首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hypothesis that respiratory modulation of heart rate variability (HRV) or respiratory sinus arrhythmia (RSA) is restricted to mammals was tested on four Antarctic and four sub-Antarctic species of fish, that shared close genotypic or ecotypic similarities but, due to their different environmental temperatures, faced vastly different selection pressures related to oxygen supply. The intrinsic heart rate (fH) for all the fish species studied was approximately 25% greater than respiration rate (fV), but vagal activity successively delayed heart beats, producing a resting fH that was synchronized with fV in a progressive manner. Power spectral statistics showed that these episodes of relative bradycardia occurred in a cyclical manner every 2-4 heart beats in temperate species but at >4 heart beats in Antarctic species, indicating a more relaxed selection pressure for cardio-respiratory coupling. This evidence that vagally mediated control of fH operates around the ventilatory cycle in fish demonstrates that influences similar to those controlling RSA in mammals operate in non-mammalian vertebrates.  相似文献   

2.
Increased ventilation frequency (fV) in response to hypoxia in adult fish depends on ionotropic N-methyl-D-aspartate (NMDA) receptors. Nonetheless, the ontogeny of central control mechanisms mediating hypoxic ventilatory chemoreflexes in lower vertebrates has not been studied. Therefore, the aim of this study was to determine when the hypoxic ventilatory response during zebrafish (Danio rerio) development is mediated via NMDA receptors, by performing physiological experiments and western blot analysis of NMDA receptor subunits. Zebrafish larvae at stages 4-16 days post-fertilisation (dpf) were exposed to an hypoxic pulse in control groups and in groups treated with MK801 (NMDA receptor antagonist). The hypoxic increase in fV was present at all larval stages, and it matured during development. The reflex became MK801 sensitive at 8 dpf, but did not completely rely on a glutamatergic transmission until 13 dpf. This, together with changing subunit composition during the different stages (increasing amounts of NMDAR1 subunits and appearance of NMDAR2A subunits in adults), suggests that the amount of functional NMDA receptors needed to achieve a fully developed reflex is not attained until later stages. Furthermore, our results suggest that other non-NMDA receptor mechanisms are responsible for the hypoxia-induced increase in fV during the earlier developmental stages.  相似文献   

3.
Yogic high-frequency respiration--kapalabhati (KB)--was studied in 24 subjects from a point of rhythmicity. Respiratory movements, blood pressure and R-R intervals of ECG were recorded in parallel and evaluated by spectral analysis of time series. Respiratory signals during KB were modulated by 0.1 Hz rhythm in 82% of experiments. This component was also present in R-R intervals and blood pressure during KB. Frequency (0.2-0.3 Hz) was observed in 67% of respiratory records. The presence of the component 0.2-0.3 Hz in respiration was dependent on resting respiratory frequency. This frequency component was reduced in R-R intervals but increased in blood pressure during kapalabhati as compared to that at rest. The occurrence of both frequency components in respiration during KB supports the hypothesis about the integrative role of cardiovascular and respiratory rhythms in physiological states characterized by altered respiratory frequency.  相似文献   

4.
Fifteen anesthetized mechanically ventilated patients recovering from multiple trauma were studied to compare the effects of high-frequency jet ventilation (HFJV) and continuous positive-pressure ventilation (CPPV) on arterial baroreflex regulation of heart rate. Systolic arterial pressure and right atrial pressure were measured using indwelling catheters. Electrocardiogram (ECG) and mean airway pressure were continuously monitored. Lung volumes were measured using two linear differential transformers mounted on thoracic and abdominal belts. Baroreflex testing was performed by sequential intravenous bolus injections of phenylephrine (200 micrograms) and nitroglycerin (200 micrograms) to raise or lower systolic arterial pressure by 20-30 Torr. Baroreflex regulation of heart rate was expressed as the slope of the regression line between R-R interval of the ECG and systolic arterial pressure. In each mode of ventilation the ventilatory settings were chosen to control mean airway pressure and arterial PCO2 (PaCO2). In HFJV a tidal volume of 159 +/- 61 ml was administered at a frequency of 320 +/- 104 breaths/min, whereas in CPPV a tidal volume of 702 +/- 201 ml was administered at a frequency of 13 +/- 2 breaths/min. Control values of systolic arterial pressure, R-R interval, mean pulmonary volume above apneic functional residual capacity, end-expiratory pulmonary volume, right atrial pressure, mean airway pressure, PaCO2, pH, PaO2, and temperature before injection of phenylephrine or nitroglycerin were comparable in HFJV and CPPV. Baroreflex regulation of heart rate after nitroglycerin injection was significantly higher in HFJV (4.1 +/- 2.8 ms/Torr) than in CPPV (1.96 +/- 1.23 ms/Torr).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Respiratory sinus arrhythmia in the denervated human heart   总被引:8,自引:0,他引:8  
We performed this study to test whether the denervated human heart has the ability to manifest respiratory sinus arrhythmia (RSA). With the use of a highly sensitive spectral analysis technique (cross correlation) to define beat-to-beat coupling between respiratory frequency and heart rate period (R-R) and hence RSA, we compared the effects of patterned breathing at defined respiratory frequency and tidal volumes (VT), Valsalva and Mueller maneuvers, single deep breaths, and unpatterned spontaneous breathing on RSA in 12 normal volunteers and 8 cardiac allograft transplant recipients. In normal subjects R-R changes closely followed changes in respiratory frequency (P less than 0.001) but were little affected by changes in VT. On the R-R spectrum, an oscillation peak synchronous with respiration was found in heart transplant patients. However, the average magnitude of the respiration-related oscillations was 1.7-7.9% that seen in normal subjects and was proportionally more influenced by changes in VT. Changes in R-R induced by Valsalva and Mueller maneuvers were 3.8 and 4.9% of those seen in normal subjects, respectively, whereas changes in R-R induced by single deep breaths were 14.3% of those seen in normal subjects. The magnitude of RSA was not related to time since the heart transplantation, neither was it related to patient age or sex. Thus the heart has the intrinsic ability to vary heart rate in synchrony with ventilation, consistent with the hypothesis that changes, or rate of changes, in myocardial wall stretch might alter intrinsic heart rate independent of autonomic tone.  相似文献   

6.
Periodicities of ventilation are common in elderly subjects during stage 1/2 sleep. The mechanism producing these periodicities is unknown. We hypothesized that the oscillations in ventilation might be related to oscillations in sleep state. To address this hypothesis, we examined, using cross correlation, the relationship between the oscillations in ventilation and parameters (alpha power, mean frequency) derived from spectral analysis of the electroencephalogram. In wakefulness, although ventilation and mean frequency, and ventilation and alpha power, were related, there were no consistent patterns to these relationships. Both positive and negative correlations were found. Clearer relationships were found in stage 1/2 sleep. Correlation between mean frequency and ventilation was the most consistent. All correlations were positive; i.e., ventilation fell as mean frequency fell. The maximum correlation occurred at zero lag between the time series. Thus these oscillations are synchronous within the time resolution of our methodology. These data are compatible with the hypothesis that the initiation of apnea in stage 1/2 sleep is related to a reduction in the state-dependent input to the ventilatory control system.  相似文献   

7.
30 young males performed inspiratory breath holdings during expectation of an aversive stimulus and at relative rest. The consecutive R-R intervals of the ECG from breath-hold trial were analysed via spectral analysis of time series. Following parameters were ascertained for each breath holding: mean R-R interval, total R-R interval variability, breath-hold time and relative variability in three spectral bands 3-8 s, 8-12 s and 12-18 s. Neither of these variables was influenced by expectation of an aversive stimulus. The data were subsequently analysed by means of multivariate analysis. Three distinct frequency components were selected according to both histogram data and multivariate analysis. Their modal periods were 5-6 s, 12 s and 16 s respectively. The 8-12 s component of R-R interval variability dominated during breath holdings. The 3-8 s band bore a negative relationship to breath-hold time.  相似文献   

8.
迷走神经和交感神经系统不同活动状态对心率变异性的影响   总被引:11,自引:0,他引:11  
Li L  Zhu JW  Cao YX  Li P 《生理学报》1998,50(5):519-524
实验在氯醛糖加氨基甲酸乙酯麻醉的新西兰兔上进行。记录血压、心率、心电图并对心电R-R间期(RRI)作功率谱密度(PSD)分析。以单调性电刺激和低频率的波动性电刺激分别刺激减压神经、疑核和右侧迷走神经外周端,观察到低频率的波动性刺激对增加PSD中低频成分(LF)的作用比单调性电刺激更大(P〈0.05)。注射新福林仅在头一个256个心动周期时间内引起总变异性(TV)、LF、PSD中高频成分(HF)。L  相似文献   

9.
Plants exposed to harmonically modulated irradiance, approximately 1 + cos(omegat), exhibit a complex periodic pattern of chlorophyll fluorescence emission that can be deconvoluted into a steady-state component, a component that is modulated with the frequency of the irradiance (omega), and into at least two upper harmonic components (2omega and 3omega). A model is proposed that accounts for the upper harmonics in fluorescence emission by nonlinear negative feedback regulation of photosynthesis. In contrast to simpler linear models, the model predicts that the steady-state fluorescence component will depend on the frequency of light modulation, and that amplitudes of all fluorescence components will exhibit resonance peak(s) when the irradiance frequency is tuned to an internal frequency of a regulatory component. The experiments confirmed that the upper harmonic components appear and exhibit distinct resonant peaks. The frequency of autonomous oscillations observed earlier upon an abrupt increase in CO(2) concentration corresponds to the sharpest of the resonant peaks of the forced oscillations. We propose that the underlying principles are general for a wide spectrum of negative-feedback regulatory mechanisms. The analysis by forced harmonic oscillations will enable us to examine internal dynamics of regulatory processes that have not been accessible to noninvasive fluorescence monitoring to date.  相似文献   

10.
This study uses an awake unidirectionally ventilated avian preparation to examine the effects of dynamic CO2 signals on the respiratory drive. Results show that minute ventilation is affected by both 1) mean CO2 level and 2) amplitude of CO2 oscillations at the frequency of breathing. An increase in mean CO2 level increased minute ventilation. Comparisons of the effects of CO2 oscillations at the same mean CO2 level, however, showed minute ventilation to be less with the larger amplitudes of oscillations than with smaller ones. Graphs of minute ventilation (V) versus mean CO2 for families of oscillation sizes (0.5%, 1% and 2%) showed that the ventilatory sensitivity (slop) was least for the 2% oscillations and greatest for the 0.5% oscillations. Therefore, a static model for the respiratory regulator is not adequate. However, the apneic level of CO2 (V = O intercept) was independent of the size of the CO2 oscillations.  相似文献   

11.
The responses of carotid body chemoreceptor discharge to repeated ramps (20- to 60-s forcing cycle durations) of inspired gas tensions were studied in spontaneously breathing and in artificially ventilated pentobarbitone-anesthetized cats. In all animals the mean intensity of chemoreceptor discharge followed the frequency of the forcing cycle, and superimposed on this were oscillations at the frequency of ventilation (breath-by-breath oscillations). The amplitude of the breath-by-breath oscillations in discharge was often large, and it waxed and waned with the forcing cycle. It was greatest when the mean level of discharge was falling and smallest near the peak of mean discharge. No qualitative differences were observed between PO2-alone forcing in constant normocapnia and PCO2-alone forcing in constant hypoxia. The variation in the amplitudes of breath-by-breath oscillations was shown to be due primarily to variations in the amplitudes of the downslope component of the discharge oscillation. Variations in the upslope component of individual oscillations were small. The factors responsible for the breath-by-breath oscillations are discussed, and it is concluded that the shape of the waveform of arterial gas tensions that stimulate the peripheral chemoreceptors departs markedly from that of a line joining end-tidal gas tensions. This causes breath-by-breath oscillations of discharge to be very large after an "off" stimulus. Reflex studies involving the forcing of respiratory gases should therefore include consideration of these effects.  相似文献   

12.
Heart rate during sinus rhythm is modulated through the autonomic nervous system, which generates short-term oscillations. The high-frequency components in these oscillations are associated with respiration, causing sinus arrhythmia, mediated by the parasympathetic nervous system. In this study, we evaluated whether slow, controlled respiration causes cyclic fluctuations in the frequency of the fibrillating atria. Eight patients (four women; median age 63 yr, range 53-68 yr) with chronic atrial fibrillation (AF) and third-degree atrioventricular block treated by permanent pacemaker were studied. ECG was recorded during baseline rest, during 0.125-Hz frequency controlled respiration, and finally during controlled respiration after full vagal blockade. We calculated fibrillatory frequency using frequency analysis of the fibrillatory ECG for overlapping 2.5-s segments; spectral analysis of the resulting frequency trend was performed to determine the spectrum of variations of fibrillatory frequency. Normalized spectral power at respiration frequency increased significantly during controlled respiration from 1.4 (0.76-2.0) (median and range) at baseline to 2.7 (1.2-5.8) (P = 0.01). After vagal blockade, the power at respiration frequency decreased to 1.2 (0.23-2.8) (P = 0.01). Controlled respiration causes cyclic fluctuations in the AF frequency in patients with long-duration AF. This phenomenon seems to be related to parasympathetic modulations of the AF refractory period.  相似文献   

13.
Dynamic aspects of R-R intervals have often been analyzed by means of linear and nonlinear measures. The goal of this study was to analyze binary sequences, in which only the dynamic information is retained, by means of two different aspects of regularity. R-R interval sequences derived from 24-h electrocardiogram (ECG) recordings of 118 healthy subjects were converted to symbolic binary sequences that coded the beat-to-beat increase or decrease in the R-R interval. Shannon entropy was used to quantify the occurrence of short binary patterns (length N = 5) in binary sequences derived from 10-min intervals. The regularity of the short binary patterns was analyzed on the basis of approximate entropy (ApEn). ApEn had a linear dependence on mean R-R interval length, with increasing irregularity occurring at longer R-R interval length. Shannon entropy of the same sequences showed that the increase in irregularity is accompanied by a decrease in occurrence of some patterns. Taken together, these data indicate that irregular binary patterns are more probable when the mean R-R interval increases. The use of surrogate data confirmed a nonlinear component in the binary sequence. Analysis of two consecutive 24-h ECG recordings for each subject demonstrated good intraindividual reproducibility of the results. In conclusion, quantification of binary sequences derived from ECG recordings reveals properties that cannot be found using the full information of R-R interval sequences.  相似文献   

14.
Spectral analysis of skin blood flow has demonstrated low-frequency (LF, 0.03-0.15 Hz) and high-frequency (HF, 0.15-0.40 Hz) oscillations, similar to oscillations in R-R interval, systolic pressure, and muscle sympathetic nerve activity (MSNA). It is not known whether the oscillatory profile of skin blood flow is secondary to oscillations in arterial pressure or to oscillations in skin sympathetic nerve activity (SSNA). MSNA and SSNA differ markedly with regard to control mechanisms and morphology. MSNA contains vasoconstrictor fibers directed to muscle vasculature, closely regulated by baroreceptors. SSNA contains both vasomotor and sudomotor fibers, differentially responding to arousals and thermal stimuli. Nevertheless, MSNA and SSNA share certain common characteristics. We tested the hypothesis that LF and HF oscillatory components are evident in SSNA, similar to the oscillatory components present in MSNA. We studied 18 healthy normal subjects and obtained sequential measurements of MSNA and SSNA from the peroneal nerve during supine rest. Measurements were also obtained of the electrocardiogram, beat-by-beat blood pressure (Finapres), and respiration. Spectral analysis showed LF and HF oscillations in MSNA, coherent with similar oscillations in both R-R interval and systolic pressure. The HF oscillation of MSNA was coherent with respiration. Similarly, LF and HF spectral components were evident in SSNA variability, coherent with corresponding variability components of R-R interval and systolic pressure. HF oscillations of SSNA were coherent with respiration. Thus our data suggest that these oscillations may be fundamental characteristics shared by MSNA and SSNA, possibly reflecting common central mechanisms regulating sympathetic outflows subserving different regions and functions.  相似文献   

15.
Because successive rapid-eye-movement (REM) sleep periods in the night are longer in duration and have more phasic events, ventilation during late REM sleep might be more affected than in earlier episodes. Despite the increase in eye movement density (EMD) in late REM sleep, average minute ventilation was, however, not reduced compared with that in early REM sleep. Decreases in rib cage motion (mean inspiratory flow of the rib cage) in association with increasing EMD were offset by increments in respiratory frequency. Apart from expiratory time, there were no significant changes in the slopes of the relationships between EMD and specific ventilatory components, from early to late REM sleep periods. However, there was an increase in the number of episodes when ventilation was reduced during late REM sleep. Changes in ventilatory pattern during late REM sleep are due to changes in the underlying nature of REM sleep. The ventilatory response during eye movements is, however, subject specific. Some subjects exhibit large decrements in mean inspiratory flow of the rib cage and increments in respiratory frequency during bursts of eye movement, whereas other individuals demonstrate only small changes in these ventilatory parameters.  相似文献   

16.
Typhlonectes natans empty their lungs in a single extended exhalation and subsequently fill their lungs by using a series of 10-20 inspiratory buccal oscillations. These animals always use this breathing pattern, which effectively separates inspiratory and expiratory airflows, unlike most urodele and anuran amphibians that may use one to many buccal oscillations for lung inflation and typically mix expired and inspired gases. Aquatic hypoxia had no significant effect on the breathing pattern or mechanics in these animals. Aerial hypoxia stimulated ventilatory frequency and increased the number of inspiratory oscillations but had little effect on inspiratory and expiratory tidal volume. Aquatic hypercapnia elicited a large significant increase in air-breathing frequency and minute ventilation compared to the small stimulation of minute ventilation seen during aerial hypercapnia. Some animals responded to aquatic hypercapnia with a series of three or four closely spaced breaths separated by long nonventilatory periods. Overall, T. natans showed little capacity to modulate expiratory or inspiratory tidal volumes and depended heavily on changing air-breathing frequency to meet hypoxic and hypercapnic challenges. These responses are different from those of anurans or urodeles studied to date, which modulate both the number of ventilatory oscillations in lung-inflation cycles and the degree of lung inflation when challenged with peripheral or central chemoreceptor stimulation.  相似文献   

17.
Spectral analysis of r-r variability has been recently proposed as a clinical tool to assess the autonomic nervous system function. In this article we present the results obtained using an equipment and an analysis software (based on Maximum Entropy Method) developed in our laboratory. Analyzing the tachograms derived from prolonged ECG registrations of 12 young healthy subjects, 24 to 36 years old (mean 31 +/- 4), we observed the two classic components of the signal: a low frequency component (0.7 +/- 0.2 Hz) and a high frequency component (0.21 +/- 16.6 Hz). As expected, standing, a simple manoeuvre augmenting sympathetic activity, caused a stronger predominance of the low frequency component. We conclude that our method is reliable to evaluate, by means of spectral analysis, rhythmical oscillations of r-r variability.  相似文献   

18.
During inspiration the heart rate (HR) increases and during expiration it decreases. Contribution of respiratory sinus arrhythmia (RSA) to spontaneous heart rate variability (HRV) can be measured as the high frequency (HF) component of variation in consecutive R-R intervals on ECG. In conscious rats, slowing of HR is associated with an increase in HF. The aim of this study was to investigate whether this relationship between HF and HR is preserved during anesthesia in rat. A 15 minutes long ECG signal was recorded from rats (N=15) under moderate chloral hydrate (CHL) anesthesia. Recordings were extended with 45 minutes to investigate the effect of atropine (N=3), against controls (N=3). Short term HRV was investigated in 30 seconds long epochs. HF was considered the frequency band between 0.8 and 1.6 Hz. RSA was quantified as the relative spectral power of the HF. Respiratory frequency (RF) was quantified as the mean spectral frequency within the HF band. One minute estimates of HR, RSA and HF were calculated by averaging 3 epochs of 30 seconds overlapped 50%. The average HR was 427 +/- 3 bpm. The magnitude of RSA was 45 +/- 1% at a RF of 71 +/- 1 rpm. We found that: (1) the decrease in HR that occurs during CHL anesthesia in rat correlates with an increase in RSA; (2) atropine reduces RSA and the time-dependent decrease in HR; (3) the time-dependent increase in RSA is preserved after atropine. We conclude that the correlation between RSA and HR reflects the cardio-pulmonary coupling under parasympathetic control.  相似文献   

19.
Circulating catecholamine levels and a variety of cardiorespiratory variables were monitored in cannulated bimodally breathing African lungfish (Protopterus dolloi) exposed to aquatic or aerial hypoxia. Owing to the purported absence of external branchial chemoreceptors in lungfish and the minor role played by the gill in O2 uptake, it was hypothesized that plasma catecholamine levels would increase only during exposure of fish to aerial hypoxia. The rapid induction of aquatic hypoxia (final PWo2 = 25.9+/-1.6 mmHg) did not affect the levels of adrenaline (A) or noradrenaline (NA) within the plasma. Similarly, none of the measured cardiorespiratory variables--including heart rate (fH), blood pressure, air-breathing frequency (fV), O2 consumption (Mo2), CO2 excretion (Mco2), or blood gases--were influenced by acute aquatic hypoxia. In contrast, however, the rapid induction of aerial hypoxia (inspired Po2=46.6+/-3.3 mmHg) caused a marked increase in the circulating levels of A (from 7.9+/-2.0 to 18.8+/-6.1 nmol L(-1)) and NA (from 7.7+/-2.2 to 19.7+/-6.3 nmol L(-1)) that was accompanied by significant decreases in Mo2, arterial Po2 (Pao2), and arterial O2 concentration (Cao2). Air-breathing frequency was increased (by approximately five breaths per hour) during aerial hypoxia and presumably contributed to the observed doubling of pulmonary Mco2 (from 0.25+/-0.04 to 0.49+/-0.07 mmol kg(-1) h(-1)); fH and blood pressure were unaffected by aerial hypoxia. An in situ perfused heart preparation was used to test the possibility that catecholamine secretion from cardiac chromaffin cells was being activated by a direct localized effect of hypoxia. Catecholamine secretion from the chromaffin cells of the heart, while clearly responsive to a depolarizing concentration of KCl (60 mmol L(-1)), was unaffected by the O2 status of the perfusion fluid. The results of this study demonstrate that P. dolloi is able to mobilize stored catecholamines and increase f(V) during exposure to aerial hypoxia while remaining unresponsive to aquatic hypoxia. Thus, unlike in exclusively water-breathing teleosts, P. dolloi would appear to rely solely on internal/airway O2 chemoreceptors for initiating catecholamine secretion and cardiorespiratory responses.  相似文献   

20.
The effect of leg exercise and of arm exercise in sitting and standing body positions on energy output and on some cardiorespiratory parameters was studied in seven male subjects. Oxygen uptake (VO2), heart rate (fH), pulmonary ventilation (VE) and respiratory frequency were measured at rest, in the 7-8th min of submaximal work (300, 600, 900 kpm/min), and at maximal effort. Significantly higher Vo2, fH, and VE in arm cranking than in cycling were found at submaximal work loads above 300 kpm/min. Though the maximal work load in arm exercise was 50-60% of that in cycling, Vo2 in arm work was at maximal effort only 22% lower than in leg exercise while the difference in fH was insignificant. No differences were found in arm work between the results obtained at any work level in sitting and standing body positions. The only postural difference in arm work was a 13% higher work load achieved at maximal effort when standing than when sitting. Differences in fH between arm and leg exercise were much smaller for the same Vo2 than for the same work load and were time dependent. While fH quickly leveled off in leg exercise, fH in arm cranking rose steadily during the first 6 min of work which created the fH differences observed in the 7-8 min of submaximal arm arm and leg exercise. At submaximal work levels a tendency to synchronize the respiratory frequency with the frequency of the rotatory movements was more apparent in arm cranking than in cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号