首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We studied a French kindred with hereditary elliptocytosis associated with a spectrin variant (spectrin LePuy) containing a beta-spectrin chain that is truncated at its C terminus (Dhermy, D., Lecomte, M., Garbarz, M., Bournier, O., Galand, C., Gautero, H., Feo, C., Alloisio, N., Delaunay, J., and Boivin, P. (1982) J. Clin. Invest. 70, 707-715). The structure of the 3' end of the beta-spectrin gene, the region encoding the C terminus of beta-spectrin, was determined. Nucleotide sequencing of amplified genomic DNA revealed a mutation at position +4 (A----G) of the 5' donor consensus splice site of the intron following the third-to-last exon (exon X) in one beta-spectrin allele of a heterozygous patient. Agarose gel electrophoresis of polymerase chain reaction-amplified cDNA revealed an extra band of lower molecular weight, suggesting that the shortened beta-spectrin chain of spectrin LePuy arises from aberrant mRNA splicing. Nucleotide sequencing of the shorter cDNA amplification product revealed that the sequences encoding exon X were absent. Southern blotting of cDNA amplification products confirmed this result. The skipping of exon X causes a shift in the normal reading frame resulting in the encoding of a new amino acid sequence at the C terminus of the mutant beta-spectrin chain. A new in-frame stop codon is encountered following a single residue of this novel sequence.  相似文献   

2.
Recent biochemical studies have shown that the fibroblasts from a patient with Ehlers-Danlos Syndrome Type VIIB produce nearly equal amounts of normal and shortened pro-alpha 2(I) collagen chains (Wirtz, M.K., Glanville, R. W., Steinmann, B., Rao, V. H., and Hollister, D. (1987) J. Biol. Chem. 262, 16376-16385). Compositional and sequencing studies of the abnormal pro-alpha 2(I) chain identified an interstitial deletion of 18 residues corresponding to the N-telopeptide of the collagen molecule. Since this region is encoded by a 54-base pair exon, number 6, the protein defect could have been caused by gene deletion, abnormal pre-mRNA splicing, or both. Here, in order to elucidate the molecular nature of this mutation we have analyzed the sequences of pro-alpha 2(I) collagen cDNA and genomic clones obtained from RNA and DNA of the patient's fibroblasts. Using oligomer-specific cloning we identified a cDNA that contains a 54-base pair deletion corresponding precisely to the sequence of exon 6. Identification of the normal gene was based on the finding of an identical sequence polymorphism in a normal cDNA and in the genomic clone derived from one of the two collagen alleles. The other gene, instead, displayed a base substitution (T to C) in the obligatory GT dinucleotide of the 5' splice-site sequence of intron 6. Analysis of nearly 100 base pairs immediately 5' to exons 5, 6, and 7, and 3' to exons 5 and 7 did not reveal any additional change. Therefore, the data strongly suggest that the observed GT-to-GC transition at the splice donor site of intron 6 generates an abnormally spliced mRNA in which the sequence of exon 5 is joined to the sequence of exon 7. Since skipping of exon 6 does not interfere with the coding frame of the mRNA, the resulting shortened polypeptide, albeit utilized in the assembly of a procollagen trimer, ultimately causes the Ehlers-Danlos Syndrome Type VII phenotype.  相似文献   

3.
Four novel PEPD alleles causing prolidase deficiency.   总被引:1,自引:1,他引:0       下载免费PDF全文
Mutations at the PEPD locus cause prolidase deficiency (McKusick 170100), a rare autosomal recessive disorder characterized by iminodipeptiduria, skin ulcers, mental retardation, and recurrent infections. Four PEPD mutations from five severely affected individuals were characterized by analysis of reverse-transcribed, PCR-amplified (RT-PCR) cDNA. We used SSCP analysis on four overlapping cDNA fragments covering the entire coding region of the PEPD gene and detected abnormal SSCP bands for the fragment spanning all or part of exons 13-15 in three of the probands. Direct sequencing of the mutant cDNAs showed a G-->A, 1342 substitution (G448R) in two patients and a 3-bp deletion (delta E452 or delta E453) in another. In the other two probands the amplified products were of reduced size. Direct sequencing of these mutant cDNAs revealed a deletion of exon 5 in one patient and of exon 7 in the other. Intronic sequences flanking exons 5 and 7 were identified using inverse PCR followed by direct sequencing. Conventional PCR and direct sequencing then established the intron-exon borders of the mutant genomic DNA revealing two splice acceptor mutations: a G-->C substitution at position -1 of intron 4 and an A-->G substitution at position -2 of intron 6. Our results indicate that the severe form of prolidase deficiency is caused by multiple PEPD alleles. In this report we attempt to begin the process of describing these alleles and cataloging their phenotypic expression.  相似文献   

4.
The mutagenic epoxide metabolite of acrylonitrile, 2-cyanoethylene oxide (ANO), was used to treat human TK6 lymphoblasts (150 microM x 2 h ANO). A collection of hypoxanthine-phosphoribosyltransferase (hprt) mutants was isolated and characterized by dideoxy sequencing of cloned hprt cDNA. Base-pair substitution mutations in the hprt coding region were observed in 19/39 of hprt mutants: 11 occurred at AT base pairs and 8 at GC base pairs. Two -1 frameshift mutations involving GC bases were also observed. Approximately half (17/39) of the hprt mutants displayed the complete loss of single and multiple exons from hprt cDNA, as well as small deletions, some extending from exon/exon junctions. Southern blot analysis of 5 mutants with single exon losses revealed no visible alterations. Analysis of 1 mutant missing exons 3-6 in its hprt mRNA revealed a visible deletion in the corresponding region in its genomic DNA. The missing exon regions of 4 mutants (one each with exons 6, 7 and 8 loss and one mutant with a 17-base deletion of the 5' region of exon 9) were PCR amplified from genomic DNA and analyzed by Southern blot using exon-specific probes. The exons missing from the hprt mRNA were present in the genomic hprt sequence. DNA sequencing of the appropriate intron/exon regions of hprt genomic DNA from a mutant with exon 8 loss and a mutant exhibiting aberrant splicing in exon 9 revealed point mutations in the splice acceptor site of exon 8 (T----A) and exon 9 (A----G), respectively.  相似文献   

5.
6.
7.
8.
Maple syrup urine disease (MSUD) is an autosomal recessive disease caused by a deficiency in subunits of the branched-chain α-keto-acid dehydrogenase complex (BCKDH). To characterize the mutations present in five patients with MSUD (four classic and one intermediate), three-step analyses were established: (1) identification of the involved subunit by complementation analysis using three different cell lines derived from homozygotes having E1α, E2β or the E2 mutant gene; (2), screening for a mutation site in cDNA of the corresponding subunit by RT-PCR-SSCP and (3), mutant analysis by sequencing the amplified cDNA fragment. Four single-base missense mutations, R115W, Q1556K, A209T and I282T, were detected in the E1α subunit. A single-base missense mutation H156R and three frame-shift mutations to generate stop codons downstream, including an 11-bp deletion of the tandem repeat in exon 1, a single-base (T) deletion and a single-base (G) insertion, were identified in the E1β subunit gene. All except one (11-bp deletion in E1β (Nobukini, Y., Mitsubuchi, H., Akaboshi, I., Indo, Y., Endo, F., Yoshioka, A. and Matsuda, I. (1991) J. Clin. Invest. 87, 1862–1866)) were novel mutations. The sites of amino-acid substitution were all conserved in other species. Thus, mutations causing MSUD are heterogeneous.  相似文献   

9.
Citrullinemia is an autosomal recessive disease caused by a genetic deficiency of argininosuccinate synthetase. In order to characterize mutations in Japanese patients with classical citrullinemia, RNA isolated from 10 unrelated patients was reverse-transcribed, and cDNA amplified by PCR was cloned and sequenced. The 10 mutations identified included 6 missense mutations (A118T, A192V, R272C, G280R, R304W, and R363L), 2 mutations associated with an absence of an exon 7 or exon 13, 1 mutation with a deletion of the first 7 bp in exon 16 (which might be caused by abnormal splicing), and 1 mutation with an insertion of 37 bp within exons 15 and 16 in cDNA. The insertion mutation and the five missense mutations (R304W being excluded) are new mutations described in the present paper. These are in addition to 14 mutations (9 missense mutations, 4 mutations associated with an absence of an exon in mRNA, and 1 splicing mutation) that we identified previously in mainly American patients with neonatal citrullinemia. Two of these 20 mutations, a deletion of exon 13 sequence and a 7-bp deletion in exon 16, were common to Japanese and American populations from different ethnic backgrounds; however, other mutations were unique to each population. Furthermore, the presence of a frequent mutation--the exon 7 deletion mutation in mRNA, which accounts for 10 of 23 affected alleles--was demonstrated in Japanese citrullinemia. This differs from the situation in the United States, where there was far greater heterogeneity of mutations.  相似文献   

10.
Germline and somatic mutations of the hMSH2 gene were determined in a Japanese hereditary nonpolyposis colorectal cancer (HNPCC) family fulfilling the Amsterdam criteria. PCR-SSCP-sequencing of genomic DNA detected a somatic hMSH2 mutation of an A deletion at codon 227-229 in a duodenal carcinoma and a somatic hMSH2 mutation of an A insertion at codon 21 in a gastric carcinoma from affected family members, both carcinomas exhibiting high microsatellite instability. However, no germline hMSH2 mutation was detected by the PCR-SSCP-sequencing method. Genomic DNA was then analyzed by Southern blot hybridization using three hMSH2 cDNA probes (probe A involving exons 1-5, probe B involving exons 4-11 and probe C involving exons 9-16) after digestion by restriction enzymes, EcoRI, HindIII and NsiI. The NsiI digest of DNA from normal tissues of affected members exhibited an aberrant 8.6 kb restriction fragment, in addition to the normal 10.6 kb fragment, when hybridized to probes A and B. This suggested the presence of a heterozygous 2kb genomic deletion encompassing exon 4, 5 or 6. RT-PCR-sequencing revealed that the deleted region encompassed exon 5. This novel genomic deletion of the hMSH2 gene was confirmed to be pathogenic, and the Southern hybridization pattern was applied to the pre-symptomatic diagnosis.  相似文献   

11.
12.
We have characterized the molecular defect causing lecithin:cholesterol acyltransferase (LCAT)-deficiency (LCAT-D) in the LCAT gene in three siblings of Austrian descent. The patients presented with typical symptoms including corneal opacity, hemolytic anemia, and kidney dysfunction. LCAT activities in the plasma of these three patients were undetectable. DNA sequence analysis of polymerase chain reaction (PCR)-amplified DNA of all six LCAT exons revealed a new point mutation in exon IV of the LCAT gene, i.e., a G to A substitution in codon 140 converting Arg to His. This mutation caused the loss of a cutting site for the restriction endonuclease HhaI within exon IV: Upon digestion of a 629-bp exon IV PCR product with HhaI, the patients were found to be homozygous for the mutation. Eight of 11 family members were identified as heterozygotes. Transfection studies of COS-7 cells with plasmids containing a wildtype or a mutant LCAT cDNA revealed that, in contrast to the cell medium containing wild-type enzyme, no enzyme activity was detectable upon expression of the mutant protein. This represents strong evidence for the causative nature of the observed mutation for LCAT deficiency in affected individuals and supports the conclusion that Arg140 is crucial for the structure of an enzymatically active LCAT protein.  相似文献   

13.
Previously, we reported the modification of denaturing gradient gel electrophoresis called constant denaturant gel electrophoresis (CDGE). CDGE separates mutant fragments in specific melting domains. CDGE seems to be a useful tool in mutation detection. Since the hypoxanthine phosphoribosyltransferase (HPRT) gene is widely used as target locus for mutation studies in vitro and in vivo, we have examined the approach of analyzing human HPRT cDNA by polymerase chain reaction (PCR) and CDGE. All nine HPRT exons are included in a 716-bp cDNA fragment obtained by PCR using HPRT cDNA as template. When the full-length cDNA fragment was examined by CDGE, it was possible to detect mutations only in the last part of exon 8 and exon 9. However, digestion of the cDNA fragment with the restriction enzyme AvaI prior to CDGE enabled us to detect point mutations in most of exon 2, the beginning of exon 3, the last part of exon 8 and exon 9. With the use of two internal primer sets, including a GC-rich clamp on one of the primers in each pair, a region containing most of exon 3 through exon 6 was amplified and we were able to resolve fragments with point mutations in this region from wild-type DNA. The approach described here allows for rapid screening of point mutations in about two thirds of the human HPRT cDNA sequence. In a test of this approach, we were able to resolve 12 of 13 known mutants. The mutant panel included one single-base deletion, one two-base deletion and 11 single-base substitutions.  相似文献   

14.
Friedland, W., Li, W. B., Jacob, P. and Paretzke, H. G. Simulation of Exon Deletion Mutations Induced by Low-LET Radiation at the HPRT Locus. Radiat. Res. 155, 703-715 (2001). The induction of HPRT mutants with exon deletions after irradiation with photons was simulated using the biophysical radiation track structure model PARTRAC. The exon-intron structure of the human HPRT gene was incorporated into the chromatin fiber model in PARTRAC. After gamma and X irradiation, simulated double-stranded DNA fragments that overlapped with exons were assumed to result in exon deletion mutations with a probability that depended on the genomic or the geometric distance between the breakpoints. The consequences of different assumptions about this probability of deletion formation were evaluated on the basis of the resulting fractions of total, terminal and intragenic deletions. Agreement with corresponding measurements was obtained assuming a constant probability of deletion formation for fragments smaller than about 0.1 Mbp, and a probability of deletion formation decreasing with increasing geometric or genomic distance between the end points for larger fragments. For these two assumptions, yields of mutants with exon deletions, size distributions of deletions, patterns of deleted exons, and patterns of deleted STS marker sites surrounding the gene were calculated and compared with experimental data. The yields, size distributions and exon deletion patterns were grossly consistent, whereas larger deviations were found for the STS marker deletion patterns in this comparison.  相似文献   

15.
16.
Hereditary coproporphyria (HCP) is an autosomal dominant disease characterized by a deficiency of coproporphyrinogen oxidase. To date, four mutations of the gene have been reported. We report here another mutation in two Japanese families with HCP, which was revealed by analysis of polymerase chain reaction (PCR)-amplified DNA fragments of the gene by a direct-sequencing method. A point mutation, G to A, was found in exon 4 of the gene at position 538 of the cDNA from the reported putative translation initiation codon ATG. This mutation results in a glycine to arginine substitution at amino acid 180. Two carriers in the family were successfully diagnosed by detecting the mutation using restriction analysis of the PCR products. Received: 23 April 1996 / Revised: 15 July 1996  相似文献   

17.
18.
Using a direct PCR sequencing technique, we have identified two DNA base substitutions in 8 different biochemical G6PD variants of Chinese origin. Neither one of these abnormalities has been reported in other ethnic groups. An abnormality (C1) of G to T substitution at cDNA 1376 causing an amino acid change from Arg to Leu has been found in 3 variants. Another abnormality (C2) of G to A substitution at cDNA 1388 causing an amino acid change from Arg to His has been found in 5 variants. Both C1 and C2 are located in exon 12 of the G6PD gene and are only 12 base pairs apart. However, C1 is associated with a significant increase in the deamino-NADP utilization rate, whereas C2 is not. Taken together, our data suggest that C1 and C2 are very common among Chinese with a G6PD deficiency and exon 12 may define an important functional domain of the human G6PD.  相似文献   

19.
20.
A method for analysis of deletions and duplications of individual exons and groups of exons in the parkin gene (PARK2) in both homozygous and heterozygous states has been developed. The method is based on semiquantitative polymerase chain reaction (PCR). The method has been used for analysis of the frequency of deletions in gene PARK2 in patients with idiopathic Parkinson's disease from Bashkortostan. Two unrelated patients have been found to carry a deletion of the 12th (last) exon of gene PARK2. Possibly, this deletion has caused the disease in the given patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号