首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
White clover (Trifolium repens L.) and Perennial ryegrass (Loliumperenne L.) plants were grown, in Perlite, in simulated swardsas either monocultures or mixtures of equal plant numbers. Theywere supplied with a nutrient solution either high (220 µgg–1) or low (40 µg g–1) in 15N-labelled nitrateand grown to ceiling yield at either high (20°C day/15°Cnight) or low (10°C day/8°C night) temperature. Temperature had little effect on the maximum rates of grosscanopy photosynthesis which were similar in High-N grass andHigh-N and Low-N clover monocultures. However these maxima werereached more slowly in clover than grass, and more slowly atlow rather than high temperature. Nitrogen supply increasedphotosynthesis in grass but not in clover. Clover had higherN contents than grass in all four treatments, although in anygiven treatment its N content was lower, and contribution ofN2-fixation relative to nitrate uptake higher, in mixture thanin monoculture. Conversely, grass had higher N contents in mixturethan monoculture, because more nitrate was available per plantand not because of transfer of biologically fixed N from clover. Under Low-N, clover outyielded grass in mixture, particularlyat high temperature. The grass plants in the Low-N mixtureshad higher N contents and higher SLA, LAR and shoot: root ratiosthan those in monoculture. It is proposed that competition forlight is the cause of the low relative yield and negative aggressivityof grass in these swards. Under High-N, grass outyielded cloverin monoculture and mixture, at both temperatures but particularlyat low temperature when grass had a high aggressivity. Nitrogenand yield component analyses shed no light on clover's apparentlylow competitive ability and evidence is drawn from the previouspaper to demonstrate that grass grew faster than clover onlyas spaced individuals during non-com petitive growth. The relativemerits of measures of competitive ability based on final harvestdata and physiological data taken over a growth period are discussed. Trifolium repens L., white clover, Lolium perenne, perennial ryegrass, competition, temperature, nitrogen  相似文献   

2.
The application of nitrogenous fertilizer in March to a whiteclover (cv. Blanca) and perennial ryegrass (cv. S23) sward resultedin a rapid suppression of the clover, relative to clover ina treatment given no added nitrogen. Thereafter, the cloverin both treatments grew more rapidly than the grass and itsproportion of the total leaf area in the mixture increased,as the leaf area index rose to 8. After a second applicationof N in early July, clover was not suppressed to the same extentas in the first growth period. Overall, the photosynthetic capacities of newly expanded cloverlaminae were similar in the two treatments. Clover laminae hadhigher photosynthetic capacities than grass, even in the grass-dominant+ N treatment. Lamina area, petiole length, and the number of live leaves perstolon were similar in the two treatments, indicating that thedifferences in total leaf area were due to the presence of fewerstolon growing points in the + N treatment. Trifolium repens L., white clover, Lolium perenne L., perennial ryegrass, nitrogen, leaf area index, photosynthesis, growth  相似文献   

3.
Subterranean clover (Trifolium subterraneum L.) cv. ‘Woogenellup’ swards were grown at 10, 15, 20 and 25 Cwith a 12 h photoperiod of 500 or 1000 µmol m–2s–1 [low and high photosynthetic photon flux density (PPFD)].Nitrogen-fixing swards received nutrient solution lacking combinednitrogen while control swards received a complete nutrient solution.Growth was measured by infra-red analysis of carbon dioxideexchange and by accumulation of dry matter. Swards were harvestedat intervals between 95 and 570 g d. wt m–2 for estimationof nitrogenase activity by acetylene reduction and hydrogenevolution assays. Nitrogen fixation was also measured by increasein organic nitrogen. The growth rate was highest at 10 C at low PPFD, and at 10–15C at high PPFD. Nitrogen-fixing swards grew slower than thosereceiving combined nitrogen. Nitrogen fixation measured by increasein organic nitrogen responded similarly to the growth rate,as did acetylene reduction between 10 and 20 C. At 25 C therelationship between acetylene reduction and nitrogen fixationwas distrupted. The difference between the rates of acetylenereduction and hydrogen evolution, theoretically proportionalto nitrogen fixation, was not a reliable indicator of nitrogenfixation because hydrogen uptake developed. Trifolium subterraneum L, subterranean clover, growth, nitrogen fixation, temperature, acetylene reduction  相似文献   

4.
An experiment investigated whether the inclusion of chicory (Cichorium intybus) in swards grazed by beef steers altered their performance, carcass characteristics or parasitism when compared to steers grazing perennial ryegrass (Lolium perenne). Triplicate 2-ha plots were established with a chicory/ryegrass mix or ryegrass control. Forty-eight Belgian Blue-cross steers were used in the first grazing season and a core group (n = 36) were retained for finishing in the second grazing season. The experiment comprised of a standardisation and measurement period. During standardisation, steers grazed a ryegrass/white clover pasture as one group. Animals were allocated to treatment on the basis of liveweight, body condition and faecal egg counts (FEC) determined 7 days prior to the measurement period. The measurement period ran from 25 May until 28 September 2010 and 12 April until 11 October 2011in the first and second grazing year. Steers were weighed every 14 days at pasture or 28 days during housing. In the first grazing year, faecal samples were collected for FEC and parasite cultures. At the end of the first grazing year, individual blood samples were taken to determine O. ostertagi antibody and plasma pepsinogen levels. During winter, animals were housed as one group and fed silage. In the second grazing year, steers were slaughtered when deemed to reach fat class 3. Data on steer performance showed no differences in daily live-weight gain which averaged 1.04 kg/day. The conformation, fat grade and killing out proportion of beef steers grazing chicory/ryegrass or ryegrass were not found to differ. No differences in FEC, O. ostertagi antibody or plasma pepsinogen levels of beef steers grazing either chicory/ryegrass or ryegrass were observed. Overall, there were no detrimental effects of including chicory in swards grazed by beef cattle on their performance, carcass characteristics or helminth parasitism, when compared with steers grazing ryegrass.  相似文献   

5.
Simulated mixed swards of Perennial Ryegrass (Lolium perenneL.) cv. S23 and White clover (Trifolium repens L.) cv. S100were grown from seed under a constant 20 °C day/15 °Cnight temperature regime and their growth and carbon economyexamined. The swards received a nutrient solution daily, whichcontained either High (220 mg l1) or Low (10 mg l–1)nitrate N. Rates of canopy photosynthesis and respiration, and final drymatter yields were similar in the two treatments although theproportions of grass and clover differed greatly. The Low-Nswards were made up largely of clover. The grass plants in theseswards had high root: shoot ratios and low relative photosyntheticrates – both signs of N deficiency – and were clearlyunable to compete with the vigorously growing Low-N clover plants.These had higher relative growth rates and dry matter yieldsthan their High-N counterparts. In the High-N swards clovercontributed around 50 per cent to the sward dry weight throughoutthe measurement period despite having a smaller proportion ofits dry weight in photosynthetic tissue (laminae) than grassover much of it. The latter was compensated for, initially bya higher specific leaf area than grass, and later by a higherphotosynthetic rate per unit leaf weight. The results are discussedin relation to observed declines in the clover content of swardsafter the addition of nitrogen fertilizer in the field. Trifolium repens, white clover, Lolium perenne, perennial ryegrass, nitrogen, photosynthesis, carbon balance  相似文献   

6.
The rate of photosynthesis of leaves of perennial ryegrass (Loliumperenne L.) and white clover (Trifollum pratense L.) grown atdifferent temperatures was measured at a range of temperatures.There was a small effect of the temperature at which a leafhad grown on its photosynthetic rate, but a large effect ofmeasurement temperature, especially in bright light, where photosyntheticrates at 15°C were about twice those at 5°C. It appearsthat temperature could affect sward photosynthesis in the field.Ryegrass and clover had similar photosynthetic rates which respondedsimilarly to temperature. Lolium perenne L., ryegrass, Trifolium pratense L., white clover, photosynthesis, temperature, irradiance  相似文献   

7.
Simulated mixed swards of Perennial Ryegrass (Lolium perenneL.) cv. S23 and White clover (Trifolium repens L.) cv. S100were grown from seed under a constant 20 °C day/15 °Cnight temperature regime and harvested at intervals over and88 d growht period. The swards received a nutrient solutiondaily, which was either High (220 mg l1) or Low (10 mgl–1) in nitrate N. The nitrate was labelled with the 15Nisotope. An acetylene reduction assay was carried out on eachsward just prior to harvest. Rates of acetylene reduction agreed qualitatively with the l5Nanalyses but absolute values did not match (assuming a 4:1 C2H4:N2ratio) and errors in the acetylene assay are discussed. In theLow-N swards clover relied almost entirely on symbioticallyfixed N2, fixing more than ten times as much as the High-N cloverplants. In the Low-N treatment the grass was N-deficient despiteobtaining much more nitrate per unit root dry weight than clover.In the High-N swards, however, clover took up more nitrate perunit root weight than grass. The High-N clover plants also fixedsome N2 and maintained a higher total-N content than grass throughoutthe period. There was no evidence of transfer of symbioticallyfixed N from the clover to the grass in either treatment. Trifolium repens, Lolium perenne, nitrate, nitrogen fixation, 15N, acetylene reduction  相似文献   

8.
The growth of white clover (Trifolium repens L.) in conditionstypical of April in Southern England (8 °C day/4 °Cnight, 12 h photoperiod of 90 J m–2 s–1 visibleradiation) was extremely slow, whether the plants were dependentfor nitrogen on fixation by their root nodules or were suppliedwith abundant nitrate; although growth was slower in the nodulatedplants. The reasons for slow growth were a large root: shootratio and a small leaf area, particularly in the nodulated plants,and a low photosynthetic rate in all plants. The probable effectsof these characteristics on the growth of white clover withgrasses in mixed pastures are discussed. Trifolium repens L, white clover, low temperature, leaf area, photosynthetic rate, nitrogen supply, growth  相似文献   

9.
WHITEHEAD  D. C. 《Annals of botany》1983,52(6):931-934
Frequent defoliation and drought, imposed individually overa period of 60 days, both reduced substantially the root weightsof white clover grown in the field, while causing no reductionin the root weights of perennial ryegrass. Concentrations ofN and S in the root organic matter of the clover were reducedby between 14 and 25 per cent by both treatments, but with theryegrass concentrations were not reduced. Perennial ryegrass, white clover, roots, nitrogen, sulphur, defoliation, drought  相似文献   

10.
Winter survival of perennial ryegrass (Lolium perenne L.) depends mainly on the plant resistance to low freezing temperature and to snow mould fungi (Microdochium nivale). Field evaluation of these plant characters gave irreproducible results. A comparison of field trials with laboratory tests pointed to the close correlation between the yield level of examined varieties and strains and their resistance to Microdochium nivale and frost. A lack of correlation between snow mould resistance and frost tolerance was shown.  相似文献   

11.
ROBSON  M. J. 《Annals of botany》1973,37(3):501-518
The rates of net photosynthesis (Pn,c) in the light (85 W m–2visible), and respiration in the dark, of a simulated swardof S24 ryegrass were measured for 12 weeks during its developmentfrom a collection of two-leaved seedlings to a closed canopywith an LAI of 23 (15 of green leaf laminae). By the sixth week light interception was complete (LAI = 10.6)and Pn,c had risen to 24 mg CO2 dm–2 h–1, similarto rates recorded in the field. Photosynthetic functions (lightresponse curves) showed that the swards remained unsaturatedup to energy receipts of almost 400 W m–2, whereas singleleaves were light saturated at about 130 W m–2. Earlyin the development of the sward LAI had a greater effect onPn,c than radiation receipt, later the reverse was true. Thegrowth habit of the sward ranged from moderately erect (an Svalue of 0.72) to moderately prostrate (‘S’ = 0.37),while the ability of the two youngest fully expanded leaveson a tiller to make use of light in photosynthesis declinedas the sward increased in density from values of A max of 20to 5 mg CO2 dm–2 h–1. By varying the values of Sand A max fed into a model of canopy photosynthesis, withinthe above limits, it was demonstrated that, in practice, A maxis a greater determinant of canopy photosynthesis than S, exceptat low LAI where a prostrate sward has a marked advantage overan erect one. The rate of dark respiration rose as the swards increased inweight, although not in proportion to it, until the ninth weekwhen a ceiling yield of live plant tissue was reached. Respiratorylosses from the sward came almost equally from a component associatedwith maintenance (Rm) and one associated with growth (Rg). Therate of Rm was estimated to be about 0.014 g day–1 pergram of plant tissue, and that of Ra about 0.25 g per gram ofnew tissue produced—both close to theoretical values.The measured dry matter production curve of the swards was comparedwith that estimated from the gas analysis data. Similarly therates of gross photosynthesis estimated from the gas analysisdata were compared with the predictions of the mathematicalmodel. In both cases the fit was reasonably good. A balancesheet was drawn up; of every 100 units of carbon fixed, 45 werelost in respiration and 16 as dead leaf, 5 ended up in the rootand 6 in the stubble; only 28 remained as harvestable live leaftissue.  相似文献   

12.
Swards of subterranean clover (Trifolium subterraneum L.) atLAl 6 grown in N-free nutrient solution were subjected to threedefoliation treatments which removed 30, 70 and 80% of shootdry weight. Subsequent regrowth and changes in the concentrationsof carbohydrate and nitrogen in plant components were measuredat 0, 1, 5, 9 and 13 d after defoliation and compared with thosein uncut swards. The rate of shoot regrowth declined with increasing severilyof defoliation. In all defoliation treatments, growth was confinedto leaves for up to 5 d. Root growth ceased in all treatmentsfor a longer period. Reestablishment of the leaf area in severely-defoliatedswards was facilitated by the rapid opening of developing leavesand by changes in the allocation of carbon which favoured leafover branch and root, and lamina over petiole growth. Loss of carbohydrate and nitrogen from roots and branches lasting5–9 d was observed in the more severe defoliation treatments.Loss of protein (N x 6.25) exceeded that of total non-structuralcarbohydrate, and could have accounted for the nitrogen contentof new leaf during this period. Branches lost 62% of their initialcarbohydrate content compared with 25% from roots in the 80%cut swards. In contrast, roots, by virtue of their greater mass,were the principle source of mobilized nitrogen. Nitrogen accumulationceased in 80% cut swards for 9 d. However, carbohydrate levelsin the crown nodules were not severely depleted. It was concluded that partitioning of growth to lamina and themobilization of carbohydrates and nitrogen were important forrecovery from defoliation. Carbohydrates, carbon partitioning, defoliation, nitrogen, mobilization, regrowth, subterranean clover, Trifolium subterraneum L  相似文献   

13.
Small swards of white clover (Trifolium repens L.) cv. Haifawere grown in solution culture in a controlled environment at24 °C day/18 °C night and receiving 500 µE m-2S–1 PAR during a 14-h photoperiod. The swards were cuteither frequently (10-d regrowth periods) or infrequently (40-dregrowth) over 40 d before being cut to 2 cm in height. Halfof the swards received high levels of nitrate (2–6 mMN in solution every 2 d) after defoliation while the othersreceived none. Changes in d. wt, leaf area and growing pointnumbers were recorded over the following 10 d. CO2 exchangewas measured independently on shoots and roots and nitrogenase-linkedrespiration was estimated by measuring nodulated root respirationat 21% and 3% oxygen in the root atmosphere. There was a general pattern in all treatments consisting ofan initial d. wt loss from roots and stubble and reallocationto new leaves, followed by a period of total d. wt gain andrecovery, to a greater or lesser extent, of weight in non-photosyntheticparts. Frequently cut swards had a smaller proportion of theirshoot d. wt. removed by cutting and had a greater shoot d. wt,growing point number and leaf area at the start of the regrowthperiod. As a result of these differences, and also because ofdifferences in relative growth rates, frequently cut swardsmade more regrowth than infrequently cut. Initial photosyntheticrates were higher in frequently cut swards, although the laminaarea index was very low, and it was concluded that stolons andcut petioles made a significant contribution to carbon uptakeduring the first few d. Infrequently cut swards continued toallocate carbon to new and thinner leaves at the expense ofroots and stubble for longer than frequently cut swards andas a result achieved a similar lamina area index after 10 d. Nitrogenase-linked respiration was low in all treatments immediatelyafter cutting: frequently cut swards receiving no nitrate maintainedhigh nitrogenase activity, whereas recovery took at least 5d in infrequently cut swards. Swards which received nitrateafter cutting maintained only low rates of nitrogenase-linkedrespiration and their total nodulated root respiration overthe period was lower than those receiving no nitrogen: greaterregrowth in nitrate fed swards over the 10 d compared to N2-fixingswards was in proportion to this lower respiratory burden. White clover (Trifolium repens L.), defoliation, regrowth, nitrogen, photosynthesis, respiration, nitrogenase-activity  相似文献   

14.
Increasing leaf-air vapour pressure deficit (VPD) decreasedthe stomatal conductance and the photosynthetic rate of leavesof ryegrass (Lolium perenne L.) and white clover (Trifolhimrepens L.) at light saturation and at lower irradiance. In ryegrassboth conductance and photosynthesis, and in clover photosynthesis,decreased less with increasing VPD in low irradiance than theydid at an irradiance which saturated photosynthesis. In ryegrass,relative to their values at 10 mb, photosynthesis and conductancedecreased less with increasing VPD at 25 °C than at 20 or16·5 °C. In white clover, relative conductance (butnot photosynthesis) was less reduced at 25 than at 16·5°C Measurements of VPD of air in the leaf canopy of a field-growncrop are combined with the observed responses of photosynthesisto VPD and temperature in a model. This shows that high VPDis likely to depress photosynthesis significantly and that,during a typical day, the rate of light saturated photosynthesismay remain fairly steady, because the depression of photosynthesisdue to rising VPD is offset by the stimulation due to risingtemperature Perennial ryegrass, Lolium perenne L., White clover, Trifolhim repens L., photosynthesis, leaf conductance, water vapour pressure deficit, temperature  相似文献   

15.
The flowering of the quantitative long-day plant perennial ryegrass(Lolium perenne L.) in short days (8 h), when grown at low temperature(9/4 °C) and under natural summer daylight, is presentedas evidence for the replacement of specific environmental requirementsfor flowering by alternative stimuli in a grass.  相似文献   

16.
Pink snow mould is a serious disease on grasses and winter cereals in cold and temperate zones during winter. To better understand the basis for the variation in pathogenicity between different isolates of Microdochium nivale and M. majus and to simplify selection of highly pathogenic isolates to use when screening for resistance to pink snow mould in perennial ryegrass, we sought traits correlated with pathogenicity. Isolates of M. nivale were more pathogenic on perennial ryegrass than isolates of M. majus, as measured by survival and regrowth of perennial ryegrass after infection and incubation under simulated snow cover. Pathogenicity as measured by relative regrowth was highly correlated with fungal growth rate on potato dextrose agar (PDA) at 2°C. Measuring fungal growth on PDA therefore seems to be a relatively simple method of screening for potentially highly pathogenic isolates. In a study of a limited number of isolates, highly pathogenic isolates showed an earlier increase and a higher total specific activity of β‐glucosidase, a cell wall‐degrading enzyme, compared with less pathogenic isolates. None of the M. majus isolates was highly pathogenic on perennial ryegrass. Our results indicate biological differences between M. nivale and M. majus and thus strengthen the recently published sequence‐based evidence for the elevation of these former varieties to species status.  相似文献   

17.
Single, clonal plants of white clover were grown without inorganicnitrogen in four contrasting day/night temperature regimes,with a 12 h photoperiod, in controlled environments. Root andnodule respiration and acetylene reduction activity were measuredin a flow-through system during both day and night for plantsacclimated to day/night regimes of 23/18, 15/10 and 10/5 ?C.Similar measurements were made on plants acclimated to 20/15?C and stepwise at temperatures from 4 to 33 ?C. Peak rate of ethylene production, nitrogenase-linked respirationand basal root + nodule respiration increased approximatelylinearly from 5 to 23 ?C both in temperature-acclimated plantsand in plants exposed to varying measurement temperatures. Themeasured attributes did not vary significantly between day andnight. Temperatures above 23–25 ?C did not further enhancethe rate of ethylene production, which remained essentiallythe same up to the maximum measured temperature of 33 ?C. The measurements of nitrogenase-linked respiration between 5and 23 ?C, during both day and night, demonstrated a constant‘energetic cost’ of acetylene reduction of 2.9 µmolCO2 µmol C2H4–1,. Over the same temperature range,the approximate activation energy of acetylene reduction was60 kJ mol–1. The integrated day plus night nitrogenase-linkedrespiration accounted for 13.4–16% of the plant‘snet shoot photosynthesis in a single diurnal period: there wasno significant effect of temperature between 5 and 23 ?C. Key words: Trifolium repens, white clover, temperature, N2 fixation, respiration  相似文献   

18.
White clover (Trifolium repens L.) was grown in controlled environmentsto determine the distinct effects of root and shoot temperatureon the accumulation of total and fixed (15 N dilution) nitrogenat two levels of nitrate (10 and 75 mM). Nitrogen fixation(BNF) showed a positive response to higher shoot temperature(23 vs. 13 C day temperature), irrespective of whether or notroot temperature was increased in parallel. Low root temperature(5 C) caused a marked reduction in the accumulation of totalnitrogen at both nitrate levels, and led to a lower proportionof N derived from BNF. The temperature response of BNF was attributedfor the major part to an adaptation to the demand for fixedN. It is therefore concluded that BNF is not primarily responsiblefor the reduced clover growth at low temperatures. White clover, Trifolium repens L., temperature, nitrogen fixation, nitrate, root, shoot  相似文献   

19.
ROBSON  M. J. 《Annals of botany》1973,37(3):487-500
The leaf growth, tiller production, light interception, anddry weight increase of a simulated sward of S24 perennial ryegrass(Lolium perenne) were followed during the development of thesward from a collection of two-leaved seedlings to a closedcanopy with an LAI of 23, of which 15 consisted of green leaflaminae. The dry weight of live shoots increased exponentiallyat first, but then entered a long linear phase of increase.This was equivalent to a crop growth rate of 200 Kg ha–1day–1 and a conversion efficiency of radiant energy (400–700nm) of 7.2 per cent. Towards the end of the growth period therate of increase of live shoots declined rapidly to zero anda ceiling yield was reached equivalent to 10 metric tons ha–1.Leaf growth continued at a high rate, but was equalled by therate of leaf death, so that the weight of live leaf tissue remainedconstant. By this time the swards had achieved a stable tillerpopulation (about 1 cm–1), each tiller bore a constantnumber of live leaves (about three), and the length of eachnewly expanded leaf equalled the length of the old leaf it replaced(about 70 cm). The swards were grown in Perlite so that in theabsence of soil fauna dead leaves accumulated at the base ofthe sward where, after 12 weeks, they accounted for 19 per centof the total weight of dry matter produced.  相似文献   

20.
Single, seed-grown plants of ryegrass (Lolium perenne L. cv.Melle) were grown for 49 d from the early seedling stage ingrowth cabinets at a day/night temperature of 20/15 C, witha 12 h photoperiod, and a CO2 concentration of either 340 or680µI 1–1 CO2. Following complete acclimation tothe environmental regimes, leaf and whole plant CO2 effluxesand influxes were measured using infra-red gas analysis techniques.Elevated CO2 increased rates of photosynthesis of young, fullyexpanded leaves by 35–46% and of whole plants by morethan 50%. For both leaves and whole plants acclimation to 680µI–1 CO2 reduced rates of photosynthesis in bothCO2 regimes, compared with plants acclimated to 340µll–1. There was no significant effect of CO2 regime onrespiration rates of either leaves or whole plants, althoughleaves developed in elevated CO2 exhibited generally lower ratesthan those developed in 340µI I–1 CO2. Initially the seedling plants in elevated CO2 grew faster thantheir counterparts in 340µI I–1 CO2, but this effectquickly petered out and final plant weights differed by onlyc. 10%. Since the total area of expanded and unexpanded laminaewas unaffected by CO2 regime, specific leaf area was persistently13–40% lower in elevated CO2 while, similarly, root/shootratio was also reduced throughout the experiment. Elevated CO2reduced tissue nitrogen contents of expanded leaves, but hadno effect on the nitrogen contents of unexpanded leaves, sheathsor roots. The lack of a pronounced effect of elevated CO2 on plant growthwas primarily due to the fact that CO2 concentration did notinfluence tiller (branch) numbers. In the absence of an effecton tiller numbers, any possible weight increment was restrictedto the c. 2.5 leaves of each tiller. The reason for the lackof an effect on tillering is not known. Key words: Lolium perenne, ryegrass, elevated CO2, photosynthesis, respiration, growth, development  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号