首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 540 毫秒
1.
The objectives of this study were to assess linkage disequilibrium (LD) and selection-induced changes in single nucleotide polymorphism (SNP) frequency, and to perform association mapping in popcorn chromosome regions containing quantitative trait loci (QTLs) for quality traits. Seven tropical and two temperate popcorn populations were genotyped for 96 SNPs chosen in chromosome regions containing QTLs for quality traits. The populations were phenotyped for expansion volume, 100-kernel weight, kernel sphericity, and kernel density. The LD statistics were the difference between the observed and expected haplotype frequencies (D), the proportion of D relative to the expected maximum value in the population, and the square of the correlation between the values of alleles at two loci. Association mapping was based on least squares and Bayesian approaches. In the tropical populations, D-values greater than 0.10 were observed for SNPs separated by 100-150 Mb, while most of the D-values in the temperate populations were less than 0.05. Selection for expansion volume indirectly led to increase in LD values, population differentiation, and significant changes in SNP frequency. Some associations were observed for expansion volume and the other quality traits. The candidate genes are involved with starch, storage protein, lipid, and cell wall polysaccharides synthesis.  相似文献   

2.
Linkage disequilibrium (LD), detectable with microsatellites in disease alleles over wide genetic intervals in population isolates, has facilitated mapping and positional cloning of numerous disease genes. We, among others, have shown that the LD intervals reach up to 1 Mb in general alleles of young subisolates, and that this feature most probably offers an avenue for the initial locus positioning for complex traits. Development of efficient SNP genotyping and characterization of haploblock structure of the human genome have introduced new prospects to LD-based fine mapping and haplotype-association studies. Encouraging associations have been reported for several complex diseases. Final breakthroughs in mapping of complex disease loci have emerged on large pedigrees in population isolates. Conversely, ignoring genealogical makeup of the study population seems to disclose false negative and false positive associations, directing resources down the drain.  相似文献   

3.
Non-random association of alleles in the nucleus and cytoplasmic organelles, or cyto-nuclear linkage disequilibrium (LD), is both an important component of a number of evolutionary processes and a statistical indicator of others. The evolutionary significance of cyto-nuclear LD will depend on both its magnitude and how stable those associations are through time. Here, we use a longitudinal population genetic data set to explore the magnitude and temporal dynamics of cyto-nuclear disequilibria through time. We genotyped 135 and 170 individuals from 16 and 17 patches of the plant species Silene latifolia in Southwestern VA, sampled in 1993 and 2008, respectively. Individuals were genotyped at 14 highly polymorphic microsatellite markers and a single-nucleotide polymorphism (SNP) in the mitochondrial gene, atp1. Normalized LD (D′) between nuclear and cytoplasmic loci varied considerably depending on which nuclear locus was considered (ranging from 0.005–0.632). Four of the 14 cyto-nuclear associations showed a statistically significant shift over approximately seven generations. However, the overall magnitude of this disequilibrium was largely stable over time. The observed origin and stability of cyto-nuclear LD is most likely caused by the slow admixture between anciently diverged lineages within the species'' newly invaded range, and the local spatial structure and metapopulation dynamics that are known to structure genetic variation in this system.  相似文献   

4.
DNA from 252 bovine spongiform encephalopathy (BSE) cattle and 376 non-diseased control cattle were genotyped for nine loci in the prion protein (PRNP) gene region, three loci in the neurofibromin 1 (NF1) region and four control loci on different chromosomes. The allele and genotype frequencies of the control loci were similar in BSE and control cattle. In the analysed 7.4 Mb PRNP region, the largest differences between BSE and control cattle were found for the loci REG2, R16 and R18, which are located between +300 and +5600 bp, spanning PRNP introns 1 to 2. Carriers of the REG2 genotype 128/128 were younger at BSE diagnosis than those with the other genotypes (128/140 or 140/140). The predominant haplotype REG2 128 bp-R18 173 bp occurred more frequently (P < 0.001), and the second-most frequent haplotype (REG2 140 bp-R18 175 bp) occurred less frequently (P < 0.05) in BSE than in control cattle. The largest frequency differences between BSE and control groups were observed in the Brown Swiss breed. Across all breeds, most of the same alleles and haplotypes of the PRNP region were associated with BSE. In the 23-cM NF1 region, associations with BSE incidence were found for the RM222 allele and for the DIK4009 genotype frequencies. Cattle carrying RM222 genotypes with the 127- or 129-bp alleles were about half a year older at BSE incidence than those with other genotypes. Across the breeds, different alleles and genotypes of the NF1 region were associated with BSE. The informative DNA markers were used to localize the genetic disposition to BSE and may be useful for the identification of the causative DNA variants.  相似文献   

5.
犬MC1R基因R306ter与毛色性状相关性研究   总被引:1,自引:0,他引:1  
目的 分析犬MC1R基因中R30 6ter位点多态性与犬毛色表型的相关性 ,为遗传育种 ,培育出更加优良的实验用犬奠定基础。方法 采用PCR SSCP技术 ,对MC1R基因R30 6ter位点进行基因多态性检测 ,分析位点多态性与毛色性状之间的相关性 ,并对该位点进行克隆测序。结果 PCR SSCP分析结果表明 ,R30 6ter位点序列具有多态性 ,表现为C、D二个等位基因和CC、CD及DD三种基因型。对R30 6ter多态性片段克隆测序发现 ,MC1R基因在编码第 30 6位氨基酸的密码子处存在一个由CGA到TGA的终止突变。结论 经统计分析结果表明在杂种犬中MC1R基因多态性与毛色性状不存在显著的相关性 ,这可能是由于外科手术学教学用犬是杂种犬 ,其遗传背景不同所致。由于MC1R基因的R30 6ter位点内存在碱基变异 ,因此在杂种犬中表现出明显的PCR SSCP多态性  相似文献   

6.
While studies have implicated alleles at the CAG and GGC trinucleotide repeats of the androgen receptor gene with high-grade, aggressive prostate cancer disease, little is known about the normal range of variation for these two loci, which are separated by about 1.1 kb. More importantly, few data exist on the extent of linkage disequilibrium (LD) between the two loci in different human populations. Here we present data on CAG and GGC allelic variation and LD in six diverse populations. Alleles at the CAG and GGC repeat loci of the androgen receptor were typed in over 1000 chromosomes from Africa, Asia, and North America. Levels of linkage disequilibrium between the two loci were compared between populations. Haplotype variation and diversity were estimated for each population. Our results reveal that populations of African descent possess significantly shorter alleles for the two loci than non-African populations (P<0.0001). Allelic diversity for both markers was higher among African Americans than any other population, including indigenous Africans from Sierra Leone and Nigeria. Analysis of molecular variance revealed that approx. 20% of CAG and GGC repeat variance could be attributed to differences between the populations. All non-African populations possessed the same common haplotype while the three populations of African descent possessed three divergent common haplotypes. Significant LD was observed in our sample of healthy African Americans. The LD observed in the African American population may be due to several reasons; recent migration of African Americans from diverse rural communities following urbanization, recurrent gene flow from diverse West African populations, and admixture with European Americans. This study represents the largest genotyping effort to be performed on the two androgen receptor trinucleotide repeat loci in diverse human populations.  相似文献   

7.
Patterns of linkage disequilibrium in the human genome   总被引:2,自引:0,他引:2  
Particular alleles at neighbouring loci tend to be co-inherited. For tightly linked loci, this might lead to associations between alleles in the population a property known as linkage disequilibrium (LD). LD has recently become the focus of intense study in the hope that it might facilitate the mapping of complex disease loci through whole-genome association studies. This approach depends crucially on the patterns of LD in the human genome. In this review, we draw on empirical studies in humans and Drosophila, as well as simulation studies, to assess the current state of knowledge about patterns of LD, and consider the implications for the use of LD as a mapping tool.  相似文献   

8.
Linkage disequilibrium (LD) refers to the correlation among neighboring alleles, reflecting non-random patterns of association between alleles at (nearby) loci. A better understanding of LD in the porcine genome is of direct relevance for identification of genes and mutations with a certain effect on the traits of interest. Here, 215 SNPs in seven genomic regions were genotyped in individuals of three breeds. Pairwise linkage disequilibrium was calculated for all marker pairs. To estimate the extent of LD, all pairwise LD values were plotted against the distance between the markers. Based on SNP markers in four genomic regions analyzed in three panels from populations of Large White, Dutch Landrace, and Meishan origin, useful LD is estimated to extend for approximately 40 to 60 kb in the porcine genome.  相似文献   

9.
Skin color has long been of interest to human geneticists and often used as an example of a human quantitative trait under relatively wellunderstood genetic control. Although the basic biology of melanin production and the method of measurement are areas in which skin color studies are fairly well advanced, compared to other quantitative traits, the evolutionary significance and mode of inheritance are still being debated. In view of the many steps involved in the production and dispersion of melanin and the large number of loci involved in coat color of laboratory animals, it is suggested that genetic control of human skin color must be fairly complex. Studies that have found evidence for relatively few loci effecting the differences between racial groups may either be using inappropriate methods, or they may be concentrating attention on only that portion of genetic variability that distinguishes between major world groups, particularly blacks and whites. Genetic analysis of intermediate groups and pedigree analysis of rare pigmentation conditions may yield more information on skin color genetics.  相似文献   

10.
Though pigmentation has been of interest to anthropologists for a long time, its inheritance, and particularly the reasons for the incomplete correlation of skin, hair and eye, is poorly understood. It is suggested that this is largely due to lack of genetically plausible hypotheses. Taking into account racial and individual variation in pigment traits, and knowledge of pigmentation in other mammals, a minimum set of genetic factors for pigmentation in man is suggested. These include: (1) a set of polygenes affecting skin color only; (2) one locus for depigmentation of the eye, not affecting skin or hair, (3) one pleiotropic gene for reduction of pigment at all sites, and (4) one or more loci with multiple alleles producing blondness or rufosity of the hair in symmetrical patterns over the body.  相似文献   

11.
Significant interest has emerged in mapping genetic susceptibility for complex traits through whole-genome association studies. These studies rely on the extent of association, i.e., linkage disequilibrium (LD), between single nucleotide polymorphisms (SNPs) across the human genome. LD describes the nonrandom association between SNP pairs and can be used as a metric when designing maximally informative panels of SNPs for association studies in human populations. Using data from the 1.58 million SNPs genotyped by Perlegen, we explored the allele frequency dependence of the LD statistic r(2) both empirically and theoretically. We show that average r(2) values between SNPs unmatched for allele frequency are always limited to much less than 1 (theoretical approximately 0.46 to 0.57 for this dataset). Frequency matching of SNP pairs provides a more sensitive measure for assessing the average decay of LD and generates average r(2) values across nearly the entire informative range (from 0 to 0.89 through 0.95). Additionally, we analyzed the extent of perfect LD (r(2) = 1.0) using frequency-matched SNPs and found significant differences in the extent of LD in genic regions versus intergenic regions. The SNP pairs exhibiting perfect LD showed a significant bias for derived, nonancestral alleles, providing evidence for positive natural selection in the human genome.  相似文献   

12.
Effectiveness of marker-assisted selection (MAS) and quantitative trait loci (QTL) mapping using population-wide linkage disequilibrium (LD) between markers and QTL depends on the extent of LD and how it declines with distance in a population. Because marker-QTL LD cannot be observed directly, the objective of this study was to evaluate alternative measures of observable LD between multi-allelic markers as predictors of usable LD of multi-allelic markers with presumed biallelic QTL. Observable LD between marker pairs was evaluated using eight existing measures and one new measure. These consisted of two pooled and standardized measures of LD between pairs of alleles at two markers based on Lewontin's LD measure, two pooled measures of squared correlations between alleles, one standardized measure using Hardy-Weinberg heterozygosities, and four measures based on the chi-square statistic for testing for association between alleles at two loci. In simulated populations with a range of LD generated by drift and a range of marker polymorphism, marker-marker LD measured by a standardized chi-square statistic (denoted chi(2')) was found to be the best predictor of useable marker-QTL LD for a group of multi-allelic markers. Estimates of the level and decline of marker-marker LD with distance obtained from chi(2') were linearly and highly correlated with usable LD of those markers with QTL across population structures and marker polymorphism. Corresponding relationships were poorer for the other marker-marker LD measures. Therefore, when LD is generated by drift, chi(2') is recommended to quantify the amount and extent of usable LD in a population for QTL mapping and MAS based on multi-allelic markers.  相似文献   

13.

Background  

A number of tools for the examination of linkage disequilibrium (LD) patterns between nearby alleles exist, but none are available for quickly and easily investigating LD at longer ranges (>500 kb). We have developed a web-based query tool (GLIDERS: Genome-wide LInkage DisEquilibrium Repository and Search engine) that enables the retrieval of pairwise associations with r2 ≥ 0.3 across the human genome for any SNP genotyped within HapMap phase 2 and 3, regardless of distance between the markers.  相似文献   

14.
Association mapping is a powerful approach to detect associations between traits of interest and genetic markers based on linkage disequilibrium (LD) in molecular plant breeding. In this study, 150 accessions of worldwide originated durum wheat germplasm (Triticum turgidum spp. durum) were genotyped using 1,366 SNP markers. The extent of LD on each chromosome was evaluated. Association of single nucleotide polymorphisms (SNP) markers with ten agronomic traits measured in four consecutive years was analyzed under a mix linear model (MLM). Two hundred and one significant association pairs were detected in the four years. Several markers were associated with one trait, and also some markers were associated with multiple traits. Some of the associated markers were in agreement with previous quantitative trait loci (QTL) analyses. The function and homology analyses of the corresponding ESTs of some SNP markers could explain many of the associations for plant height, length of main spike, number of spikelets on main spike, grain number per plant, and 1000-grain weight, etc. The SNP associations for the observed traits are generally clustered in specific chromosome regions of the wheat genome, mainly in 2A, 5A, 6A, 7A, 1B, and 6B chromosomes. This study demonstrates that association mapping can complement and enhance previous QTL analyses and provide additional information for marker-assisted selection.  相似文献   

15.
Applications of single nucleotide polymorphisms in crop genetics   总被引:26,自引:0,他引:26  
The discovery of single nucleotide polymorphisms (SNPs) and insertions/deletions, which are the basis of most differences between alleles, has been simplified by recent developments in sequencing technology. SNP discovery in many crop species, such as corn and soybean, is relatively straightforward because of their high level of intraspecific nucleotide diversity, and the availability of many gene and expressed sequence tag (EST) sequences. For these species, direct readout of SNP haplotypes is possible. Haplotype-based analysis is more informative than analysis based on individual SNPs, and has more power in analyzing association with phenotypes. The elite germplasm of some crops may have been subjected to bottlenecks relatively recently, increasing the amount of linkage disequilibrium (LD) present and facilitating the association of SNP haplotypes at candidate gene loci with phenotypes. Whole-genome scans may help identify genome regions that are associated with interesting phenotypes if sufficient LD is present. Technological improvements make the use of SNP and indel markers attractive for high-throughput use in marker-assisted breeding, EST mapping and the integration of genetic and physical maps.  相似文献   

16.

Background

The adequacy of association studies for complex diseases depends critically on the existence of linkage disequilibrium (LD) between functional alleles and surrounding SNP markers.

Results

We examined the patterns of LD and haplotype distribution in eight candidate genes for osteoporosis and/or obesity using 31 SNPs in 1,873 subjects. These eight genes are apolipoprotein E (APOE), type I collagen α1 (COL1A1), estrogen receptor-α (ER-α), leptin receptor (LEPR), parathyroid hormone (PTH)/PTH-related peptide receptor type 1 (PTHR1), transforming growth factor-β1 (TGF-β1), uncoupling protein 3 (UCP3), and vitamin D (1,25-dihydroxyvitamin D3) receptor (VDR). Yin yang haplotypes, two high-frequency haplotypes composed of completely mismatching SNP alleles, were examined. To quantify LD patterns, two common measures of LD, D' and r2, were calculated for the SNPs within the genes. The haplotype distribution varied in the different genes. Yin yang haplotypes were observed only in PTHR1 and UCP3. D' ranged from 0.020 to 1.000 with the average of 0.475, whereas the average r2 was 0.158 (ranging from 0.000 to 0.883). A decay of LD was observed as the intermarker distance increased, however, there was a great difference in LD characteristics of different genes or even in different regions within gene.

Conclusion

The differences in haplotype distributions and LD patterns among the genes underscore the importance of characterizing genomic regions of interest prior to association studies.  相似文献   

17.
Five single nucleotide polymorphism (SNP) sites corresponding to substitutions in the protein sequence of the β-amylase gene Bmy1 at amino acid (AA) positions 115, 165, 233, 347 and 430 were genotyped in 493 cultivated barley accessions by Pyrosequencing and a CAPS assay. A total of 6 different haplotypes for the Bmy1 gene were discovered of which 4 haplotypes were identified as previously described alleles Bmy1-Sd1, Bmy1-Sd2L, Bmy1-Sd2H and Bmy1-Sd3, while 2 haplotypes were new. A broad spectrum of haplotypes was found in spring barleys, while the winter barleys were dominated by the newly described haplotype Bmy1-Sd4. Individual haplotype frequencies varied between the geographic regions.Three pairs of SNP loci within the gene showed highly significant (P<0.0001) elevated values of linkage disequilibrium (LD) with r 2 > 0.6. In the European and Asian subpopulations different loci were in linkage disequilibrium due to the differences in haplotype frequency distributions. By applying LD data to select haplotype tagging SNPs, three SNP sites corresponding to AA positions 115, 233 and 347 were identified that allowed to discriminate 4 haplotypes and to capture 91.6% of the available diversity by distinguishing 452 out of 493 accessions. In a subset of 2-rowed German spring barley varieties 4 SNPs and 2 haplotypes had a significant association with the malting quality parameter final attenuation limit which is related to the total amylolytic enzymatic activity.  相似文献   

18.
Recent advances in sequencing allow population‐genomic data to be generated for virtually any species. However, approaches to analyse such data lag behind the ability to generate it, particularly in nonmodel species. Linkage disequilibrium (LD, the nonrandom association of alleles from different loci) is a highly sensitive indicator of many evolutionary phenomena including chromosomal inversions, local adaptation and geographical structure. Here, we present linkage disequilibrium network analysis (LDna), which accesses information on LD shared between multiple loci genomewide. In LD networks, vertices represent loci, and connections between vertices represent the LD between them. We analysed such networks in two test cases: a new restriction‐site‐associated DNA sequence (RAD‐seq) data set for Anopheles baimaii, a Southeast Asian malaria vector; and a well‐characterized single nucleotide polymorphism (SNP) data set from 21 three‐spined stickleback individuals. In each case, we readily identified five distinct LD network clusters (single‐outlier clusters, SOCs), each comprising many loci connected by high LD. In A. baimaii, further population‐genetic analyses supported the inference that each SOC corresponds to a large inversion, consistent with previous cytological studies. For sticklebacks, we inferred that each SOC was associated with a distinct evolutionary phenomenon: two chromosomal inversions, local adaptation, population‐demographic history and geographic structure. LDna is thus a useful exploratory tool, able to give a global overview of LD associated with diverse evolutionary phenomena and identify loci potentially involved. LDna does not require a linkage map or reference genome, so it is applicable to any population‐genomic data set, making it especially valuable for nonmodel species.  相似文献   

19.
Uncovering SNP (single nucleotide polymorphisms)-environment interactions can generate new hypotheses about the function of poorly characterized genetic variants and environmental factors, like pesticides. We evaluated SNP-environment interactions between 30 confirmed prostate cancer susceptibility loci and 45 pesticides and prostate cancer risk in 776 cases and 1,444 controls in the Agricultural Health Study. We used unconditional logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs). Multiplicative SNP-pesticide interactions were calculated using a likelihood ratio test. After correction for multiple tests using the False Discovery Rate method, two interactions remained noteworthy. Among men carrying two T alleles at rs2710647 in EH domain binding protein 1 (EHBP1) SNP, the risk of prostate cancer in those with high malathion use was 3.43 times those with no use (95% CI: 1.44–8.15) (P-interaction  = 0.003). Among men carrying two A alleles at rs7679673 in TET2, the risk of prostate cancer associated with high aldrin use was 3.67 times those with no use (95% CI: 1.43, 9.41) (P-interaction  = 0.006). In contrast, associations were null for other genotypes. Although additional studies are needed and the exact mechanisms are unknown, this study suggests known genetic susceptibility loci may modify the risk between pesticide use and prostate cancer.  相似文献   

20.
By analyzing the allelic frequencies at the D1S80 locus in 43 human populations, we show that the locus is polymorphic globally and that it can be used to discriminate between major racial groups and subpopulations through phylogenetic analysis. Although the use of informative multiple loci generally provides more accurate phylogenetic relationships, in instances where time and/or target DNA availability is limited, D1S80 could provide useful data to discriminate between human groups. Also, knowledge of which loci independently provide accurate phylogenetic relationships, such as the D1S80, can be used to design more accurate multi-locus combinations. In addition, allele frequencies at the locus are reported, for the first time, for Bahamian individuals of African origin and for Chimila, Bari, and Navajo (Cañoncito Valley) native Americans. Allelic data was obtained using standard polymerase chain reaction (PCR) techniques. In the four new populations, 65 genotypes and 20 segregating alleles were observed. All populations conformed to Hardy-Weinberg expectations except the Chimila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号