首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we demonstrated the regulation of glucose transporters by hypoxia inducible factor-1α (HIF-1α) activation in renal epithelial cells. LLC-PK1 monolayers were incubated for 1, 3, 6, or 12 h with 0% or 5% O2 or 300 μm cobalt (CoCl2). We evaluated the effects of hypoxia on the mRNA and protein expression of HIF-1α and of the glucose transporters SGLT1, SGLT2, and GLUT1. The data showed an increase in HIF-1α mRNA and protein expression under the three evaluated conditions (p < 0.05 versus t = 0). An increase in GLUT1 mRNA (12 h) and protein expression (at 3, 6, and 12 h) was observed (p < 0.05 versus t = 0). SGLT1 and SGLT2 mRNA and protein expression decreased under the three evaluated conditions (p < 0.05 versus t = 0). In conclusion, our results suggest a clear decrease in the expression of the glucose transporters SGLT1 and SGLT2 under hypoxic conditions which implies a possible correlation with increased expression of HIF-1α.  相似文献   

2.
3.
4.
Hepatocyte nuclear factor 4α (HNF4α) is a nuclear receptor that regulates the expression of genes involved in the secretion of apolipoprotein B (apoB)-containing lipoproteins and in glucose metabolism. In the present study, we identified a naturally occurring flavonoid, luteolin, as a repressor of HNF4α by screening for effectors of the human microsomal triglyceride transfer protein (MTP) promoter. Luciferase reporter gene assays revealed that the activity of the MTP gene promoter was suppressed by luteolin and that the mutation of HNF4α-binding element abolished luteolin responsiveness. Luteolin treatment caused a significant decrease in the mRNA levels of HNF4α target genes in HepG2 cells and inhibited apoB-containing lipoprotein secretion in HepG2 and differentiated Caco2 cells. The interaction between luteolin and HNF4α was demonstrated using absorption spectrum analysis and luteolin-immobilized beads. Luteolin did not affect the DNA binding of HNF4α to the promoter region of its target genes but suppressed the acetylation level of histone H3 in the promoter region of certain HNF4α target genes. Short term treatment of mice with luteolin significantly suppressed the expression of HNF4α target genes in the liver. In addition, long term treatment of mice with luteolin significantly suppressed their diet-induced obesity and improved their serum glucose and lipid parameters. Importantly, long term luteolin treatment lowered serum VLDL and LDL cholesterol and serum apoB protein levels, which was not accompanied by fat accumulation in the liver. These results suggest that the flavonoid luteolin ameliorates an atherogenic lipid profile in vivo that is likely to be mediated through the inactivation of HNF4α.  相似文献   

5.
6.
7.
Sodium/glucose cotransporter 2 (SGLT2) inhibitors are oral hypoglycemic agents used to treat patients with diabetes mellitus. SGLT2 inhibitors block reabsorption of filtered glucose by inhibiting SGLT2, the primary glucose transporter in the proximal tubular cell (PTC), leading to glycosuria and lowering of serum glucose. We examined the renoprotective effects of the SGLT2 inhibitor empagliflozin to determine whether blocking glucose entry into the kidney PTCs reduced the inflammatory and fibrotic responses of the cell to high glucose. We used an in vitro model of human PTCs. HK2 cells (human kidney PTC line) were exposed to control 5 mM, high glucose (HG) 30 mM or the profibrotic cytokine transforming growth factor beta (TGFβ1; 0.5 ng/ml) in the presence and absence of empagliflozin for up to 72 h. SGLT1 and 2 expression and various inflammatory/fibrotic markers were assessed. A chromatin immunoprecipitation assay was used to determine the binding of phosphorylated smad3 to the promoter region of the SGLT2 gene. Our data showed that TGFβ1 but not HG increased SGLT2 expression and this occurred via phosphorylated smad3. HG induced expression of Toll-like receptor-4, increased nuclear deoxyribonucleic acid binding for nuclear factor kappa B (NF-κB) and activator protein 1, induced collagen IV expression as well as interleukin-6 secretion all of which were attenuated with empagliflozin. Empagliflozin did not reduce high mobility group box protein 1 induced NF-κB suggesting that its effect is specifically related to a reduction in glycotoxicity. SGLT1 and GLUT2 expression was not significantly altered with HG or empagliflozin. In conclusion, empagliflozin reduces HG induced inflammatory and fibrotic markers by blocking glucose transport and did not induce a compensatory increase in SGLT1/GLUT2 expression. Although HG itself does not regulate SGLT2 expression in our model, TGFβ increases SGLT2 expression through phosphorylated smad3.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
Maturity Onset Diabetes of the Young (MODY) presents monogenic inheritance and mutation factors which have already been identified in six different genes. Given the wide molecular variation present in the hepatocyte nuclear factor-1α gene (HNF1α) MODY3, the aim of this study was to amplify and sequence the coding regions of this gene in seven patients from the Campos Gerais region, Paraná State, Brazil, presenting clinical MODY3 features. Besides the synonymous variations, A15A, L17L, Q141Q, G288G and T515T, two missense mutations, I27L and A98V, were also detected. Clinical and laboratory data obtained from patients were compared with the molecular findings, including the I27L polymorphism that was revealed in some overweight/obese diabetic patients of this study, this corroborating with the literature. We found certain DNA variations that could explain the hyperglycemic phenotype of the patients.  相似文献   

17.
Background: In the kidney glucose is freely filtered by the glomerulus and, mainly, reabsorbed by sodium glucose cotransporter 2 (SGLT2) expressed in the early proximal tubule. Human proximal tubule epithelial cells (PTECs) undergo pathological and fibrotic changes seen in diabetic kidney disease (DKD) in response to elevated glucose. We developed a specific in vitro model of DKD using primary human PTECs with exposure to high D-glucose and TGF-β1 and propose a role for SGLT2 inhibition in regulating fibrosis. Methods: Western blotting was performed to detect cellular and secreted proteins as well as phosphorylated intracellular signalling proteins. qPCR was used to detect CCN2 RNA. Gamma glutamyl transferase (GT) activity staining was performed to confirm PTEC phenotype. SGLT2 and ERK inhibition on high D-glucose, 25 mM, and TGF-β1, 0.75 ng/ml, treated cells was explored using dapagliflozin and U0126, respectively. Results: Only the combination of high D-glucose and TGF-β1 treatment significantly up-regulated CCN2 RNA and protein expression. This increase was significantly ameliorated by dapagliflozin. High D-glucose treatment raised phospho ERK which was also inhibited by dapagliflozin. TGF-β1 increased cellular phospho SSXS Smad3 serine 423 and 425, with and without high D-glucose. Glucose alone had no effect. Smad3 serine 204 phosphorylation was significantly raised by a combination of high D-glucose+TGF-β1; this rise was significantly reduced by both SGLT2 and MEK inhibition. Conclusions: We show that high D-glucose and TGF-β1 are both required for CCN2 expression. This treatment also caused Smad3 linker region phosphorylation. Both outcomes were inhibited by dapagliflozin. We have identified a novel SGLT2 -ERK mediated promotion of TGF-β1/Smad3 signalling inducing a pro-fibrotic growth factor secretion. Our data evince support for substantial renoprotective benefits of SGLT2 inhibition in the diabetic kidney.  相似文献   

18.
19.
BackgroundThe global epidemic of Type-2-Diabetes (T2D) highlights the need for novel therapeutic targets and agents. Roux-en-Y-Gastric-Bypass (RYGB) is the most effective treatment. Studies investigating the mechanisms of RYGB suggest a role for post-operative changes in portal glucose levels. We investigate the impact of stimulating portal glucose sensors on systemic glucose levels in health and T2D, and evaluated the role of sodium-glucose-cotransporter-3 (SGLT3) as the possible sensor.MethodsSystemic glucose and hormone responses to portal stimulation were measured. In Sprague-Dawley (SD) rats, post-prandial state was simulated by infusing glucose into the portal vein. The SGLT3 agonist, alpha-methyl-glucopyranoside (αMG), was then added to further stimulate the portal sensor. To elucidate the neural pathway, vagotomy or portal denervation was followed by αMG+glucose co-infusion. The therapeutic potential of portal glucose sensor stimulation was investigated by αMG-only infusion (vs. saline) in SD and Zucker-Diabetic-Fatty (ZDF) rats. Hepatic mRNA expression was also measured.ResultsαMG+glucose co-infusion reduced peak systemic glucose (vs. glucose alone), and lowered hepatic G6Pase expression. Portal denervation, but not vagotomy, abolished this effect. αMG-only infusion lowered systemic glucose levels. This glucose-lowering effect was more pronounced in ZDF rats, where portal αMG infusion increased insulin, C-peptide and GIP levels compared to saline infusions.ConclusionsThe portal vein is capable of sensing its glucose levels, and responds by altering hepatic glucose handling. The enhanced effect in T2D, mediated through increased GIP and insulin, highlights a therapeutic target that could be amenable to pharmacological modulation or minimally-invasive surgery.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号