首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic variation of four populations of Sargassum thunbergii (Mert.) O. Kuntze and one outgroup of S. fusiforme (Harv.) Setchell from Shandong peninsula of China was studied with random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers. A total of 28 RAPD primers and 19 ISSR primers were amplified, showing 174 loci and 125 loci, respectively. Calculation of genetic diversity with different indicators (P%, percentage of polymorphic loci; H, the expected heterozygosity; I, Shannon’s information index) revealed low or moderate levels of genetic variations within each S. thunbergii population. High genetic differentiations were determined with pairwise Nei’s unbiased genetic distance (D) and fixation index (F ST ) between the populations. The Mantel test showed that two types of matrices of D and F ST were highly correlated, whether from RAPD or ISSR data, r = 0.9310 (P  = 0.008) and 0.9313 (P = 0.009) respectively. Analysis of molecular variance (AMOVA) was used to apportion the variations between and within the S. thunbergii populations. It indicated that the variations among populations were higher than those within populations, being 57.57% versus 42.43% by RAPD and 59.52% versus 40.08% by ISSR, respectively. Furthermore, the Mantel test suggested that the genetic differentiations between the four populations were related to the geographical distances (r > 0.5), i.e., they conformed to the IBD (isolation by distance) model, as expected from UPGMA (unweighted pair group method with arithmetic averages) cluster analysis. As a whole, the high genetic structuring between the four S. thunbergii populations along distant locations was clearly indicated in the RAPD and ISSR analyses (r > 0.8) in our study.  相似文献   

2.
The clam Ruditapes decussatus is commercially important in the south of Portugal. The random amplified polymorphic DNA (RAPD) technique was applied to assess the genetic diversity and population structure of two Portuguese populations occurring in the Ria Formosa (Faro) and the Ria de Alvor, respectively. Twenty-five individuals of each population were investigated by RAPD profiles. Genetic diversity within populations, measured by the percentage of polymorphic loci (%P), varied between 68.57% (Alvor) and 73.88% (Faro). Shannon’s information index (H) and Nei’s gene diversity (h) were 0.281 and 0.176, respectively, for the Alvor population and 0.356 and 0.234 for the Faro population. Overall, genetic variation within R. decussatus populations was high. The total genetic diversity (H T) was explained by a low variation between populations (G ST = 0.145), which is consistent with high gene flow (N m = 2.9). The analysis of molecular variance (AMOVA) showed that 65% of variability is within populations and 35% between populations (ΦPT = 0.345; P ≥ 0.001). The value of Nei’s genetic distance was 0.0881, showing a low degree of population genetic distance, despite the different geographic origin. This is the first study on the population genetics of R. decussatus by RAPD technique. The results may be useful for restocking programs and aquaculture.  相似文献   

3.
Sargassum muticum is important in maintaining the structure and function of littoral ecosystems, and is used in aquaculture and alginate production, however, little is known about its population genetic attributes. In this study, random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers were used to investigate the genetic structure of four populations of S. muticum and one outgroup of S. fusiforme (Harv.) Setchell from Shandong peninsula of China. The selected 24 RAPD primers and 19 ISSR primers amplified 164 loci and 122 loci, respectively. Estimates of genetic diversity with different indicators (P%, percentage of polymorphic loci; H, the expected heterozygosity; I, Shannon’s information index) revealed low or moderate level of genetic variations within each S. muticum population, and a high level of genetic differentiations were determined with pairwise unbiased genetic distance (D) and fixation index (F ST ) among the populations. The Mantel test showed that two types of matrices of D and F ST were highly correlated whether from RAPD (r = 0.9706, P = 0.009) or ISSR data (r = 0.9161, P = 0.009). Analysis of molecular variance (AMOVA) was conducted to apportion the variations among and within the S. muticum populations. It indicated that variations among populations were higher than those within populations, being 55.82% verse 44.18% by RAPD and 55.21% verse 44.79% by ISSR, respectively. Furthermore, the Mantel test suggested that genetic differentiations among populations were related to the geographical distances (r > 0.6), namely, conformed to the IBD (isolation by distance) model, as expected from UPGMA (unweighted pair group method with arithmetic averages) cluster analysis. On the whole, the high genetic structuring among the four S. muticum populations along the distant locations was clearly indicated in RAPD and ISSR analyses (r > 0.9, P < 0.05) in our study.  相似文献   

4.
Swertia przewalskii Pissjauk. (Gentianaceae) is a critically endangered and endemic plant of the Qinghai-Tibet Plateau in China. RAPD and ISSR analyses were carried out on a total of 63 individuals to assess the extent of genetic variation in the remaining three populations. Percentage of polymorphic bands was 94% (156 bands) for RAPD and 96% (222 bands) for ISSR. A pairwise distance measure calculated from the RAPD and ISSR data was used as input for analysis of molecular variance (AMOVA). AMOVA indicated that a high proportion of the total genetic variation (52% for RAPD and 56% for ISSR) was found among populations; pairwise Φ ST comparisons showed that the three populations examined were significantly different (p < 0.001). Significant genetic differentiation was found based on different measures (AMOVA and Hickory θB) in S. przewalskii (0.52 on RAPD and 0.56 on ISSR; 0.46 on RAPD and 0.45 on ISSR). The differentiation of the populations corresponded to low average gene flow (0.28 based on RAPD and 0.31 based on ISSR), whereas genetic distance-based clustering and coalescent-based assignment analyses revealed significant genetic isolation among populations. Our results indicate that genetic diversity is independent of population size. We conclude that although sexual reproduction and gene flow between populations of S. przewalskii are very limited, they have preserved high levels of genetic diversity. The main factors responsible for the high level of difference among populations are the isolation and recent fragmentation under human disturbance.  相似文献   

5.
Megacodon stylophorus (Clarke) Smith is a perennial alpine herb endemic to the species-rich eastern Himalayan region. Its populations are locally scattered as isolated patches throughout this region. Genetic variation within and among six populations of this species was assessed using ISSR fingerprinting with 13 primers. High levels of genetic diversity exist within species (P = 69.83%, HT = 0.1949 and Hsp = 0.3047), while the within-population diversity is low (P = 11.21%, HE = 0.0532 and Hpop = 0.0792). Extraordinarily high levels of genetic differentiation were detected among populations based on various statistics, including Neis genetic diversity analysis (72.7%), Shannons diversity index (74.01%) and AMOVA (80.70%). That is, populations shared low levels of genetic identity (I = 0.8203 ± 0.0430). This genetic structure was probably due to severe genetic drift of the small-sized patchy populations resulting from postglacial habitat fragmentations. The observed genetic structure of the populations implies that as many populations as possible should be considered for any in situ and ex situ conservation practice on this species.  相似文献   

6.
Cymbidium goeringii is a diploid and nonrewarding, bumblebee-pollinated species, which is distributed in China, Japan and Korea Peninsula. This species is now highly endangered due to the mass collection and forest clearance in China. In the present study, we investigated the distribution of genetic variation within and between eleven populations of Cymbidium goeringii in central China by using Inter-simple sequence repeats (ISSR) markers. Eleven primers produced a total of 127 clear and reproducible bands of which 112 were polymorphic. High genetic diversity was detected in Cymbidium goeringii for both population level (P = 63.1%; He = 0.194 5) and species level (P = 88.2%; He = 0.262 8). A higher level of genetic differentiation was detected among populations (G ST = 0.244 0, F ST = 0.220 7) with Nei’s G ST analysis and analysis of molecular variance (AMOVA), and no correlation was found between geographical and genetic distance. Genetic drift rather than gene flow played an important role in forming the present population structure of Cymbidium goeringii. Limited gene flow among populations and gene drift increase the extinction risk of local populations. Some conservation concerns are therefore discussed together with possible strategies for implementing in situ and ex situ conservation. __________ Translated from Biodiversity Science, 2006, 14(3): 250–257 [译自: 生物多样性] Equally contributed authors  相似文献   

7.
Genetic variability in random amplified polymorphic DNA (RAPD) was studied in 90 individuals of Caragana microphylla, an outcrossing perennial shrub species, from five natural populations sampled in Inner Mongolia steppe of China on a small scale. Nineteen selected primers were used to amplify DNA samples, and totally 225 bands were detected. The percentage of polymorphic bands within populations ranged form 58.22% to 63.56%, with an average of 60% at the population level and 71.11% at the species level, indicating relatively high genetic variations in C. microphylla species. Shannon’s information index (l) and Nei’s gene diversity (h) showed the similar trend with each other. According to the analysis of Nei’s gene diversity, the percentage of genetic variation among populations was 7.13%, indicating a low level of genetic differentiation among populations. There existed a strong gene flow (N m = 3.26) among populations. Although AMOVA analysis also revealed most variation was within populations (ΦST = 4.1%), a significant proportion was observed among populations (P < 0.001) in the present study, suggesting genetic differentiation occurred among populations at a certain extent. Based on Mantel’s tests and the results of previous studies, the genetic structure pattern of C. microphylla accorded with the isolation-by-distance model on a very large scale, however, on a small scale, the significant genetic differentiation among populations might be enhanced by the micro-environmental divergence among the sampling sites, rather than by geographic factors. Analysis of the genetic variations of C. microphylla populations provided useful information for the adaptive strategy of Caragana species.  相似文献   

8.
Ren Z  Zhu B  Wang D  Ma E  Su D  Zhong Y 《Genetica》2008,132(1):103-112
Most of our current understanding of comparative population structure has been come from studies of parasite–host systems, whereas the genetic comparison of gallnut-aphids and their host-plants remain poorly documented. Here, we examined the population genetic structure of the Chinese sumac aphid Schlechtendalia chinensis and its unique primary host-plant Rhus chinensis in a mountainous province in western China using inter-simple sequence repeat (ISSR) markers. Despite being sampled from a mountainous geographic range, analysis of molecular variance (AMOVA) showed that the majority of genetic variation occurred among individuals within populations of both the aphid and its host. The aphid populations were found to be structured similarly to their primary host populations (F ST values were 0.239 for the aphid and 0.209 for its host), suggesting that there are similar patterns of gene flow between the populations of the aphid and between populations of its host-plant. The genetic distances (F ST/1 − F ST) between the aphid populations and between its host-plant populations were uncorrelated, indicating that sites with genetically similar host-plant populations may not always have genetically similar aphid populations. The lack of relationships between genetic and geographical distance matrices suggested that isolation by distance (IBD) played a negligible role at this level. This may be mainly attributed to the founder effect, genetic drift and the relative small spatial scale between populations. Zhumei Ren and Bin Zhu contributed equally to this work.  相似文献   

9.
Physaria bellii (Brassicaceae) is a rare, outcrossing perennial endemic to shale and sandstone outcrops along the Front Range of northern Colorado, USA. This species is locally abundant, but ranked G2/S2—imperiled because of threats to its habitat and a small number of populations—according to NatureServe’s standardized ranking system. Leaf tissue from ten populations was analyzed with ISSR (Inter-Simple Sequence Repeat) markers to discern the amount of genetic diversity and degree of population subdivision in P. bellii. Genetic diversity was moderate (0.22) and a moderately high degree of population structure was found (F ST calculated using two algorithms ranged from 0.17 to 0.24). An AMOVA partitioned most of the variation among individuals within populations (76%), and the remainder among populations (24%). Results from a Principal Coordinates analysis were consistent with the geographic distribution of populations. A Mantel test of the correlation between genetic and geographic distances was highly significant (P < 0.001). The pattern of variation thus appears to be distributed along a gradient, and efforts to conserve this species should involve preserving enough populations so that gene flow between populations is not interrupted.  相似文献   

10.
Genetic variability in ten populations of wild-growing ginseng was assessed using AFLP markers with the application of fragment analysis on a genetic analyzer. The variation indices were high in the populations (P = 55.68%, H S = 0.1891) and for the species (P = 99.65%; H S = 0.2857). Considerable and statistically significant population differentiation was demonstrated (θB = 0.363; Bayesian approach, “full model”; F ST = 0.36, AMOVA). The results of AMOVA and Bayesian analysis indicate that 64.46% of variability is found within the populations. Mantel test showed no correlation between the genetic and geographic distances among the populations (r = −0.174; p = 0.817). Hierarchical AMOVA and analysis of genetic relationships based on Euclidean distances (NJ, PCoA, and MST) identified two divergent population groups of ginseng. Low gene flow between these groups (N m = 0.4) suggests their demographic independence. In accordance to the concept of evolutionary significant units (ESU), these population groups, in terms of the strategy and tactics for conservation and management of natural resources, should be treated as management units (MUs). The MS tree topology suggests recolonization of southern Sikhote-Alin by ginseng along two directions, from south and west.  相似文献   

11.
Random amplified polymorphic DNA (RAPD) analysis was used to characterize the genetic diversity and population genetic structure of Stipa krylovii populations in Inner Mongolia steppe of North China. Thirteen 10-bp oligonucleotide primers, which generated 237 RAPD bands, were used to analyze 90 plants of five populations from three regions, meadow steppe, typical steppe and desert steppe, from the east to the west. The genetic diversity of Stipa krylovii that was revealed by observed number of alleles (na), expected number of alleles (ne), Nei’s diversity index (h), Shannon’s diversity index (H), amplificated loci, polymorphic loci and the percentage of polymorphic loci (PPB) increased from the east to the west. The Pearson’s correlation analysis between genetic diversity parameters and ecological parameters indicated that the genetic diversity of Stipa krylovii was associated with precipitation and cumulative temperature variations along the longitude (humidity were calculated by precipitation and cumulative temperature). Dendrogram based on Jaccard’s genetic distance showed that the individuals from the same population formed a single subgroup. Although most variation (56.85%) was within populations, there was high genetic differentiation among populations of Stipa krylovii, high differentiation within and between regions by AMOVA analysis. Either Nei’s unbiased genetic distance (G ST) or gene flow (Nm) among pairwise populations was not correlated with geographical distance by Mantel’s test (P > 0.05), suggesting that there was no consistency with the isolation by distance model in these populations. Natural selection may have played a role in affecting the genetic diversity and population structure, but habitat destruction and degradation in northem grassland in China may be the main factor responsible for high genetic differentiation among populations, within and among regions. The text was submitted by the authors in English.  相似文献   

12.
ISSR markers were used to analyze the genetic diversity and genetic structure of eight natural populations of Cupressus chengiana in China. ISSR analysis using 10 primers was carried out on 92 different samples. At the species level, 136 polymorphic loci were detected. The percentage of polymorphic bands (PPB) was 99%. Genetic diversity (H e) was 0.3120, effective number of alleles (A e) was 1.5236, and Shannon’s information index (I) was 0.4740. At the population level, PPB = 48%, A e=1.2774, H e=0.1631, and I=0.2452. Genetic differentiation (G st) detected by Nei’s genetic diversity analysis suggested 48% occurred among populations. The partitioning of molecular variance by AMOVA analysis indicated significant genetic differentiation within populations (54%) and among populations (46%; P < 0.0003). The average number of individuals exchanged between populations per generation (N m ) was 0.5436. Samples from the same population clustered in the same population-specific cluster, and two groups of Sichuan and Gansu populations were distinguishable. A significantly positive correlation between genetic and geographic distance was detected (r=0.6701). Human impacts were considered one of the main factors to cause the rarity of C. chengiana, and conservation strategies are suggested based on the genetic characters and field investigation, e.g., protection of wild populations, reestablishment of germplasm bank, and reintroduction of more genetic diversity.  相似文献   

13.
Abstract

We used inter-simple sequence repeat (ISSR) markers to investigate genetic variation in eight natural populations of Elephantopus scaber from South China, including Guangdong, Hainan and Hong Kong. Eleven primers produced 247 bands across all 184 individuals, of which 243 (98.4%) were polymorphic. The average genetic diversity at the species and population levels was estimated to be 0.283 and 0.103, respectively, using mean expected heterozygosity. The average gene differentiation (F ST) among populations was 0.725. AMOVA analysis showed that the partition of molecular variation between and within populations was 72.5% and 27.5%, respectively. The effective number of migrants among populations based on the F ST was relatively low (N m = 0.095). Cluster analysis based on Nei's genetic distance and the neighbour-joining method revealed the genetic relationships among the populations of E. scaber. The Mantel test indicated that there was no significant correlation between population genetic and geographic distances. The results obtained from the AMOVA analysis, the cluster analysis, and the Mantel test all suggested that fragmented local environments and human disturbance might play important roles in shaping the population structure of E. scaber.  相似文献   

14.
Genetic diversity and differentiation were analyzed in 11 populations of Magnolia stellata (Sieb. and Zucc.) Maxim. (Magnoliaceae) in the Tokai district, Japan. Variation at four nuclear microsatellite (nSSR) loci was examined, three chloroplast microsatellite (cpSSR) markers were developed and 13 haplotypes identified. The 11 populations were divided into three groups (A, B and C). Each population within the group was separated less than 40 km. Group B harbored the highest gene diversity (H) and allelic richness (Ar) for nSSR (H=0.74 and Ar=8.02). Group C had the highest diversity of chloroplast haplotypes (H=0.79 and Ar=6.8): 2.5 times more haplotypes than the other groups. Each population contributed differently to the total diversity, with respect to nSSR and cpSSR. AMOVA revealed that 58% of haplotypic and 15% of nSSR variation was partitioned among populations within groups. A Mantel test revealed significant correlations between population pairwise geographic ln(distance) and FST/(1−FST) for both nSSR (r=0.479; P=0.001) and cpSSR (r=0.230; P=0.040). Dendrograms of populations for nSSR, based on Nei’s genetic distance, were constructed using UPGMA and the neighbor-joining method. These results suggest that populations in group C have diverged from the other populations, while those in group B are similar to each other. For group B, fragmentation between populations should be avoided in order to maintain gene flow. For group C, the uniqueness of each population should be given the highest priority when planning genetic conservation measures for the species.  相似文献   

15.
Ranunculus cabrerensis is an endemic and endangered species of the Northwestern Iberian Peninsula. The molecular markers AFLP and ISSR were used to investigate the genetic diversity and population structure of four populations across its known distribution. Fifteen selective primer combinations of AFLP and seventeen ISSR primer combinations produced a total of 2830 and 103 unambiguously repeatable fragments respectively, of which 97.57 and 81.38% were polymorphic for both markers. The genetic diversity of R. cabrerensis at species level was high (H E = 0.294 by ISSR and H E = 0.191 by AFLP) and differentiation between sampled locations was also relatively high (G ST = 0.316 and 0.158 by ISSR and AFLP analysis respectively) compared to other studies of endangered and rare species using the same techniques. The analysis of molecular variance (AMOVA) indicated that the main genetic variation was within sampled locations (73% by AFLP; 52% by ISSR), even though the variation among locations was also significant. Principal Coordinates, NeighborNet and Bayesian analyses revealed a weak but significant relationship between the genetic structures of different populations in R. cabrerensis, with gene flow acting as a homogenizing force that prevents stronger differentiation of populations. Finally, suggestions for conservation strategies to preserve the genetic resources of this species are outlined.  相似文献   

16.
Zheng W  Wang L  Meng L  Liu J 《Genetica》2008,132(2):123-129
We used random amplified polymorphic DNA markers (RAPDs) to assess genetic variation between- and within-populations of Anisodus tanguticus (Solanaceae), an endangered perennial endemic to the Qinghai-Tibetan Plateau with important medicinal value. We recorded a total of 92 amplified bands, using 12 RAPD primers, 76 of which (P = 82.61%) were polymorphic, and calculated values of Ht and Hsp of 0.3015 and 0.4459, respectively, suggesting a remarkably high rate of genetic variation at the species level. The average within-population diversity also appeared to be high, with P, He and Hpop values of 55.11%, 0.1948 and 0.2918, respectively. Analyses of molecular variance (AMOVA) showed that among- and between-population genetic variation accounted for 67.02% and 32.98% of the total genetic variation, respectively. In addition, Nei’s coefficient of differentiation (GST) was found to be high (0.35), confirming the relatively high level of genetic differentiation among the populations. These differentiation coefficients are higher than mean corresponding coefficients for outbreeding species, but lower than reported coefficients for some rare species from this region. The genetic structure of A. tanguticus has probably been shaped by its breeding attributes, biogeographic history and human impact due to collection for medicinal purposes. The observed genetic variations suggest that as many populations as possible should be considered in any planned in situ or ex situ conservation programs for this species.  相似文献   

17.
Repeated cycles of retreat and recolonization during the Quaternary ice ages are thought to have greatly influenced current species distributions and their genetic diversity. It remains unclear how this climatic oscillation has affected the distribution of genetic diversity between populations of wind-pollinated conifers in the Qinghai-Tibetan region. In this study, we investigated the within-species genetic diversity and phylogenetic relationships of Picea likiangensis, a dominant forest species in this region using polymorphic DNA (RAPD) markers. Our results suggest that this species has high overall genetic diversity, with 85.42% of loci being polymorphic and an average expected heterozygosity (H E) of 0.239. However, there were relatively low levels of polymorphism at population levels and the differences between populations were not significant, with percentages of polymorphic bands (PPB) ranging from 46.88 to 69.76%, Nei’s gene diversity (H E) from 0.179 to 0.289 and Shannon’s indices (Hpop) from 0.267 to 0.421. In accordance with our proposed hypothesis, a high level of genetic differentiation among populations was detected based on Nei’s genetic diversity (G ST = 0.256) and AMOVA analysis (Phi st = 0.236). Gene flow between populations was found to be limited (Nm = 1.4532) and far lower than reported for other conifer species with wide distribution ranges from other regions. No clusters corresponding to three morphological varieties found in the south, north and west, respectively, were detected in either UPGMA or PCO analyses. Our results suggest that this species may have had different refugia during the glacial stages in the southern region and that the northern variety may have multiple origins from these different refugia.  相似文献   

18.
Zong M  Liu HL  Qiu YX  Yang SZ  Zhao MS  Fu CX 《Biochemical genetics》2008,46(3-4):180-196
Dysosma pleiantha, an important threatened medicinal plant species, is restricted in distribution to southeastern China. The species is capable of reproducing both sexually and asexually. In this study, inter-simple sequence repeat marker data were obtained and analyzed with respect to genetic variation and genetic structure. The extent of clonality, together with the clonal and sexual reproductive strategies, varied among sites, and the populations under harsh ecological conditions tended to have large clones with relatively low clonal diversity caused by vegetative reproduction. The ramets sharing the same genotype show a clumped distribution. Across all populations surveyed, average within-population diversity was remarkably low (e.g., 0.111 for Nei’s gene diversity), with populations from the nature reserves maintaining relatively high amounts of genetic diversity. Among all populations, high genetic differentiation (AMOVA: ΦST = 0.500; Nei’s genetic diversity: G ST = 0.465, Bayesian analysis: ΦB = 0.436) was detected, together with an isolation-by-distance pattern. Low seedling recruitment due to inbreeding, restricted gene flow, and genetic drift are proposed as determinant factors responsible for the low genetic diversity and high genetic differentiation observed.  相似文献   

19.
Cycas fairylakea is an endangered endemic species in China. Genetic diversity within and among four natural populations of this species in China was investigated using amplified fragments length polymorphism (AFLP). A moderate to low level of intraspecific genetic diversity was detected in this species (at population level: P = 39.57 %, H0 = 0.244; at species level: P = 60.22%, H0 = 0.356). The among-population component accounted for, respectively, 25.7 and 31.5% of the genetic variation, according to AMOVA and Shannon’s index, indicating most of the genetic variation was found between individuals within populations. All four populations have opposite pyramid age structure, and few coning individuals, which is still decreasing. Possibly because of habitat degradation and environmental pollution, plant diseases and insect pests in the populations were extremely serious, suggesting that the main factors threatening the survival of C. fairylakea populations were not genetic variation, but human activities and the breeding system of this species.  相似文献   

20.
Wang FY  Ge XJ  Gong X  Hu CM  Hao G 《Biochemical genetics》2008,46(1-2):75-87
The East Himalaya-Hengduan Mountains region is the center of diversity of the genus Primula, and P. sikkimensis is one of the most common members of the genus in the region. In this study, the genetic diversity and structure of P. sikkimensis populations in China were assessed using inter-simple sequence repeat (ISSR) and chloroplast microsatellite markers. The 254 individuals analyzed represented 13 populations. High levels of genetic diversity were revealed by ISSR markers. At the species level, the expected heterozygosity and Shannon’s index were 0.4032 and 0.5576, respectively. AMOVA analysis showed that 50.3% of the total genetic diversity was partitioned among populations. Three pairs of chloroplast microsatellite primers tested yielded a total of 12 size variants and 15 chloroplast haplotypes. Strong cpDNA genetic differentiation (G ST = 0.697) and evidence for phylogeographic structure were detected (N ST = 0.788, significantly higher than G ST). Estimated rates of pollen-mediated gene flow are approximately 27% greater than estimated rates of seed-mediated gene flow in P. sikkimensis. Both seed and pollen dispersal, however, are limited, and gene flow among populations appears to be hindered by the patchiness of the species’ habitats and their geographic isolation. These features may have played important roles in shaping the genetic structure of P. sikkimensis. A minimum-spanning tree of chloroplast DNA haplotypes was constructed, and possible glacial refugia of P. sikkimensis were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号