crystals belong to space group P2(1). X-ray diffraction data were collected to 1.23 A resolution using synchrotron radiation and a wavelength of 0.93 A.  相似文献   

16.
Rhodothermus marinus, a thermohalophilic gram negative bacterium, contains a type I NADH/quinone oxidoreductase (complex I). Its purification was optimized, yielding large amounts of pure and active protein. Furthermore, the stoichiometry of NADH oxidation and quinone reduction was shown to be 1:1. The large amounts of protein enabled a thorough characterization by electron paramagnetic resonance (EPR) spectroscopy at different temperatures and microwave powers, using NADH, NADPH, and dithionite as reducing agents. A minimum of two [2Fe-2S](2+/1+) and four [4Fe-4S](2+/1+) centers were observed in the purified complex. Redox titrations monitored by EPR spectroscopy made possible the determination of the reduction potentials of the iron-sulfur centers; with the exception of one of the [4Fe-4S](2+/1+) centers, which has a lower reduction potential, all the other centers have reduction potentials of -240 +/- 20 mV, pH 7.5.  相似文献   

17.
Five strains of the extreme thermophilic Rhodothermus marinus were screened for the production of amylolytic and pullulytic activities. The culture medium for the selected strain, R. marinus ITI 990, was optimized using central composite designs for enhanced enzyme production. The optimized medium containing 1.5 gl(-1) of maltose and 8.3 gl(-1) of yeast extract yielded amylase, pullulanase and alpha-glucosidase activities of 45, 33 and 2.1 nkatml(-1), respectively. Among the various carbon sources tested, maltose was most effective for the formation of these enzymes, followed by soluble maize starch, glycogen and pullulan. The crude amylase and pullulanase showed maximum activities at pH 6.5-7.0, and 85 and 80 degrees C, respectively. At 85 degrees C amylase and pullulanase had half lives of 3 h and 30 min, respectively.  相似文献   

18.
The ligand-binding dynamics and the reaction with O(2) of the fully (five-electron) reduced cytochrome caa(3) from the thermohalophilic bacterium Rhodothermus (R.) marinus were investigated. The enzyme is a proton pump which has all the residues of the proton-transfer pathways found in the mitochondrial-like enzymes conserved, except for one of the key elements of the D-pathway, the helix-VI glutamate [Glu(I-286), R. sphaeroides numbering]. In contrast to what has been suggested previously as general characteristics of thermophilic enzymes, during formation of the R. marinus caa(3)-CO complex, CO binds weakly to Cu(B), and is rapidly (k(Ba) = 450 s(-1)) trapped by irreversible (K(Ba) = 4.5 x 10(3)) binding to heme a(3). Upon reaction of the fully reduced enzyme with O(2), four kinetic phases were resolved during the first 10 ms after initiation of the reaction. On the basis of a comparison to reactions observed with the bovine enzyme, these phases were attributed to the following transitions between intermediates (pH 7.8, 1 mM O(2)): R --> A (tau congruent with 8 micros), A --> P(r) (tau congruent with 35 micros), P(r) --> F (tau congruent with 240 micros), F --> O (tau congruent with 2.5 ms), where the last two phases were associated with proton uptake from the bulk solution. Oxidation of heme c was observed only during the last two reaction steps. The slower transition times as compared to those observed with the bovine enzyme most likely reflect the replacement of Glu(I-286) of the helix-VI motif -XGHPEV- by a tyrosine in the R. marinus enzyme in the motif -YSHPXV-. The presence of an additional, fifth electron in the enzyme was reflected by two additional kinetic phases with time constants of approximately 20 and approximately 720 ms during which the fifth electron reequilibrated within the enzyme.  相似文献   

19.
A thermostable glycoside hydrolase family-10 xylanase originating from Rhodothermus marinus was cloned and expressed in the methylotrophic yeast Pichia pastoris (SMD1168H). The DNA sequence from Rmxyn10A encoding the xylanase catalytic module was PCR-amplified and cloned in frame with the Saccharomyces cerevisiae alpha-factor secretion signal under the control of the alcohol oxidase (AOX1) promotor. Optimisation of enzyme production in batch fermentors, with methanol as a sole carbon source, enabled secretion yields up to 3gl(-1) xylanase with a maximum activity of 3130Ul(-1) to be achieved. N-terminal sequence analysis of the heterologous xylanase indicated that the secretion signal was correctly processed in P. pastoris and the molecular weight of 37kDa was in agreement with the theoretically calculated molecular mass. Introduction of a heat-pretreatment step was however necessary in order to fold the heterologous xylanase to an active state, and at the conditions used this step yielded a 200-fold increase in xylanase activity. Thermostability of the produced xylanase was monitored by differential-scanning calorimetry, and the transition temperature (T(m)) was 78 degrees C. R. marinus xylanase is the first reported thermostable gram-negative bacterial xylanase efficiently secreted by P. pastoris.  相似文献   

20.
delta-Aminolevulinic acid (ALA), the first committed precursor to the tetrapyrrole components of hemes and chlorophylls, is synthesized by two different routes in the photosynthetic phytoflagellate Euglena gracilis: directly from glutamate, mediated by a 5-carbon pathway, and via condensation of glycine and succinyl-CoA, catalyzed by the enzyme ALA synthase. The physiological roles of the two pathways were determined by administration of specifically 14C-labeled ALA precursors to cultures growing under different physiological conditions. Relative activities of the ALA synthase and 5-carbon pathways were monitored by incorporation of radioactivity from [2-14C] glycine and [1-14C]glutamate into highly purified protoheme, heme a and chlorophyll a derivatives. Wild type cells grown photoautotrophically or photoheterotrophically synthesized chlorophyll and incorporated radioactivity from [1-14C]glutamate into the tetrapyrrole nucleus of the pigment. [2-14C]Glycine was incorporated primarily into the nontetrapyrrole-derived portions of chlorophyll. In the same cultures both [2-14C]glycine and [1-14C]glutamate were efficiently incorporated into protoheme, while only [2-14C] glycine was incorporated into heme a. In dark-grown wild type or light-grown aplastidic cells, no chlorophyll was formed, and both protoheme and heme a were labeled exclusively from [2-14C]glycine. These results indicate: (a) ALA synthase and the 5-carbon pathway operate simultaneously in growing green cells; (b) the 5-carbon pathway provides ALA for chloroplast protoheme and chlorophyll, and is associated with chloroplast development; (c) ALA synthase provides ALA only for nonplastid heme biosynthesis; and (d) the two ALA pathways are separately compartmentalized along with complete sets of enzymes for subsequent tetrapyrrole synthesis from each ALA pool. The protoheme that was synthesized from [1-14C] glutamate had a higher specific radioactivity than chlorophyll synthesized from the same precursor. This result together with calculated specific radioactivities of the products synthesized during the incubation period, suggest that both protoheme and heme a undergo metabolic turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号