首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatial heterogeneity in the properties of ion channels generates spatial dispersion of ventricular repolarization, which is modulated by gap junctional coupling. However, it is possible to simulate conditions in which local differences in excitation properties are electrophysiologically silent and only play a role in pathological states. We use a numerical procedure on the Luo-Rudy phase 1 model of the ventricular action potential (AP1) in order to find a modified set of model parameters which generates an action potential profile (AP2) almost identical to AP1. We show that, although the two waveforms elicited from resting conditions as a single AP are very similar and belong to membranes sharing similar passive electrical properties, the modified membrane generating AP2 is a weaker current source than the one generating AP1, has different sensitivity to up/down-regulation of ion channels and to extracellular potassium, and a different electrical restitution profile. We study electrotonic interaction of AP1- and AP2 - type membranes in cell pairs and in cable conduction, and find differences in source-sink properties which are masked in physiological conditions and become manifest during intercellular uncoupling or partial block of ion channels, leading to unidirectional block and spatial repolarization gradients. We provide contour plot representations that summarize differences and similarities. The present report characterizes an inverse problem in cardiac cells, and strengthen the recently emergent notion that a comprehensive characterization and validation of cell models and their components are necessary in order to correctly understand simulation results at higher levels of complexity.  相似文献   

2.
Cardiac alternans, defined beat-to-beat alternations in contraction, action potential (AP) morphology or cytosolic Ca transient (CaT) amplitude, is a high risk indicator for cardiac arrhythmias. We investigated mechanisms of cardiac alternans in single rabbit ventricular myocytes. CaTs were monitored simultaneously with membrane currents or APs recorded with the patch clamp technique. A strong correlation between beat-to-beat alternations of AP morphology and CaT alternans was observed. During CaT alternans application of voltage clamp protocols in form of pre-recorded APs revealed a prominent Ca2+-dependent membrane current consisting of a large outward component coinciding with AP phases 1 and 2, followed by an inward current during AP repolarization. Approximately 85% of the initial outward current was blocked by Cl? channel blocker DIDS or lowering external Cl? concentration identifying it as a Ca2+-activated Cl? current (ICaCC). The data suggest that ICaCC plays a critical role in shaping beat-to-beat alternations in AP morphology during alternans.  相似文献   

3.
The Brugada syndrome (BrS) is a right ventricular (RV) arrhythmia that is responsible for up to 12% of sudden cardiac deaths. The aims of our study were to determine the cellular mechanisms of the electrical abnormality in BrS and the potential basis of the RV contractile abnormality observed in the syndrome. Tetrodotoxin was used to reduce cardiac Na(+) current (I(Na)) to mimic a BrS-like setting in canine ventricular myocytes. Moderate reduction (<50%) of I(Na) with tetrodotoxin resulted in all-or-none repolarization in a fraction of RV epicardial myocytes. Dynamic clamp and modeling show that reduction of I(Na) shifts the action potential (AP) duration-transient outward current (I(to)) density curve to the left and has a biphasic effect on AP duration. In the presence of a large I(to), I(Na) reduction either prolongs or collapses the AP, depending on the exact density of I(to). These repolarization changes reduce Ca(2+) influx and sarcoplasmic reticulum load, resulting in marked attenuation of myocyte contraction and Ca(2+) transient in RV epicardial myocytes. We conclude that I(Na) reduction alters repolarization by reducing the threshold for I(to)-induced all-or-none repolarization. These cellular electrical changes suppress myocyte excitation-contraction coupling and contraction and may be a contributing factor to the contractile abnormality of the RV wall in BrS.  相似文献   

4.
In contrast to the large volume of data supporting the dependence of cardiac excitability and phasic contractility on external Na, Van der Kloot and Rubin (1962) and Singh (1962) have reported the persistence of both electrical and phasic mechanical activity in frog atrial and ventricular preparations soaked in isotonic sucrose solutions. The acute ionic dependence of excitability and contractility in small frog atrial trabeculae has been investigated with the conclusion that excitability and phasic contractions may continue for extended periods of time in sucrose media if the extracellular ionic concentrations remain above 2% of normal. This behavior is attributed to the slow exchange properties of the cell surfaces of the frog cardiac trabeculae and the antagonistic effects of Na, K, and Ca ions on both membrane excitability and fiber contractility.  相似文献   

5.
Excessive action potential (AP) prolongation and early afterdepolarizations (EAD) are triggers of malignant ventricular arrhythmias. A slowly activating delayed rectifier K+ current (I(Ks)) is important for repolarization of ventricular AP. We examined the effects of I(Ks) activation by a new benzodiazepine (L3) on the AP of control, dofetilide-treated, and hypertrophied rabbit ventricular myocytes. In both control and hypertrophied myocytes, L3 activated I(Ks) via a negative shift in the voltage dependence of activation and a slowing of deactivation. L3 had no effect on L-type Ca(2+) current or other cardiac K+ currents tested. L3 shortened AP of control, dofetilide-treated, and hypertrophied myocytes more at 0.5 than 2 Hz. Selective activation of I(Ks) by L3 attenuates prolonged AP and eliminated EAD induced by rapidly activating delayed rectifier K+ current inhibition in control myocytes at 0.5 Hz and spontaneous EAD in hypertrophied myocytes at 0.2 Hz. Pharmacological activation of I(Ks) is a promising new strategy to suppress arrhythmias resulting from excessive AP prolongation in patients with certain forms of long QT syndrome or cardiac hypertrophy and failure.  相似文献   

6.
心室再同步心脏转复除颤器(CRT)可有效改善心力衰竭(CHF)患者的运动耐量和生活质量,预防猝死,提高生存率,但_DCHFCRTD植入后由于心室激动顺序的改变,使QT间期延长、跨室壁复极离散度(TDR)增加,潜在致室性心律失常风险;且CHF患者通常存在心肌解剖改变,传导的不均一性,也为折返性心动过速的发生提供了维持的机制;而多次电击也可导致肌钙蛋白升高,引起心肌损伤,局部心肌复极离散度增加(DRVR)和QT间期延长,以及电除颤后心肌纤维化和急性细胞损伤,反复室速、室颤也会引起进行性左心功能不全、心肌细胞凋亡、恶化心律失常基质和增加心律失常易感性。CRT_D潜在致室性心律失常作用逐渐引起人们的重视,本文就近年来CRTD致室性心律失常的电生理机制与临床防治对策等做一综述。  相似文献   

7.
Previously, we demonstrated that maternal diabetes reduced the excitability and increased small-conductance Ca(2+)-activated K(+) (SK) currents of parasympathetic cardiac motoneurons (PCMNs) in the nucleus ambiguus (NA). In addition, blockade of SK channels with apamin completely abolished this reduction. In the present study, we examined whether maternal diabetes affects large-conductance Ca(2+)-activated K(+) (BK) channels and whether BK channels contribute to the attenuation of PCMN excitability observed in neonates of diabetic mothers. Neonatal mice from OVE26 diabetic mothers (NMDM) and normal FVB mothers (control) were used. The pericardial sac of neonatal mice at postnatal days 7-9 was injected with the tracer X-rhodamine-5 (and 6)-isothiocyanate 2 days prior to the experiment to retrogradely label PCMNs in the NA. Whole cell current- and voltage-clamps were used to measure spike frequency, action potential (AP) repolarization (half-width), afterhyperpolarization potential (AHP), transient outward currents, and afterhyperpolarization currents (I(AHP)). In whole cell voltage clamp mode, we confirmed that maternal diabetes increased transient outward currents and I(AHP) compared with normal cells. Using BK channel blockers charybdotoxin (CTx) and paxilline, we found that maternal diabetes increased CTx- and paxilline-sensitive transient outward currents but did not change CTx- and paxilline-sensitive I(AHP). In whole cell current-clamp mode, we confirmed that maternal diabetes increased AP half-width and AHP, and reduced excitability of PCMNs. Furthermore, we found that after blockade of BK channels with CTx or paxilline, maternal diabetes induced a greater increase of AP half-width but similarly decreased fast AHP without affecting medium AHP. Finally, blockade of BK channels decreased spike frequency in response to current injection in both control and NMDM without reducing the difference of spike frequency between the two groups. Therefore, we conclude that although BK transient outward currents, which may alter AP repolarization, are increased in NMDM, BK channels do not directly contribute to maternal diabetes-induced attenuation of PCMN excitability. In contrast, based on evidence from our previous and present studies, reduction of PCMN excitability in neonates of diabetic mothers is largely dependent on altered SK current associated with maternal diabetes.  相似文献   

8.
BackgroundChagas disease (CD) is a neglected disease that induces heart failure and arrhythmias in approximately 30% of patients during the chronic phase of the disease. Despite major efforts to understand the cellular pathophysiology of CD there are still relevant open questions to be addressed. In the present investigation we aimed to evaluate the contribution of the Na+/Ca2+ exchanger (NCX) in the electrical remodeling of isolated cardiomyocytes from an experimental murine model of chronic CD.Methodology/Principal findingsMale C57BL/6 mice were infected with Colombian strain of Trypanosoma cruzi. Experiments were conducted in isolated left ventricular cardiomyocytes from mice 180–200 days post-infection and with age-matched controls. Whole-cell patch-clamp technique was used to measure cellular excitability and Real-time PCR for parasite detection. In current-clamp experiments, we found that action potential (AP) repolarization was prolonged in cardiomyocytes from chagasic mice paced at 0.2 and 1 Hz. After-depolarizations, both subthreshold and with spontaneous APs events, were more evident in the chronic phase of experimental CD. In voltage-clamp experiments, pause-induced spontaneous activity with the presence of diastolic transient inward current was enhanced in chagasic cardiomyocytes. AP waveform disturbances and diastolic transient inward current were largely attenuated in chagasic cardiomyocytes exposed to Ni2+ or SEA0400.Conclusions/SignificanceThe present study is the first to describe NCX as a cellular arrhythmogenic substrate in chagasic cardiomyocytes. Our data suggest that NCX could be relevant to further understanding of arrhythmogenesis in the chronic phase of experimental CD and blocking NCX may be a new therapeutic strategy to treat arrhythmias in this condition.  相似文献   

9.
Ventricular tachyarrhythmias are the most common cause of sudden cardiac death (SCD); a healed myocardial infarction increases the risk of SCD. We determined the contribution of specific repolarization abnormalities to ventricular tachyarrhythmias in a postinfarction model of SCD. For our methods, we used a postinfarction canine model of SCD, where an exercise and ischemia test was used to stratify animals as either susceptible (VF(+)) or resistant (VF(-)) to sustained ventricular tachyarrhythmias. Our results show no changes in global left ventricular contractility or volumes occurred after infarction. At 8-10 wk postmyocardial infarction, myocytes were isolated from the left ventricular midmyocardial wall and studied. In the VF(+) animals, myocyte action potential (AP) prolongation occurred at 50 and 90% repolarization (P < 0.05) and was associated with increased variability of AP duration and afterdepolarizations. Multiple repolarizing K(+) currents (I(Kr), I(to)) and inward I(K1) were also reduced (P < 0.05) in myocytes from VF(+) animals compared with control, noninfarcted dogs. In contrast, only I(to) was reduced in VF(-) myocytes compared with controls (P < 0.05). While afterdepolarizations were not elicited at baseline in myocytes from VF(-) animals, afterdepolarizations were consistently elicited after the addition of an I(Kr) blocker. In conclusion, the loss of repolarization reserve via reductions in multiple repolarizing currents in the VF(+) myocytes leads to AP prolongation, repolarization instability, and afterdepolarizations in myocytes from animals susceptible to SCD. These abnormalities may provide a substrate for initiation of postmyocardial infarction ventricular tachyarrhythmias.  相似文献   

10.
It has been shown in the literature that myocytes isolated from the ventricular walls at various intramural depths have different action potential durations (APDs). When these myocytes are embedded in the ventricular wall, their inhomogeneous properties affect the sequence of repolarization and the actual distribution of the APDs in the entire wall. In this article, we implement a mathematical model to simulate the combined effect of (a) the non-homogeneous intrinsic membrane properties (in particular the non-homogeneous APDs) and (b) the electrotonic currents that modulate the APDs when the myocytes are embedded in the ventricular myocardium. In particular, we study the effect of (a) and (b) on the excitation and repolarization sequences and on the distribution of APDs in the ventricles. We implement a Monodomain tissue representation that includes orthotropic anisotropy, transmural fiber rotation and homogeneous or heterogeneous transmural intrinsic membrane properties, modeled according to the phase I Luo-Rudy membrane ionic model. Three-dimensional simulations are performed in a cartesian slab with a parallel finite element solver employing structured isoparametric trilinear finite elements in space and a semi-implicit adaptive method in time. Simulations of excitation and repolarization sequences elicited by epicardial or endocardial pacing show that in a homogeneous slab the repolarization pathways approximately follow the activation sequence. Conversely, in the heterogeneous cases considered in this study, we observed two repolarization wavefronts that started from the epi and the endocardial faces respectively and collided in the thickness of the wall and in one case an additional repolarization wave starting from an intramural site. Introducing the heterogeneities along the transmural epi-endocardial direction affected both the repolarization sequence and the APD dispersion, but these effects were clearly discernible only in transmural planes. By contrast, in planes parallel to epi- and endocardium the APD distribution remained remarkably similar to that observed in the homogeneous model. Therefore, the patterns of the repolarization sequence and APD dispersion on the epicardial surface (or any other intramural surface parallel to it) do not reveal the uniform transmural heterogeneity.  相似文献   

11.
Transgenic mice have been increasingly utilized to investigate the molecular mechanisms of cardiac arrhythmias, yet the rate dependence of the murine action potential duration and the electrical restitution curve (ERC) remain undefined. In the present study, 21 isolated, Langendorff-perfused, and atrioventricular node-ablated mouse hearts were studied. Left ventricular and left atrial action potentials were recorded using a validated miniaturized monophasic action potential probe. Murine action potentials (AP) were measured at 30, 50, 70, and 90% repolarization (APD(30)-APD(90)) during steady-state pacing and varied coupling intervals to determine ERCs. Murine APD showed rate adaptation as well as restitution properties. The ERC time course differed dramatically between early and late repolarization: APD(30) shortened with increasing S1-S2 intervals, whereas APD(90) was prolonged. When fitted with a monoexponential function, APD(30) reached plateau values significantly faster than APD(90) (tau = 29 +/- 2 vs. 78 +/- 6 ms, P < 0.01, n = 12). The slope of early APD(90) restitution was significantly <1 (0.16 +/- 0.02). Atrial myocardium had shorter final repolarization and significantly faster ERCs that were shifted leftward compared with ventricular myocardium. Recovery kinetics of intracellular Ca(2+) transients recorded from isolated ventricular myocytes at 37 degrees C (tau = 93 +/- 4 ms, n = 18) resembled the APD(90) ERC kinetics. We conclude that mouse myocardium shows AP cycle length dependence and electrical restitution properties that are surprisingly similar to those of larger mammals and humans.  相似文献   

12.
The electrical properties of Aplysia brasiliana myogenic heart were evaluated. Two distinct types of action potentials (APs) were recorded from intact hearts, an AP with a slow rising phase followed by a slow repolarizing phase and an AP with a 'fast' depolarizing phase followed by a plateau. Although these two APs differ in their rates of depolarization (2.2 x 0.3 V/s), both APs were abolished by the addition of Co2+, Mn2+ and nifedipine or by omitting Ca2+ from the external solution. These data suggest that a Ca2+ inward current is responsible for the generation of both types of APs. Two outward currents activated at -40 mV membrane potential were prominent in isolated cardiac myocytes: a fast activating, fast inactivating outward current similar to the A-type K+ current and a slow activating outward current with kinetics similar to the delayed rectifier K+ current were recorded under voltage clamp conditions. Based on the effects of 4-AP and TEA on the electrical properties of ventricular myocytes, we suggest that the fast kinetic outward current substantially attenuates the peak values of the APs and that the slow activating outward current is involved on membrane repolarization.  相似文献   

13.
After channel activation, and in some cases with sub-threshold depolarizing stimuli, Kv channels undergo a time-dependent loss of conductivity by a family of mechanisms termed inactivation. To date, all identified inactivation mechanisms underlying loss of conduction in Kv channels appear to be distinct from deactivation, i.e. closure of the voltage-operated activation gate by changes in transmembrane voltage. Instead, Kv channel inactivation entails entry of channels into a stable, non-conducting state, and thereby functionally reduces the availability of channels for opening. That is, if a channel has inactivated, some time must expire after repolarization of the membrane voltage to allow the channel to recover and become available to open again. Dramatic differences between Kv channel types in the time course of inactivation and recovery underlie various roles in regulating cellular excitability and repolarization of action potentials. Therefore, the range of inactivation mechanisms exhibited by different Kv channels provides important physiological means by which the duration of action potentials in many excitable tissues can be regulated at different frequencies and potentials. In this review, we provide a detailed discussion of recent work characterizing structural and functional aspects of Kv channel gating, and attempt to reconcile these recent results with classical experimental work carried out throughout the 1990s that identified and characterized the basic mechanisms and properties of Kv channel inactivation. We identify and discuss numerous gaps in our understanding of inactivation, and review them in the light of new structural insights into channel gating.  相似文献   

14.
Although cardiac Purkinje cells (PCs) are believed to be the source of early afterdepolarizations generating ventricular tachyarrhythmias in long Q-T syndromes (LQTS), the ionic determinants of PC repolarization are incompletely known. To evaluate the role of the slow delayed rectifier current (I(Ks)) in PC repolarization, we studied PCs from canine ventricular false tendons with whole cell patch clamp (37 degrees C). Typical I(Ks) voltage- and time-dependent properties were noted. Isoproterenol enhanced I(Ks) in a concentration-dependent fashion (EC(50) approximately 30 nM), negatively shifted I(Ks) activation voltage dependence, and accelerated I(Ks) activation. Block of I(Ks) with 293B did not alter PC action potential duration (APD) in the absence of isoproterenol; however, in the presence of isoproterenol, 293B significantly prolonged APD. We conclude that, without beta-adrenergic stimulation, I(Ks) contributes little to PC repolarization; however, beta-adrenergic stimulation increases the contribution of I(Ks) by increasing current amplitude, accelerating I(Ks) activation, and shifting activation voltage toward the PC plateau voltage range. I(Ks) may therefore provide an important "braking" function to limit PC APD prolongation in the presence of beta-adrenergic stimulation.  相似文献   

15.
The molecular heterogeneity of repolarizing currents produces significant spatial heterogeneity and/or dispersion of repolarization in many mammalian cardiac tissues. Transgenic mice are prominent experimental models for the study of the molecular basis of repolarization and arrhythmias. However, it is debated whether the small mouse heart can sustain physiologically relevant heterogeneity of repolarization. We used a comprehensive model of the mouse action potential (AP) to predict how small a region of the cardiac tissue can maintain spatial gradients of repolarization due to differential expression of channels. Our simulations of a one-dimensional multicellular ring or cable predict that substantial gradients in repolarization and intracellular Ca(2+) concentration transients can be maintained through heterogeneity of expression of K(+) channels in distances of approximately 10 cells that are sufficient to block propagation. The abruptness of expression gradients and the site of stimulation can cause Ca(2+) transient oscillations and affect the stability of Ca(2+) dynamics and AP propagation. Two different mechanisms of instability of AP propagation in one-dimensional cable occur at fast pacing rates. Transitions from periodic activity to alternans or to irregular behavior were observed. Abrupt gradients of channel expression can cause alternans at slower pacing rates than gradual changes. Our simulations demonstrate the importance of incorporating realistic Ca(2+) dynamics and current densities into models of propagated AP. They also emphasize that microscopic aspects of tissue organization are important for predicting large-scale propagation phenomena. Finally, our results predict that the mouse heart should be able to sustain substantial molecularly based heterogeneity of repolarization.  相似文献   

16.
The basic electrophysiological manifestations of the ventricular myocardium of twelve 7- to 12-week human embryos were measured with a glass electrode and a programmed stimulation technique. The resting membrane potential value was 79.37 +/- 0.34 mV and the overshoot 32.7 +/- 0.57 mV; the action potential (AP) duration at 1 Hz stimulation frequency was 120.0 +/- 5.7 ms at AP plateau phase levels and 258 +/- 17 ms at the level corresponding to 95% repolarization. The duration of the AP was a function of the stimulation frequency. i.e. it altered in correlation to the stimulation programme fully developed frequency sensitivity). In stimulation with different frequencies the duration of the steady state AP was in an inverse relation to the stimulation frequency, the maximum changes being found in the terminal repolarization zone. An interpolated extrasystole mainly affected the duration of the plateau phase.  相似文献   

17.
Normal hearts exhibit a positive time difference between the end of ventricular contraction and the end of QT interval, which is referred to as the electromechanical (EM) window. Drug-induced prolongation of repolarization may lead to the negative EM window, which was proposed to be a novel proarrhythmic marker. This study examined whether abnormal changes in the EM window may account for arrhythmogenic effects produced by hypokalemia. Left ventricular pressure, electrocardiogram, and epicardial monophasic action potentials were recorded in perfused hearts from guinea-pig and rabbit. Hypokalemia (2.5 mM K+) was found to prolong repolarization, reduce the EM window, and promote tachyarrhythmia. Nevertheless, during both regular pacing and extrasystolic excitation, the increased QT interval invariably remained shorter than the duration of mechanical systole, thus yielding positive EM window values. Hypokalemia-induced arrhythmogenicity was associated with slowed ventricular conduction, and shortened effective refractory periods, which translated to a reduced excitation wavelength index. Hypokalemia also evoked non-uniform prolongation of action potential duration in distinct epicardial regions, which resulted in increased spatial variability in the repolarization time. These findings suggest that arrhythmogenic effects of hypokalemia are not accounted for by the negative EM window, and are rather attributed to abnormal changes in ventricular conduction times, refractoriness, excitation wavelength, and spatial repolarization gradients.  相似文献   

18.
The slope of the action potential duration (APD) restitution curve may be a significant determinant of the propensity to develop ventricular fibrillation, with steeper slopes associated with a more arrhythmogenic substrate. We hypothesized that one mechanism by which beta-blockers reduce sudden cardiac death is by flattening the APD restitution curve. Therefore, we investigated whether infusion of esmolol modulates the APD restitution curve in vivo. In 10 Yorkshire pigs, dynamic APD restitution curves were determined from measurements of APD at 90% repolarization with a monophasic action potential catheter positioned against the right ventricular septum during right ventricular apical pacing in the basal state and during infusion of esmolol. APD restitution curves were fitted to the three-parameter (a, b, c) exponential equation, APD = a.[1 - e((-b.DI))] + c, where DI is the diastolic interval. Esmolol decreased the maximal APD slope, 0.68 +/- 0.14 vs. 0.94 +/- 0.24 (baseline), P = 0.002, and flattened the APD restitution curve at shorter DIs, 75 and 100 ms (P < 0.05). To compare the slopes of the APD restitution curves at similar steady states, slopes were also computed at points of intersection between the restitution curve and the lines representing pacing at a fixed cycle length (CL) of 200, 225, 250, 275, and 300 ms using the relationship CL = APD + DI. Esmolol decreased APD restitution slopes at CLs 200-275 ms (P < 0.05). Esmolol flattens the cardiac APD restitution curve in vivo, particularly at shorter CLs and DIs. This may represent a novel mechanism by which beta-blockers prevent sudden cardiac death.  相似文献   

19.
Enhanced temporal and spatial variability in cardiac repolarization has been related to increased arrhythmic risk both clinically and experimentally. Causes and modulators of variability in repolarization and their implications in arrhythmogenesis are however not well understood. At the ionic level, the slow component of the delayed rectifier potassium current (IKs) is an important determinant of ventricular repolarization. In this study, a combination of experimental and computational multiscale studies is used to investigate the role of intrinsic and extrinsic noise in IKs in modulating temporal and spatial variability in ventricular repolarization in human and guinea pig. Results show that under physiological conditions: i), stochastic fluctuations in IKs gating properties (i.e., intrinsic noise) cause significant beat-to-beat variability in action potential duration (APD) in isolated cells, whereas cell-to-cell differences in channel numbers (i.e., extrinsic noise) also contribute to cell-to-cell APD differences; ii), in tissue, electrotonic interactions mask the effect of IKs noise, resulting in a significant decrease in APD temporal and spatial variability compared to isolated cells. Pathological conditions resulting in gap junctional uncoupling or a decrease in repolarization reserve uncover the manifestation of IKs noise at cellular and tissue level, resulting in enhanced ventricular variability and abnormalities in repolarization such as afterdepolarizations and alternans.  相似文献   

20.
Atrial fibrosis has been implicated in the development and maintenance of atrial arrhythmias, and is characterized by expansion of the extracellular matrix and an increased number of fibroblasts (Fbs). Electrotonic coupling between atrial myocytes and Fbs may contribute to the formation of an arrhythmogenic substrate. However, the role of these cell-cell interactions in the function of both normal and diseased atria remains poorly understood. The goal of this study was to gain mechanistic insight into the role of electrotonic Fb-myocyte coupling on myocyte excitability and repolarization. To represent the system, a human atrial myocyte (hAM) coupled to a variable number of Fbs, we employed a new ionic model of the hAM, and a variety of membrane representations for atrial Fbs. Simulations elucidated the effects of altering the intercellular coupling conductance, electrophysiological Fb properties, and stimulation rate on the myocyte action potential. The results demonstrate that the myocyte resting potential and action potential waveform are modulated strongly by the properties and number of coupled Fbs, the degree of coupling, and the pacing frequency. Our model provides mechanistic insight into the consequences of heterologous cell coupling on hAM electrophysiology, and can be extended to evaluate these implications at both tissue and organ levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号