首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this work was to develop a procedure for encapsulation of diltiazem HCl by spray coagulation. Factors affecting the formulations such as the effect of NaCl on the solubility of diltiazem in alginate solution, surface tension, pH, viscosity of the coagulation medium, and the effect of drug load on drug release were studied. The drug load was increased substantially from 10 up to 320 mg/mL by adding 1.2% w/v NaCl in 1% w/v alginate solution. More stable microcapsules were obtained at pH 4.6 (acetate buffer) than at a pH 2.8 (lactic acid), and the microencapsulation process was favored by the type of chitosan that produced low turbidity and viscosity in the coagulation medium. A dose of 50 mg/mL of diltiazem HCl, 1.2% w/v NaCl, and chitosan CS allowed higher amount of drug to be encapsulated. The high water solubility of diltiazem HCl leads to fast release from the microcapsules.  相似文献   

2.
The objective of this study was to develop an ion-activated in situ gelling vehicle for ophthalmic delivery of matrine. The rheological properties of polymer solutions, including Gelrite, alginate, and Gelrite/alginate solution, were evaluated. In addition, the effect of formulation characteristics on in vitro release and in vivo precorneal drug kinetic of matrine was investigated. It was found that the optimum concentration of Gelrite solution for the in situ gel-forming delivery systems was 0.3% (w/w) and that for alginate solution was 1.4% (w/w). The mixture of 0.2% Gelrite and 0.6% alginate solutions showed a significant enhancement in gel strength at physiological condition. On the basis of the in vitro results, the Gelrite formulations of matrine-containing alginate released the drug most slowly. For each tested polymer solution, the concentration of matrine in the precorneal area was higher than that of matrine-containing simulated tear fluid (STF) almost at each time point (p < 0.05). The area under the curve of formulation 16 (0.2%Gelrite/0.6%alginate) was 4.65 times greater than that of containing matrine STF. Both the in vitro release and in vivo pharmacological studies indicated that the Gelrite/alginate solution had the better ability to retain drug than the Gelrite or alginate solutions alone. The tested formulation was found to be almost non-irritant in the ocular irritancy test. The overall results of this study revealed that the Gelrite/alginate mixture can be used as an in situ gelling vehicle to enhance ocular retention.  相似文献   

3.
The purpose of present research work was to prepare calcium alginate beads containing water-soluble drug metronidazole using 32 factorial design, with drug concentration and curing time as variables. Curing time was kept as low as possible to improve entrapment with increasing drug concentration. Mostly the drugs which had been encapsulated were water insoluble to facilitate drug encapsulation; a characteristic drug release as whole process is aqueous based. Entrapment efficiency was in the range of 81% to 96% wt/wt, which decreased with decrease in polymer concentration and increase in curing time. The beads were spherical with size range between 1.4 and 1.9 mm. Scanning electron microscope (SEM) photomicrographs revealed increase in the leaching of drug crystals with increased curing time and high drug concentrations. In acidic environment, the swelling ratio was 200% in 30 minutes, but in basic medium, it increased to a maximum of 1400% within 120 minutes. In acidic medium, the swelling and drug release properties were influenced by drug solubility, whereas in phosphate buffer these properties were governed by the gelling of polymer and exhibited curvilinear and quadratic functions of both the variables, respectively.  相似文献   

4.
The purpose of the present work was the development and evaluation of stomach-specific controlled release mucoadhesive drug delivery system prepared by ionotropic gelation of gellan beads, containing acid-soluble drug amoxicillin trihydrate, using 32 factorial design with concentration of gellan gum and quantity of drug as variables. The study showed that beads prepared in alkaline cross-linking medium have higher entrapment efficiency than the acidic cross-linking medium. The entrapment efficiency was in the range of 32% to 46% w/w in acidic medium, which increased up to 60% to 90% w/w in alkaline medium. Batches with lowest, medium, and highest drug entrapment were subjected to chitosan coating to form a polyelectrolyte complex film. As polymer concentration increases, entrapment efficiency and particle size increases. Scanning electron microscopy revealed spherical but rough surface due to leaching of drug in acidic cross-linking solution, dense spherical structure in alkaline cross-linking solution, and rough surface of chitosan-coated beads with minor wrinkles. The in vitro drug release up to 7 h in a controlled manner following the Peppas model (r = 0.9998). In vitro and in vivo mucoadhesivity study showed that beads have good mucoadhesivity and more than 85% beads remained adhered to stomach mucosa of albino rat even after 7 h. In vitro growth inhibition study showed complete eradication of Helicobacter pylori. These results indicate that stomach-specific controlled release mucoadhesive system of amoxicillin gellan beads may be useful in H. pylori treatment.  相似文献   

5.
The liquid and semisolid matrix technology, filling liquids, semi-solids and gels in hard gelatin capsule are promising, thus, there is a need of enhanced research interest in the technology. Therefore, the present study was aimed to investigate isoniazid (freely soluble) and metronidazole (slightly soluble) gels filled in hard gelatin capsules for the effect of poloxamers of different viscosities on release of the drugs. Gel of each drug (10% w/w, particle size 180–250 μm), prepared by mixing poloxamer and 8% w/w hydrophilic silicon dioxide (Aerosil® A200), was assessed for rheology, dispersion stability and release profile. Both the drugs remained dispersed in majority of gels for more than 30 days, and dispersions were depended on gels’ viscosity, which was further depended on viscosity of poloxamers. A small change in viscosity was noted in gels on storage. FTIR spectra indicated no interactions between components of the gels. The gels exhibited thixotropic and shear-thinning behaviour, which were suitable for filling in hard gelatin capsules without any leakage from the capsules. The release of both drugs from the phase-stable gels for 30 days followed first-order kinetics and was found to be correlated to drugs’ solubility, poloxamers’ viscosity, polyoxyethylene contents and proportion of block copolymer (poloxamers) in the gels. The findings of the present study indicated that release of drugs of different solubilities (isoniazid and metronidazole) might be modified from gels using different poloxamers and Aerosil® A200.  相似文献   

6.
The purposes of this work were: (1) to comparatively evaluate the effects of hypromellose viscosity grade and content on ketoprofen release from matrix tablets, using Bio-Dis and the paddle apparatuses, (2) to investigate the influence of the pH of the dissolution medium on drug release. Furthermore, since direct compression had not shown to be appropriate to obtain the matrices under study, it was also an objective (3) to evaluate the impact of granulation on drug release process. Six formulations of ketoprofen matrix tablets were obtained by compression, with or without previous granulation, varying the content and viscosity grade of hypromellose. Dissolution tests were carried out at a fixed pH, in each experiment, with the paddle method (pH 4.5, 6.0, 6.8, or 7.2), while a pH gradient was used in Bio-Dis (pH 1.2 to 7.2). The higher the hypromellose viscosity grade and content were, the lower the amount of ketoprofen released was in both apparatuses, the content effect being more expressive. Drug dissolution enhanced with the increase of the pH of the medium due to its pH-dependent solubility. Granulation caused an increase in drug dissolution and modified the mechanism of the release process.Key words: apparatus 3, Bio-Dis, dissolution, hypromellose matrix, ketoprofen  相似文献   

7.
Composite blend microbeads of sodium alginate (NaAlg) with sodium carboxymethyl cellulose (NaCMC) containing magnesium aluminum silicate (MAS) particles and enteric coated with chitosan have been prepared to achieve controlled release (CR) of amoxicillin in stomach environment. The composite beads have been characterized by X-ray diffraction (XRD) to study drug distribution, DSC for understanding thermal stability and Fourier transform infrared (FTIR) spectroscopy to investigate chemical interactions as well as to assess the structure of the drug-loaded formulations. Surface morphology of the beads was investigated by scanning electron microscopy (SEM). The size distribution of beads loaded with drug as studied by particle size analyzer was in the range of 745-889 μm. The beads exhibited quite widely varying encapsulation efficiencies from 52 to 92%. Equilibrium swelling of the beads measured in water and in vitro release of amoxicillin in pH 1.2 medium suggests that drug release depends on polymer blend composition, concentration of MAS and extent of enteric coating.  相似文献   

8.
The aim of this study was to develop novel hydrogel-based beads and characterize their potential to deliver and release a drug exhibiting pH-dependent solubility into distal parts of gastrointestinal (GI) tract. Oxycellulose beads containing diclofenac sodium as a model drug were prepared by the ionotropic external gelation technique using calcium chloride solution as the cross-linking medium. Resulting beads were characterized in terms of particle shape and size, encapsulation efficacy, swelling ability and in vitro drug release. Also, potential drug–polymer interactions were evaluated using Fourier transform infrared spectroscopy. The particle size was found to be 0.92–0.96 mm for inactive (oxycellulose only) and 1.47–1.60 mm for active (oxycellulose–diclofenac sodium) beads, respectively. In all cases, the sphericity factor was between 0.70 and 0.81 with higher values observed for samples containing higher polymer and drug concentrations. The swelling of inactive beads was found to be strongly influenced by the pH and composition (i.e. Na+ concentration) of the selected media (simulated gastric fluid vs. phosphate buffer pH 6.8). The encapsulation efficiency of the prepared particles ranged from 58% to 65%. Results of dissolution tests showed that the drug loading inside of the particles influenced the rate of its release. In general, prepared particles were able to release the drug within 12–16 h after a lag time of 4 h. Fickian diffusion was found as the predominant drug release mechanism. Thus, this novel particulate system showed a good potential to deliver drugs specifically to the distal parts of the human GI tract.  相似文献   

9.
Bovine serum albumin-loaded beads were prepared by ionotropic gelation of alginate with calcium chloride and chitosan. The effect of sodium alginate concentration and chitosan concentration on the particle size and loading efficacy was studied. The diameter of the beads formed is dependent on the size of the needle used. The optimum condition for preparation alginate–chitosan beads was alginate concentration of 3% and chitosan concentration of 0.25% at pH 5. The resulting bead formulation had a loading efficacy of 98.5% and average size of 1,501 μm, and scanning electron microscopy images showed spherical and smooth particles. Chitosan concentration significantly influenced particle size and encapsulation efficiency of chitosan–alginate beads (p < 0.05). Decreasing the alginate concentration resulted in an increased release of albumin in acidic media. The rapid dissolution of chitosan–alginate matrices in the higher pH resulted in burst release of protein drug.  相似文献   

10.
This study reports on the preparation of chitosan (CS)/polyethylene glycol (PEG) hydrogel beads using sodium diclofenac (DFNa) as a model drug. Following the optimization of the polymer to drug ratio, the chitosan beads were modified by ionic crosslinking with sodium tripolyphosphate (TPP). The CS/PEG/DFNa beads obtained from a (w/w/w) ratio of 1/0.5/0.5 with crosslinking in 10% (w/v) TPP at pH 6.0 for 30 min yielded excellent DFNa encapsulation levels with over 90% loading efficiency. The dissolution profile of DFNa from CS/PEG/DFNa beads demonstrated that this formulation was able to maintain a prolonged drug release for approximately 8 h. Among the formulations tested, the CS/PEG/DFNa (1/0.5/1 (w/w/w)) beads crosslinked with a combination of TPP (10% (w/v) for 30 min) and glutaraldehyde (GD) (5% (w/v)) were able to provide minimal DFNa release in the gastric and duodenal simulated fluids (pH 1.2 and 6.8, respectively) allowing for a principally gradual drug release over 24 h in the intestinal (jejunum and ileum) simulated fluid (pH 7.4). Thus, overall the CS/PEG beads crosslinked with TPP and GD look to be a promising and novel alternative gastrointestinal drug release system.  相似文献   

11.
The effects of mixing, the sodium alginate concentration, and calcium chloride concentration on the release of sulphamethoxazole (model drug) impregnated in calcium alginate beads were investigated and evaluated. The release behaviour of the sulphamethoxazole from the calcium alginate beads was studied in a 0.1N HCl aqueous solution at 37v°C. The release rate of the sulphamethoxazole depends heavily on the type of mixers during the formation of the drug-alginate beads. The highest release rate was achieved when four-bladed rectangular agitator was used while the lowest release was achieved when magnetic stirrer was used. The amount of the released sulphamethoxazole varies slightly with the variation of the alginate concentration. The total release of sulphamethoxazole when 1% w/v solution of sodium alginate was used found to be 80% of the total drug content while 72% and 68% of the total drug content for 1.5% and 2% sodium alginate solutions. Three different calcium chloride concentrations were used (i.e., 5%, 10%, and 15% CaCl2). The effect of the calcium chloride concentration on the release of the sulphamethoxazole is very pronounced.  相似文献   

12.
Floating famotidine loaded mineral oil-entrapped emulsion gel (MOEG) beads were prepared by the emulsion–gelation method. Different polysaccharides (sodium alginate and pectin), oil concentrations (10%, 20% and 30% w/w) and drug:polymer (D:P) ratios (1:1, 2:1 and 3:1) were used and their influence on beads uniformity, drug entrapment efficiency (DEE) and in vitro drug release, was studied. The results clearly indicated that retardation of drug release for 4 h was achieved by the oil hydrophobic diffusional barrier, especially in the presence of the compact network of alginate beads. Calcium alginate beads containing 20% oil and 2:1 D:P ratio, showed an optimum DEE of 88.32%. When evaluated in vivo, this formula displayed superior antiulcer activity (>2) over drug suspension or marketed conventional tablets.  相似文献   

13.
Fluconazole-loaded ethyl cellulose microspheres were prepared by alginate facilitated (water-in-oil)-in-water emulsion technology and the effects of various processing variables on the properties of microspheres were investigated. Scanning electron microscopy revealed spherical nature and smooth surface morphology of the microspheres except those prepared at higher concentration of emulsifiers and higher stirring speeds. The size of microspheres varied between 228 and 592 μm, and as high as 80% drug entrapment efficiency was obtained depending upon the processing variables. When compared up to 2 h, the drug release in pH 1.2 HCl solution was slower than in pH 7.4 phosphate buffer saline solution. However, this trend was reversed at high shear conditions. The microspheres provided extended drug release in alkaline dissolution medium and the drug release was found to be controlled by Fickian-diffusion mechanism. However, the mechanism shifted to anomalous diffusion at high shear rates and emulsifier concentrations. The aging of microspheres did not influence the drug release kinetics. However, the physical interaction between drug and excipients affected the drug dissolution behaviors. X-ray diffractometry (X-RD) and differential scanning calorimetry (DSC) analysis revealed amorphous nature of drug in the microspheres. Fourier transform infrared (FTIR) spectroscopy indicated stable character of fluconazole in the microspheres. The stability testing data also supported the stable nature of fluconazole in the microspheres. The fluconazole extracted from 80% drug-loaded formulation showed good in vitro antifungal activity against Candida albicans. Thus, proper control of the processing variables involved in this modified multiple emulsion technology could allow effective incorporation of slightly water soluble drugs into ethyl cellulose microspheres without affecting drug stability.  相似文献   

14.
Context: Drotaverine hydrochloride (DRT) is used to treat gastrointestinal spasms accompanied with diarrhoea. Hence, the drug suffers from brief residence in the highly moving intestine during diarrhoea which leads to poor bioavailability and frequent dosing.

Objective: This study aimed to extend DRT residence in the stomach.

Methods: Calcium alginate floating beads were prepared using sodium alginate, isopropylmyristate (oil), and Gelucire® 43/01 (lipid) adopting emulsion gelation technique. The beads were evaluated for their floating ability, DRT entrapment efficiency and in-vitro release. Gelucire® 43/01 /oil-based beads of the selected formula were coated using ethylcellulose and different plasticizers as polyethylene glycol 400 and triethyl citrate to retard the drug release. The coated beads were re-characterized. Finally, the best formulae were investigated for their in-vivo floating ability in dogs besides their delivery to the systemic circulation compared to drug powder in human volunteers.

Results: Incorporation of Gelucire® 43/01 to oil-based beads enhanced the in-vitro performance of the beads. Coated beads prepared using drug:sodium alginate ratio of 1:3 (w/w), 20% (w/v) isopropylmyristate, 20% (w/v) Gelucire® 43/01 showed promising in-vitro performance. The beads floated for 12?h in the dogs’ stomach and produced three-fold increase of the total amount of DRT absorbed within 24?h compared to that of DRT powder.

Conclusions: Gelucire® 43/01 /isopropylmyristate-based calcium alginate floating beads coated with ethylcellulose using either PEG 400 or TEC as plasticizers proved to be a successful dosage form in extending DRT release.  相似文献   

15.
Alginate matrix tablet of diltiazem hydrochloride (DTZ), a water-soluble drug, was prepared using sodium alginate (SAL) and calcium gluconate (CG) by the conventional wet granulation method for sustained release of the drug. The effect of formulation variables like SAL/CG ratio, drug load, microenvironmental pH modulator, and processing variable like compression force on the extent of drug release was examined. The tablets prepared with 1:2 w/w ratio of SAL/CG produced the most sustained release of the drug extending up to 13.5 h. Above and below this ratio, the drug release was faster. The drug load and the hardness of the tablets produced minimal variation in drug release. The addition of alkaline or acidic microenvironmental modulators did not extend the release; instead, these excipients produced somewhat faster release of diltiazem. This study revealed that proper selection of SAL/CG ratio is important to produce alginate matrix tablet by wet granulation method for sustained release of DTZ.  相似文献   

16.
Summary Hydrogels of alginate, phospho guar gum, carboxymethyl guar gum, k-carrageenan and cellulose sulphate, respectively were tested to find easily redissolvable gels. The entomopathogenic nematode, Heterorhabditis sp., was entrapped in calcium alginate beads, calcium alginate hollow spheres and foils made from different hydrogels. Emigration from calcium alginate beads after 7 days of storage was 100 % at room temperature and was lowered to 6 % at 6 °C, whereas no emigration from calcium alginate hollow spheres was found at either temperature. Highly concentrated polymer foils produced on gauze showed reduced emigration with a survival of 80 % after 24 h compared to foils produced on glass slides. Calcium alginate beads can be used for a controlled release of the nematode into the environment, while hollow spheres and foils are suitable for storage.Dedicated to Prof. Dr. F. Wagner on the occasion of his 65th birthday  相似文献   

17.
The present study was designed to investigate the effect of two plasticizers, i.e., triethyl citrate (TEC) and polyethylene glycol 6000 (PEG 6000) on the in vitro release kinetics of diclofenac sodium from sustained-release pellets. Ammonio methacrylate copolymer type B (Eudragit RS 30 D) is used as the release-retarding polymer. Both plasticizers were used at 10% and 15% (w/w) of Eudragit RS 30 D. Pellets were prepared by powder layering technology and coated with Eudragit RS 30 D by air suspension technique. Thermal properties of drug and drug-loaded beads were studied using differential scanning calorimeter (DSC). DSC thermogram represented the identity of raw materials and exhibited no interaction or complexation between the active and excipients used in the pelletization process. Dissolution study was performed by using USP apparatus 1. No significant difference was observed among the physical properties of the coated pellets of different batches. When dissolution was performed as pure drug, about 8.22% and 90% drug was dissolved at 2 h in 0.1 N HCl and at 30 min in buffer (pH 6.8), respectively. From all formulations, the release of drug in acid media was very negligible (maximum 1.8 ± 0.08% at 2 h) but in buffer only 12% and 30% drug was released at 10 h from coated pellets containing TEC and PEG 6000, respectively, indicating that Eudragit RS 30 D significantly retards the drug release rate and that drug release was varied according to the type and amount of plasticizers used. The amount of TEC in coating formulation significantly effected drug release (p < 0.001), but the effect of PEG 6000 was not significant. Formulations containing PEG 6000 released more drug (98.35 ± 2.35%) than TEC (68.01 ± 1.04%) after 24 h. Different kinetic models like zero order, first order, and Higuchi were used for fitting drug release pattern. Zero order model fitted best for diclofenac release in all formulations. Drug release mechanism was derived with Korsmeyer equation.  相似文献   

18.
Summary The dissolution of alginate gel beads in 20 g sodium citrate /l produces a linear decrease in bead diameter. The rate of dissolution is dependent on the concentration of CaCl2 within the gel beads. This method allows the controlled release of Saccharomyces cerevisiae from alginate gel beads and permits the simple and rapid determination of the radial distribution of cell concentration.  相似文献   

19.
Calcium alginate beads were used to entrap a Bacillus sp. that has the ability to biosorb cadmium. During the batch incubation of alginate beads in a `rich' or a `poor' liquid medium, cell release out of the beads was noticed with a lag phase which was inversely proportional to the inoculum size (2×107 or 2×108 cells ml–1 alginate), to the medium content, and proportional to the alginate concentration (10 or 15 g l–1) and to the cadmium concentration (1, 5 or 10 mg l–1). In addition, the cell release occurred more quickly when the medium was renewed. When the concentration was below 5 mg l–1, the alginate matrix seemed to protect the bacteria against Cd2+ toxicity.  相似文献   

20.
RH Fahmy 《AAPS PharmSciTech》2012,13(3):990-1004
Multiparticulate floating drug delivery systems have proven potential as controlled-release gastroretentive drug delivery systems that avoid the "all or none" gastric emptying nature of single-unit floating dosage forms. An objective of the presence investigation was to develop calcium silicate (CaSi)/calcium alginate (Ca-Alg)/hydroxypropyl methylcellulose (HPMC) mucoadhesive-floating beads that provide time- and site-specific drug release of alfuzosin hydrochloride (Alf). Beads were prepared by simultaneous internal and external gelation method utilizing 3(2) factorial design as an experimental design; with two main factors evaluated for their influence on the prepared beads; the concentration of CaSi as floating aid (X (1)) and the percentage of HPMC as viscosity enhancer and mucoadhesive polymer (X (2)), each of them was tested in three levels. Developed formulations were evaluated for yield, entrapment efficiency, particle size, surface topography, and buoyancy. Differential scanning calorimetry, Fourier transform infrared spectroscopy, in vitro drug release, as well as in vitro mucoadhesion using rat stomach mucosal membrane were also conducted. Percentage yield and entrapment efficiency ranged from 57.03% to 78.51% and from 49.78% to 83.26%, respectively. Statistical analysis using ANOVA proved that increasing the concentration of either CaSi or HPMC significantly increased the beads yield. Both CaSi and HPMC concentrations were found to significantly affect Alf release from the beads. Additionally, higher CaSi concentration significantly increased the beads diameter while HPMC concentration showed significant positive effect on the beads mucoadhesive properties. CaSi/Ca-Alg/HPMC beads represent simple floating-mucoadhesive gastroretentive system that could be useful in chronopharmacotherapy of benign prostatic hyperplasia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号