首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the double-stranded DNA containing bacteriophages, hundreds of copies of capsid protein subunits polymerize to form icosahedral shells, called procapsids, into which the viral genome is subsequently packaged to form infectious virions. High assembly fidelity requires the assistance of scaffolding protein molecules, which interact with the capsid proteins to insure proper geometrical incorporation of subunits into the growing icosahedral lattices. The interactions between the scaffolding and capsid proteins are transient and are subsequently disrupted during DNA packaging. Removal of scaffolding protein is achieved either by proteolysis or alternatively by some form of conformational switch that allows it to dissociate from the capsid. To identify the switch controlling scaffolding protein association and release, hydrogen deuterium exchange was applied to Bacillus subtilis phage Ø29 scaffolding protein gp7 in both free and procapsid-bound forms. The H/D exchange experiments revealed highly dynamic and cooperative opening motions of scaffolding molecules in the N-terminal helix-loop-helix (H-L-H) region. The motions can be promoted by destabilizing the hydrophobic contact between two helices. At low temperature where high energy motions were damped, or in a mutant in which the helices were tethered through the introduction of a disulfide bond, this region displayed restricted cooperative opening motions as demonstrated by a switch in the exchange kinetics from correlated EX1 exchange to uncorrelated EX2 exchange. The cooperative opening rate was increased in the procapsid-bound form, suggesting this region might interact with the capsid protein. Its dynamic nature might play a role in the assembly and release mechanism.  相似文献   

2.
Hydrogen/deuterium exchange mass spectrometry (H/D MS) of monomeric actin (G-actin), polymeric actin (F-actin), phalloidin-bound F-actin and G-actin complexed with DNase I provides new insights into the architecture of F-actin and the effects of phalloidin and DNase I binding. Although the overall pattern of deuteration change supports the gross features of the Holmes F-actin model, two important differences were observed. Most significantly, no change in deuteration was observed in the critical "hydrophobic plug" region, suggesting this feature may not be present. Polymerization also produced deuteration increases for peptide fragments containing the ATP phosphate-binding loops, suggesting G-actin transitions to a more "open" conformation upon polymerization. However, polymerization produced decreases in deuteration mainly localized to the "inner", filament-axis side as predicted by the Holmes model. Mapping the phalloidin-induced decreases in F-actin deuteration onto the Lorenz binding site produced a single common patch straddling two monomers across the 1-start helix contact, again consistent with the Holmes architecture. Finally, both DNase I and phalloidin were able to alter the deuteration of regions distal to their respective binding sites. These results highlight the great opportunities for H/D MS to exploit high-resolution structures for detailed studies of the organization and dynamics of complex molecular assemblies.  相似文献   

3.
Protein kinase A (PKA), a central locus for cAMP signaling in the cell, is composed of regulatory (R) and catalytic (C) subunits. The C-subunits are maintained in an inactive state by binding to the R-subunit dimer in a tetrameric holoenzyme complex (R(2)C(2)). PKA is activated by cAMP binding to the R-subunits which induces a conformational change leading to release of the active C-subunit. Enzymatic activity of the C-subunit is thus regulated by cAMP via the R-subunit, which toggles between cAMP and C-subunit bound states. The R-subunit is composed of a dimerization/docking (D/D) domain connected to two cAMP-binding domains (cAMP:A and cAMP:B). While crystal structures of the free C-subunit and cAMP-bound states of a deletion mutant of the R-subunit are known, there is no structure of the holoenzyme complex or of the cAMP-free state of the R-subunit. An important step in understanding the cAMP-dependent activation of PKA is to map the R-C interface and characterize the mutually exclusive interactions of the R-subunit with cAMP and C-subunit. Amide hydrogen/deuterium exchange mass spectrometry is a suitable method that has provided insights into the different states of the R-subunit in solution, thereby allowing mapping of the effects of cAMP and C-subunit on different regions of the R-subunit. Our study has localized interactions with the C-subunit to a small contiguous surface on the cAMP:A domain and the linker region. In addition, C-subunit binding causes increased amide hydrogen exchange within both cAMP-domains, suggesting that these regions become more flexible in the holoenzyme and are primed to bind cAMP. Furthermore, the difference in the protection patterns between RIalpha and the previously studied RIIbeta upon cAMP-binding suggests isoform-specific differences in cAMP-dependent regulation of PKA activity.  相似文献   

4.
Photoactive yellow protein (PYP) is a small bacterial photoreceptor that undergoes a light-activated reaction cycle. PYP is also the prototypical Per-Arnt-Sim (PAS) domain. PAS domains, found in diverse multi-domain proteins from bacteria to humans, mediate protein-protein interactions and function as sensors and signal transducers. Here, we investigate conformational and dynamic changes in solution in wild-type PYP upon formation of the long-lived putative signaling intermediate I2 with enhanced hydrogen/deuterium exchange mass spectrometry (DXMS). The DXMS results showed that the central beta-sheet remains stable but specific external protein segments become strongly deprotected. Light-induced disruption of the dark-state hydrogen bonding network in I2 produces increased flexibility and opening of PAS core helices alpha3 and alpha4, releases the beta4-beta5 hairpin, and propagates conformational changes to the central beta-sheet. Surprisingly, the first approximately 10 N-terminal residues, which are essential for fast dark-state recovery from I2, become more protected. By combining the DXMS results with our crystallographic structures, which reveal detailed changes near the chromophore but limited protein conformational change, we propose a mechanism for I2 state formation. This mechanism integrates the results from diverse biophysical studies of PYP, and links an allosteric T to R-state conformational transition to three pathways for signal propagation within the PYP fold. On the basis of the observed changes in PYP plus commonalities shared among PAS domain proteins, we further propose that PAS domains share this conformational mechanism, which explains the versatile signal transduction properties of the structurally conserved PYP/PAS module by framework-encoded allostery.  相似文献   

5.
Human insulin and insulin lispro (lispro), a rapid-acting insulin analog, have identical primary structures, except for the transposition of a pair of amino acids. This mutation results in alterations in their higher order structures, with lispro dissociating more easily than human insulin. In our previous study performed using hydrogen/deuterium exchange mass spectrometry (HDX/MS), differences were observed in the rates and levels of deuteration among insulin analog products, which were found to be related to their self-association stability. In this study, we carried out peptide mapping of deuterated human insulin and lispro to determine the regions responsible for these deuteration differences and to elucidate the type of structural changes that affect their HDX reactivity. We identified A3–6 and B22–24 as the 2 regions that showed distinct differences in the number of deuterium atoms incorporated between human insulin and lispro. These regions contain residues that are thought to participate in hexamerization and dimerization, respectively. We also determined that over time, the differences in deuteration levels decreased in A3–6, whereas they increased in B22–24, suggesting a difference in the dynamics between these 2 regions. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.  相似文献   

6.
Elucidating protein structure in amorphous solids is central to the rational design of stable lyophilized protein drugs. Hydrogen/deuterium (H/D) exchange with electrospray ionization mass spectrometry was applied to lyophilized powders containing calmodulin (17 kDa) and exposed to D(2)O vapor at controlled relative humidity (RH) and temperature. H/D exchange was influenced by RH and by the inclusion of calcium chloride and/or trehalose in the solid. The effects were not exhibited uniformly along the protein backbone but occurred in a site-specific manner, with calcium primarily influencing the calcium-binding loops and trehalose primarily influencing the alpha-helices. The results demonstrate that the method can provide quantitative and site-specific structural information on proteins in amorphous solids and on changes in structure induced by protein cofactors and formulation excipients. Such information is not readily available with other techniques used to characterize proteins in the solid state, such as Fourier transform infrared, Raman, and near-infrared spectroscopy.  相似文献   

7.
The capsid of P22 bacteriophage undergoes a series of structural transitions during maturation that guide it from spherical to icosahedral morphology. The transitions include the release of scaffold proteins and capsid expansion. Although P22 maturation has been investigated for decades, a unified model that incorporates thermodynamic and biophysical analyses is not available. A general and specific model of icosahedral capsid maturation is of significant interest to theoreticians searching for fundamental principles as well as virologists and material scientists seeking to alter maturation to their advantage. To address this challenge, we have combined the results from orthogonal biophysical techniques including differential scanning fluorimetry, atomic force microscopy, circular dichroism, and hydrogen-deuterium exchange mass spectrometry. By integrating these results from single particle and population measurements, an energy landscape of P22 maturation from procapsid through expanded shell to wiffle ball emerged, highlighting the role of metastable structures and the thermodynamics guiding maturation. The propagation of weak quaternary interactions across symmetric elements of the capsid is a key component for stability in P22. A surprising finding is that the progression to wiffle ball, which lacks pentamers, shows that chemical and thermal stability can be uncoupled from mechanical rigidity, elegantly demonstrating the complexity inherent in capsid protein interactions and the emergent properties that can arise from icosahedral symmetry. On a broader scale, this work demonstrates the power of applying orthogonal biophysical techniques to elucidate assembly mechanisms for supramolecular complexes and provides a framework within which other viral systems can be compared.  相似文献   

8.
A general method to analyze the structure of a supramolecular complex of amyloid fibrils at amino acid residue resolution has been developed. This method combines the NMR-detected hydrogen/deuterium (H/D) exchange technique to detect hydrogen-bonded amide groups and the ability of the aprotic organic solvent dimethylsulfoxide (DMSO) to dissolve amyloid fibrils into NMR-observable, monomeric components while suppressing the undesired H/D exchange reaction. Moreover, this method can be generally applied to amyloid fibrils to elucidate the distribution of hydrogen-bonded amino acid residues in the three-dimensional molecular organization in the amyloid fibrils. In this study, we describe theoretical considerations in the H/D exchange method to obtain the structural information of proteins, and the DMSO-quenched H/D exchange method to study a supramolecular complex of amyloid fibrils. A possible application of this method to study the interaction of a protein/peptide with phospholipid membrane is also discussed.  相似文献   

9.
Creatine kinase (CK) isoenzymes catalyse the reversible transfer of a phosphoryl group from ATP onto creatine. This reaction plays a very important role in the regulation of intracellular ATP concentrations in excitable tissues. CK isoenzymes are highly resistant to proteases in native conditions. To appreciate localized backbone dynamics, kinetics of amide hydrogen exchange with deuterium was measured by pulse-labeling the dimeric cytosolic muscle CK isoenzyme. Upon exchange, the protein was digested with pepsin, and the deuterium content of the resulting peptides was determined by liquid chromatography coupled to mass spectrometry (MS). The deuteration kinetics of 47 peptides identified by MS/MS and covering 96% of the CK backbone were analyzed. Four deuteration patterns have been recognized: The less deuterated peptides are located in the saddle-shaped core of CK, whereas most of the highly deuterated peptides are close to the surface and located around the entrance to the active site. Their exchange kinetics are discussed by comparison with the known secondary and tertiary structures of CK with the goal to reveal the conformational dynamics of the protein. Some of the observed dynamic motions may be linked to the conformational changes associated with substrate binding and catalytic mechanism.  相似文献   

10.
Yamamoto T  Izumi S  Gekko K 《FEBS letters》2006,580(15):3638-3642
The 70S ribosome from Escherichia coli is a supermacro complex (MW: 2.7MDa) comprising three RNA molecules and more than 50 proteins. We have for the first time successfully analyzed the flexibility of 70S ribosomal proteins in solution by detecting the hydrogen/deuterium exchange with mass spectrometry. Based on the deuterium incorporation map of the X-ray structure obtained at the time of each exchange, we demonstrate the structure-flexibility-function relationship of ribosome focusing on the deuterium incorporation of the proteins binding ligands (tRNA, mRNA, and elongation factor) and the relation with structural assembly processes.  相似文献   

11.
IL-23 is an important therapeutic target for the treatment of inflammatory diseases. Adnectins are targeted protein therapeutics that are derived from domain III of human fibronectin and have a similar protein scaffold to antibodies. Adnectin 2 was found to bind to IL-23 and compete with the IL-23/IL-23R interaction, posing a potential protein therapeutic. Hydrogen/deuterium exchange mass spectrometry and computational methods were applied to probe the binding interactions between IL-23 and Adnectin 2 and to determine the correlation between the two orthogonal methods. This review summarizes the current structural knowledge about IL-23 and focuses on the applicability of hydrogen/deuterium exchange mass spectrometry to investigate the higher order structure of proteins, which plays an important role in the discovery of new and improved biotherapeutics.  相似文献   

12.
This report documents the feasibility and advantages of integrating hydrogen/deuterium exchange (HDX) methodology with cyanylation (CN)-based methodology to determine the conformation of cystinyl proteins and intermediates during refolding. The CN-based methodology can be used to trap, identify, and preserve the disulfide structure of a given cystinyl protein folding intermediate, while the HDX methodology can be used to assess other conformational features of the intermediate. Specifically, in this study, CN-based methodology was used to trap a 1-disulfide bond and a 2-disulfide intermediate of long Arg(3) insulin-like growth factor-I (LR(3)IGF-I), which was then exposed to HDX using D(2)O at pD 6.8 and subsequently digested with pepsin before analysis by matrix-assisted laser desorption/ionization mass spectrometry. The HDX results show an increasing degree of secondary and tertiary structure as a function of disulfide bond formation. In addition, the HDX results for two overlapping peptic fragments suggest that a segment of the polypeptide exists in two conformations, which can be distinguished by HDX and pepsin. These results from HDX mass spectrometry are in reasonably good agreement with those from nuclear magnetic resonance studies of native LR(3)IGF-I and IGF-I, in which approximately 5000 times more material was used than in our study. Indications are that the integrated use of HDX and CN-based methodologies will be effective in studying the refolding of cystinyl proteins at the subnanomole level.  相似文献   

13.
The aspartic protease pepsin is less specific than other endoproteinases. Because aspartic proteases like pepsin are active at low pH, they are utilized in hydrogen deuterium exchange mass spectrometry (HDX MS) experiments for digestion under hydrogen exchange quench conditions. We investigated the reproducibility, both qualitatively and quantitatively, of online and offline pepsin digestion to understand the compliment of reproducible pepsin fragments that can be expected during a typical pepsin digestion. The collection of reproducible peptides was identified from > 30 replicate digestions of the same protein and it was found that the number of reproducible peptides produced during pepsin digestion becomes constant above 5–6 replicate digestions. We also investigated a new aspartic protease from the stomach of the rice field eel (Monopterus albus Zuiew) and compared digestion efficiency and specificity to porcine pepsin and aspergillopepsin. Unique cleavage specificity was found for rice field eel pepsin at arginine, asparagine, and glycine. Different peptides produced by the various proteases can enhance protein sequence coverage and improve the spatial resolution of HDX MS data. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.  相似文献   

14.
MAb1, a human IgG1 monoclonal antibody produced in a NS0 cell line, exhibits charge heterogeneity because of the presence of variants formed by processes such as N-terminal glutamate cyclization, C-terminal lysine truncation, deamidation, aspartate isomerization and sialylation in the carbohydrate moiety. Four major charge variants of MAb1 were isolated and the conformations of these charge variants were studied using hydrogen/deuterium exchange mass spectrometry, including the H/D exchange time course (HX-MS) and the stability of unpurified proteins from rates of H/D exchange (SUPREX) techniques. HX-MS was used to evaluate the conformation and solution dynamics of MAb1 charge variants by measuring their deuterium buildup over time at the peptide level. The SUPREX technique evaluated the unfolding profile and relative stability of the charge variants by measuring the exchange properties of globally protected amide protons in the presence of a chemical denaturant. The H/D exchange profiles from both techniques were compared among the four charge variants of MAb1. The two techniques together offered extensive understanding about the local and subglobal/global unfolding of the charge variants of MAb1. Our results demonstrated that all four charge variants of MAb1 were not significantly different in conformation, solution dynamics and chemical denaturant-induced unfolding profile and stability, which aids in understanding the biofunctions of the molecules. The analytical strategy used for conformational characterization may also be applicable to comparability studies done for antibody therapeutics.  相似文献   

15.
The HIV-1 p17 matrix protein is a multifunctional protein that interacts with other molecules including proteins and membranes. The dynamic structure between its folded and partially unfolded states can be critical for the recognition of interacting molecules. One of the most important roles of the p17 matrix protein is its localization to the plasma membrane with the Gag polyprotein. The myristyl group attached to the N-terminus on the p17 matrix protein functions as an anchor for binding to the plasma membrane. Biochemical studies revealed that two regions are important for its function: D14–L31 and V84–V88. Here, the dynamic structures of the p17 matrix protein were studied using NMR for relaxation and amide proton exchange experiments at the physiological pH of 7.0. The results revealed that the α12-loop, which includes the 14–31 region, was relatively flexible, and that helix 4, including the 84–88 region, was the most protected helix in this protein. However, the residues in the α34-loop near helix 4 had a low order parameter and high exchange rate of amide protons, indicating high flexibility. This region is probably flexible because this loop functions as a hinge for optimizing the interactions between helices 3 and 4. The C-terminal long region of K113-Y132 adopted a disordered structure. Furthermore, the C-terminal helix 5 appeared to be slightly destabilized due to the flexible C-terminal tail based on the order parameters. Thus, the dynamic structure of the p17 matrix protein may be related to its multiple functions.  相似文献   

16.
The pleomorphic nature of the immature and mature HIV-1 virions has made it difficult to characterize intersubunit interactions using traditional approaches. While the structures of isolated domains are known, the challenge is to identify intersubunit interactions and thereby pack these domains into supramolecular structures. Using high-resolution mass spectrometry, we have measured the amide hydrogen exchange protection factors for the soluble capsid protein (CA) and CA assembled in vitro. Comparison of the protection factors as well as chemical crosslinking experiments has led to a map of the subunit/subunit interfaces in the assembled tubes. This analysis provides direct biochemical evidence for the homotypic N domain and C domain interactions proposed from cryo-electron microscopy image reconstruction of CA tubes. Most significantly, we have identified a previously unrecognized intersubunit N domain-C domain interaction. The detection of this interaction reconciles previously discrepant biophysical and genetic data.  相似文献   

17.
Hydrogen/deuterium exchange, which depends on solvent accessibility, can be probed by mass spectrometry (MS) to get information on protein conformation or protein–ligand interaction. In this work, the conformational properties of the cyanobacterium Anabaena wild-type ferredoxin as well as of two single-site mutants (Phe 65 Ala and Arg 42 Ala) were studied. After incubation of the wild type and mutant proteins in deuterated water and quenching of the exchange at low pH, the proteins were rapidly digested at high enzyme-to-substrate ratio using immobilized pepsin, and the resulting peptides were characterized using ESI-MS. We have identified specific regions for which the H-bonding or solvent accessibility properties were perturbed by the mutations. These results show that this approach can provide local information on the influence of mutations, even for a highly structured protein like ferredoxin, and sometimes in regions distant from the mutation point.  相似文献   

18.
Unfolding and refolding of rabbit muscle triosephosphate isomerase (TIM), a model for (betaalpha)8-barrel proteins, has been studied by amide hydrogen exchange/mass spectrometry. Unfolding was studied by destabilizing the protein in guanidine hydrochloride (GdHCl) or urea, pulse-labeling with 2H2O and analyzing the intact protein by HPLC electrospray ionization mass spectrometry. Bimodal isotope patterns were found in the mass spectra of the labeled protein, indicating two-state unfolding behavior. Refolding experiments were performed by diluting solutions of TIM unfolded in GdHCl or urea and pulse-labeling with 2H2O at different times. Mass spectra of the intact protein labeled after one to two minutes had three envelopes of isotope peaks, indicating population of an intermediate. Kinetic modeling indicates that the stability of the folding intermediate in water is only 1.5 kcal/mol. Failure to detect the intermediate in the unfolding experiments was attributed to its low stability and the high concentrations of denaturant required for unfolding experiments. The folding status of each segment of the polypeptide backbone was determined from the deuterium levels found in peptic fragments of the labeled protein. Analysis of these spectra showed that the C-terminal half folds to form the intermediate, which then forms native TIM with folding of the N-terminal half. These results show that TIM folding fits the (4+4) model for folding of (betaalpha)8-barrel proteins. Results of a double-jump experiment indicate that proline isomerization does not contribute to the rate-limiting step in the folding of TIM.  相似文献   

19.
Despite high level of homology among non-receptor tyrosine kinases, different kinase families employ a diverse array of regulatory mechanisms. For example, the catalytic kinase domains of the Tec family kinases are inactive without assembly of the adjacent regulatory domains, whereas the Src kinase domains are autoinhibited by the assembly of similar adjacent regulatory domains. Using molecular dynamics simulations, biochemical assays, and biophysical approaches, we have uncovered an isoleucine residue in the kinase domain of the Tec family member Btk that, when mutated to the closely related leucine, leads to a shift in the conformational equilibrium of the kinase domain toward the active state. The single amino acid mutation results in measureable catalytic activity for the Btk kinase domain in the absence of the regulatory domains. We suggest that this isoleucine side chain in the Tec family kinases acts as a “wedge” that restricts the conformational space available to key regions in the kinase domain, preventing activation until the kinase domain associates with its regulatory subunits and overcomes the energetic barrier to activation imposed by the isoleucine side chain.  相似文献   

20.
Dual specific A-kinase anchoring protein 2 (D-AKAP2) is a scaffold protein that coordinates cAMP-mediated signaling complexes by binding to type I and type II protein kinase A (PKA). While information is unfolding regarding specific binding motifs, very little is known about the overall structure and dynamics of these scaffold proteins. We have used deuterium exchange-mass spectrometry (DXMS) and limited proteolysis to probe the folded regions of D-AKAP2, providing for the first time insight into the intra-domain dynamics of a scaffold protein. Deuterium on-exchange revealed two regions of low deuterium exchange that were surrounded by regions of high exchange, suggestive of two distinctly folded regions, flanked by disordered or solvent accessible regions. Similar folded regions were detected by limited proteolysis. The first folded region contained a putative regulator of G-protein signaling (RGS) domain. A structural model of the RGS domain revealed that the more deuterated regions mapped onto loops and turns, whereas less deuterated regions mapped onto alpha-helices, consistent with this region folding into an RGS domain. The second folded region contained a highly protected PKA binding site and a more solvent-accessible PDZ binding motif, which may serve as a potential targeting domain for D-AKAP2. DXMS has verified the multi-domain architecture of D-AKAP2 implied by sequence homology and has provided unique insight into the accessibility of the PKA binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号